NO861232L - PROCEDURE FOR THE PRE-ALREADY PREPARATION. - Google Patents

PROCEDURE FOR THE PRE-ALREADY PREPARATION.

Info

Publication number
NO861232L
NO861232L NO861232A NO861232A NO861232L NO 861232 L NO861232 L NO 861232L NO 861232 A NO861232 A NO 861232A NO 861232 A NO861232 A NO 861232A NO 861232 L NO861232 L NO 861232L
Authority
NO
Norway
Prior art keywords
iron
furnace
alloy
oxide
carbon
Prior art date
Application number
NO861232A
Other languages
Norwegian (no)
Inventor
Glenn E Hoffman
Original Assignee
Midrex Int Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midrex Int Bv filed Critical Midrex Int Bv
Publication of NO861232L publication Critical patent/NO861232L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Compounds Of Iron (AREA)
  • Cephalosporin Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Steroid Compounds (AREA)

Description

Foreliggende oppfinnelse vedrører legeringer som har et innholdt av metallisk jern for anvendelse ved fremstilling av jern og stål såvel som fremgangsmåten for fremstilling av slike legeringer. The present invention relates to alloys which have a content of metallic iron for use in the production of iron and steel as well as the method for producing such alloys.

Ved fremstillingen av jern og stål er det vanlig å gjøre visse tilsatser til smelteovnen, f.eks. av forskjellige metallholdige produkter i form av legeringer, så som ferrosilisium, ferronikkel, ferrokrom, ferromangan o.l. Slike ferrolegeringer inneholder normalt en betydelig mengde karbon. Ved foreliggende oppfinnelse formes metallisert jern, legeringeselementet i oksydform, og karbon til en kompakt gjenstand, eller brikett, og fylles deretter i en sjaktovn sammen med ytterligere karbonholdig materiale så som koks, om nødvendig, og reduseres slik at det dannes et smeltet ferrolegeringsprodukt av høy verdi for støperiformål og andre jern- og stålfremstillingsformål. In the production of iron and steel, it is common to make certain additions to the melting furnace, e.g. of various metal-containing products in the form of alloys, such as ferrosilicon, ferronickel, ferrochrome, ferromanganese etc. Such ferroalloys normally contain a significant amount of carbon. In the present invention, metallized iron, the alloying element in oxide form, and carbon are formed into a compact object, or briquette, and then filled into a shaft furnace together with additional carbonaceous material such as coke, if necessary, and reduced so as to form a molten ferroalloy product of high value for foundry purposes and other iron and steel manufacturing purposes.

I briketten som skal fylles i sjaktovnen utgjør fortrinnsvis fine partikler av metallisert jern grunnbestanddelen i sammensetningen. Tidligere kjente briketter inneholder fine partikler av jernoksyd. Nærværet av fine, metalliserte partikler reduserer energibehovet for fremgangsmåten ifølge oppfinnelsen. Siden de fine jernpartiklene befinner seg i metallisert tilstand, utgjør energien som normalt kreves for å redusere jernoksydet til jern, ikke noe energibehov ved foreliggende fremgangsmåte. Siden jernet i briketten ikke må reduseres før smelting er energibehovet redusert. In the briquettes to be filled in the shaft furnace, fine particles of metallized iron are preferably the basic component in the composition. Previously known briquettes contain fine particles of iron oxide. The presence of fine, metallized particles reduces the energy requirement for the method according to the invention. Since the fine iron particles are in a metallized state, the energy normally required to reduce the iron oxide to iron does not require any energy in the present method. Since the iron in the briquette does not have to be reduced before melting, the energy requirement is reduced.

Patentene som vedrører den nærmestliggende teknikkens stand innbefatter U.S. patent nr. 4,179,283, U.S. patent nr. 4,395,284 og U.S. patent nr. 4,369,062. The patents relating to the prior art include U.S. Pat. U.S. Patent No. 4,179,283 Patent No. 4,395,284 and U.S. Pat. Patent No. 4,369,062.

U.S. patent nr. 4,179,283 beskriver utelukkende brikettering av metall-oksyder og brikettmaterialet inneholder ikke noe direkte redusert jern. Det benyttes to kilder for karbon, et karbonmateriale av høy reaktivitet og et karbonmateriale av lav reaktivitet. U.S. patent no. 4,179,283 describes exclusively the briquetting of metal oxides and the briquette material does not contain any directly reduced iron. Two sources of carbon are used, a carbon material of high reactivity and a carbon material of low reactivity.

U.S. patent nr. 4,395,284 angir at jern og et bindemiddel er valgfrie, men ikke essensielle, bestanddeler. Det fremstilles porøse, kompakte stykker for anvendelse som råstoffmateriale i en elektrisk ovn, materialet har en tilsynelatende lav tetthet og høy indre porøsitet. Det angis at opptil 15% av vekten av silisiumoksyd kan være jernpartikler, imidlertid er dette identifisert som valsehud som generelt foreligger i oksydform. U.S. patent No. 4,395,284 states that iron and a binder are optional, but not essential, ingredients. Porous, compact pieces are produced for use as raw material in an electric furnace, the material having an apparent low density and high internal porosity. It is stated that up to 15% of the weight of silicon oxide may be iron particles, however this is identified as rolled skin which is generally in oxide form.

U.S. patent 4,369,062 beskriver fremstilling av en brikett av de angitte materialene, så som fine jernpartikler og valsehud opptil 41%. En studie har vist at det finnes en utilstrekkelig mengde karbon i denne briketten til å redusere valsehuden. Det kraves også en tillegsenergikilde for å tilveiebringe varme under smeltingen. U.S. patent 4,369,062 describes the production of a briquette of the indicated materials, such as fine iron particles and roller skins up to 41%. A study has shown that there is an insufficient amount of carbon in this briquette to reduce the roll skin. An additional energy source is also required to provide heat during the melting.

Foreliggende oppfinnelse adskiller seg fra hver av disse tidligere kjente fremgangsmåtene ved at brikettene som fylles i ovnen inneholder det ønskede legeringsoksydet, karbon og jern som er mer enn 60% metallisert, og et bindemiddel så som natriumsilikat eller en blanding av kalsiumhydroksyd og molasse. The present invention differs from each of these previously known methods in that the briquettes that are filled in the furnace contain the desired alloy oxide, carbon and iron that is more than 60% metallized, and a binder such as sodium silicate or a mixture of calcium hydroxide and molasses.

Et hovedformål ved foreliggende oppfinnelse er å tilveiebringe en fremgangsmåte for fremstilling av en ferrolegering på en mer økonomisk måte enn det idag er mulig, for forskjellige stålfremstillings- og støperi-anvendelser. A main purpose of the present invention is to provide a method for producing a ferroalloy in a more economical way than is currently possible, for various steelmaking and foundry applications.

Fra 85 til 99 deler av en blanding av finfordelt materiale bestående hovedsakelig av 10 til 90% metallisert jern, 7 til 65% legeringsoksyd, og 5 til 25% karbon, blandes med 1 til 15 deler bindemiddel, og kompakteres slik at det dannes en brikett. Den optimale briketten inneholder 92 deler finfordelt materiale og 8 deler bindemiddel. Briketten fylles i en sjaktovn sammen med ytterligere karbonholdig materiale, som brennes til varme og reduserer legeringsoksydet til metallisert form, smelter jernet og legeringselementet, og danner en smelte av ferrolegering i ovnen. From 85 to 99 parts of a mixture of finely divided material consisting mainly of 10 to 90% metallized iron, 7 to 65% alloying oxide, and 5 to 25% carbon, is mixed with 1 to 15 parts binder, and compacted to form a briquette . The optimal briquette contains 92 parts finely divided material and 8 parts binder. The briquette is filled into a shaft furnace along with additional carbonaceous material, which is burned to heat and reduce the alloying oxide to a metallized form, melting the iron and the alloying element, forming a ferroalloy melt in the furnace.

Ved fremgangsmåten ifølge oppfinnelsen anvendes en jernholdig brikett som utgangsmateriale bestående hovedsakelig av fra ca. 10 til 90% metallisert jern, fra ca. 7 til ca. 65% legering i metalloksydform, og fra ca. 5 til ca. 26% karbon. Jernet i sammensetningen bør foreligge i form av spon eller fine, metalliserte jernpartikler, men fortrinnsvis sistnevnte. Fine," metalliserte jernpartikler fremstilles fortrinnsvis ved direkte reduksjon av jernoksyd og er i det minste 60% metallisert, men vanligere mer enn 80% metallisert. In the method according to the invention, a ferrous briquette is used as starting material consisting mainly of from approx. 10 to 90% metallized iron, from approx. 7 to approx. 65% alloy in metal oxide form, and from approx. 5 to approx. 26% carbon. The iron in the composition should be in the form of shavings or fine, metallized iron particles, but preferably the latter. Fine" metallized iron particles are preferably produced by direct reduction of iron oxide and are at least 60% metallized, but more commonly more than 80% metallized.

De foretrukne bindemidlene er 3 deler*kalk og 5 deler molasse. Kalk i bindemiddelet foreligger i form av hydrert kalk, som er kalsiumhydroksyd. Alle disse komponentene bør foreligge i finfordelt fom, fortrinnsvis minus 3 millimeter. The preferred binders are 3 parts*lime and 5 parts molasses. Lime in the binder is in the form of hydrated lime, which is calcium hydroxide. All these components should be present in finely divided form, preferably minus 3 millimetres.

Silisiumoksyd, manganoksyd, kromitt, molybdenoksyd, nikkeloksyd, koboltoksyd, vanadiumoksyd, eller annet ønsket legeringsoksyd er tilstede i finfordel eller granulert form. Slike oksyder er i foreliggende beskrivelse angitt ved formelen "MO^' for å lette notasjonen i ligningene. Silicon oxide, manganese oxide, chromite, molybdenum oxide, nickel oxide, cobalt oxide, vanadium oxide, or other desired alloying oxide is present in finely ground or granular form. In the present description, such oxides are denoted by the formula "MO^" to facilitate the notation in the equations.

De fine, metalliserte jernpartiklene inne i briketten smelter slik at det dannes diskrete jerndråper som er mettet med karbon. Karbonet er fortrinnsvis en komponent av et fast brennstoff, så som kull eller koks, eller kan alternativt være bek eller tjære. Briketter bør innbefatte ekstra karbon utover den støkiometriske mengden, slik at en del virker som brennstoff og tilveiebringer reaksjonsvarme for reduksjonen og tilfører den nødvendige energien til å oppvarme og smelte det reduserte jernet og silisiumet til avtappingstemperaturen (ca. 1500°C). Funksjonen av karbonet i briketten er: 1) å tilføre den energien som er påkrevet for at reaksjonsvarmen skal redusere legeringsmetalloksydet, denne reaksjonen er; 2) å tilføre den ernergien som er påkrevet for å oppløse karbonet i det smeltede jernet, denne reaksjonen er; 3) å tilveiebringe den ernergien som er påkrevet for å oppfylle entalpikravet ved oppvarmingen av jern og metalliserte oksydspesies (etter reduksjon) til avtappingstemperaturen; og 4) å tilveiebringe energien for å oppløse det reduserte metallspesies i det smeltede jernet, denne reaksjonen er; The fine, metallized iron particles inside the briquette melt so that discrete iron droplets are formed which are saturated with carbon. The carbon is preferably a component of a solid fuel, such as coal or coke, or can alternatively be pitch or tar. Briquettes should include extra carbon beyond the stoichiometric amount, so that some of it acts as fuel and provides heat of reaction for the reduction and supplies the necessary energy to heat and melt the reduced iron and silicon to the tap-off temperature (about 1500°C). The function of the carbon in the briquette is: 1) to supply the energy required for the heat of reaction to reduce the alloy metal oxide, this reaction is; 2) supplying the energy required to dissolve the carbon in the molten iron, this reaction is; 3) to provide the energy required to meet the enthalpy requirement by heating the iron and metallized oxide species (after reduction) to the tap-off temperature; and 4) providing the energy to dissolve the reduced metal species in the molten iron, this reaction being;

Fortrinnsvis er partikkelstørrelsen av alle komponentene mindre enn 25 mm, mest fortrinnsvis er partikkelstørrelsen av alle komponentene mindre enn 15 mm før brikettering. Preferably the particle size of all the components is less than 25 mm, most preferably the particle size of all the components is less than 15 mm before briquetting.

Et mer fordelaktig konsentrasjonsområde for komponentene i briketten er fra 20 til 70% metallisert jern, 15 til 60% legeringsoksyd og 9 til 23% karbon. Den optimale sammensetningen er fra 40 til 55% metallisert jern, 20 til 40% legeringsoksyd og 13 til 21% karbon. A more advantageous concentration range for the components of the briquette is from 20 to 70% metallised iron, 15 to 60% alloy oxide and 9 to 23% carbon. The optimum composition is from 40 to 55% metallised iron, 20 to 40% alloy oxide and 13 to 21% carbon.

Blandingen angitt ovenfor kan briketteres ved varmbrikettering ved en temperatur på minst 600 °C og et trykk på minst 6895 kPa, slik at det dannes en varm, jernholdig brikett. The mixture indicated above can be briquetted by hot briquetting at a temperature of at least 600 °C and a pressure of at least 6895 kPa, so that a hot, ferrous briquette is formed.

Det foretrukne bindemiddelet er en blanding av kalsiumhydroksyd og molasse i tilnærmet like store deler, med en optimal sammensetning på 3 deler kalk til 5 deler molasse. Imidlertid kan hver av komponentene være tilstede i en mengde på fra 30 til 70% av bindemiddelet. Alternative bindemidler er natriumsilikat, bek og tjærer, alndre organiske eller kjemiske bindemidler og sementer. The preferred binder is a mixture of calcium hydroxide and molasses in roughly equal parts, with an optimal composition of 3 parts lime to 5 parts molasses. However, each of the components may be present in an amount of from 30 to 70% of the binder. Alternative binders are sodium silicate, pitch and tars, other organic or chemical binders and cements.

Ved gjennomføring av fremgangsmåten ifølge oppfinnelsen fylles ferro-legeringsbriketten i en sjaktsmelteovn, så som en kuppelovn eller en annen smelteovn. En betydelig del av legeringsoksydet i briketten vil reduseres under smelteprosessen, og det metalliske legeringselementet vil bli tilgjengelig for det smeltede produktet som et legeringselement. Følgelig fremgår det at ferrolegeringsbriketter kan erstatte det dyrere ferrosilisium eller andre ferrolegeringer. When carrying out the method according to the invention, the ferro-alloy briquette is filled in a shaft melting furnace, such as a cupola furnace or another melting furnace. A significant part of the alloying oxide in the briquette will be reduced during the melting process, and the metallic alloying element will become available to the molten product as an alloying element. Consequently, it appears that ferroalloy briquettes can replace the more expensive ferrosilicon or other ferroalloys.

I en kuppelovn, som er smelteovn og ikke en reduksjonsovn, oppstår et tap i smelteeffektiviteten når reduksjon av både legeringsoksyd og jernoksyd må utføres i ovnen. Dersom bare legeringsoksydet må reduseres, dvs. dersom jernoksydet allerede er redusert til den metalliserte jernformen vil tapet i smelteeffektiviteten minimaliseres. In a cupola furnace, which is a melting furnace and not a reduction furnace, a loss in melting efficiency occurs when reduction of both alloy oxide and iron oxide must be carried out in the furnace. If only the alloy oxide has to be reduced, i.e. if the iron oxide has already been reduced to the metallized iron form, the loss in melting efficiency will be minimised.

Oksygen for forbrenning i kuppelovnen tilveiebringes ved hjelp av foroppvarmet luft, eventuelt med oksygenanrikning. Kuppelovnen kan være en konvensjonell koks-kuppelovn, eller en koksløs kuppelovn, eller en hvilken som helst ønsket smelteovn, som kan oppvarmes ved hjelp av oksygenholdig-brennstoffbrennere, oksygenanriket luft/naturgassbrennere, plasmaflammer, eller elektroder så som karbonlysbue-elektroder i en elektrisk lysbueovn. Oxygen for combustion in the cupola furnace is provided by means of preheated air, possibly with oxygen enrichment. The cupola furnace may be a conventional coke cupola furnace, or a cokeless cupola furnace, or any desired melting furnace, which may be heated by means of oxygenated fuel burners, oxygen-enriched air/natural gas burners, plasma flames, or electrodes such as carbon arc electrodes in an electric arc furnace. .

Den tilsatte briketten består fortrinnsvis hovedsakelig av fine metalliserte jernpartikler, finfordelt eller granulert legering i oksydform, en karbonkilde så som koksslagg eller fine kullpartikler, og et bindemiddel så som en blanding av kalsiumhydroksyd og molasse. Etter at blandingen er komprimert til en brikett kan briketten tørkes eller herdes ved en lav temperatur som fra 150 til 200 °C for å fjerne eventuell fuktighet og å forbedre den usintrede styrken. The added briquette preferably consists mainly of fine metallized iron particles, finely divided or granulated alloy in oxide form, a carbon source such as coke slag or fine coal particles, and a binder such as a mixture of calcium hydroxide and molasses. After the mixture is compressed into a briquette, the briquette can be dried or cured at a low temperature such as from 150 to 200°C to remove any moisture and to improve the unsintered strength.

Rustfritt stål eller stållegeringsspon, utboringer eller spon, eller ikke-jernholdig oksyder så som ileminitt, kromitt, titanoksydkonsentrater, nikkellateritter eller oksyder, og også stållegeringsvalsehud kan innbe-fattes i brikettene. Stainless steel or steel alloy shavings, borings or shavings, or non-ferrous oxides such as ileminite, chromite, titanium oxide concentrates, nickel laterites or oxides, and also steel alloy rolling skin can be included in the briquettes.

Tilstrekkelig ekstra karbon, i form av fast karbonholdig materiale så som koks, fylles i smelteovnen i en slik mengde at det oppfyller entalpi og forbrenningsvarmebehovet for å smelte det faste jernet, den faste jernlegeringen og slaggdannerne som er tilsatt til smelteovnen, såvel som at det tilveiebringer karbon som er delvis oksydert, slik at det dannes en ikke-oksyderende atmosfære i smeltesonen av smelteovnen som beskytter jernet og eventuelle reduserte legeringsspesies mot oksydasjon. Sufficient additional carbon, in the form of solid carbonaceous material such as coke, is charged to the furnace in such an amount as to meet the enthalpy and heat of combustion requirements for melting the solid iron, the solid iron alloy and the slag formers added to the furnace, as well as to provide carbon that is partially oxidized, so that a non-oxidizing atmosphere is formed in the melting zone of the furnace that protects the iron and any reduced alloy species from oxidation.

I de følgende tabellene sammenlignes de kjemiske analysene for for- In the following tables, the chemical analyzes for the

skjellige ferrosilisiumsammensetninger med ekvivalente ferrosilisiumoksyd-briketter, som anvendes i fremgangsmåten ifølge foreliggende oppfinnelse. different ferrosilicon compositions with equivalent ferrosilicon oxide briquettes, which are used in the method according to the present invention.

Betegnelsen "metallisert" slik den benyttes i foreliggende beskrivelse betyr ikke belagt med metall, men betyr tilnærmet fullstendig redusert til metallisk tilstand, dvs. alltid mer enn 60% metall, og vanligvis mer enn 80% metall i materialet. Slikt metallisert jern er i mange former, innbefattet pellets, velegnet som råmateriale for stålfremstillingsovner så som en elektrisk lysbueovn. The term "metallized" as used in the present description does not mean coated with metal, but means almost completely reduced to a metallic state, i.e. always more than 60% metal, and usually more than 80% metal in the material. Such metallised iron is in many forms, including pellets, suitable as raw material for steelmaking furnaces such as an electric arc furnace.

Alternative bindemidler av matrikstypen så som kull-tjærebek, eller av filmtypen så som natriumsilikat, eller av den kjemiske typen så som hydrert kalk og karbondioksyd, betraktes alle som velegnede bindemidler for foreliggende anvendelse. Alternative binders of the matrix type such as coal-tar pitch, or of the film type such as sodium silicate, or of the chemical type such as hydrated lime and carbon dioxide, are all considered suitable binders for the present application.

Materialet i kuppelovnen kan være en blanding av briketter, varm-brikettert jern, ulegert stålskrap, legeringsstålskrap, gjenvunnet støpejern og koks. The material in the cupola furnace can be a mixture of briquettes, hot-briquetted iron, unalloyed steel scrap, alloy steel scrap, recovered cast iron and coke.

Flussmiddeltilsatser så som kalkstein, brent kalk, dolomittisk kalk, spat o.l. kan benyttes til å danne et egnet slagg for enten avsvovling, defosforisering, eller begge deler, eller for å bringe forurensninger fra smeiten til slagget. Flux additives such as limestone, burnt lime, dolomitic lime, spar etc. can be used to form a suitable slag for either desulphurisation, dephosphorisation, or both, or to bring impurities from the smelting to the slag.

Det smeltede ferrolegeringsproduktet kan granuleres, eller støpes i barrer eller i små blokker. The molten ferroalloy product can be granulated, or cast into ingots or small blocks.

Fra den foregående beskrivelsen fremgår det at det er tilveiebrakt en fremgangsmåte for fremstilling av smeltede ferrolegeringer som oppfyller formålene angitt ovenfor. Modifikasjoner kan utføres uten av man avviker fra oppfinnelsens omfang, dette begrenses utelukkende av de følgende kravene. From the preceding description it appears that a method for the production of molten ferroalloys has been provided which fulfills the purposes stated above. Modifications can be made without deviating from the scope of the invention, this is limited exclusively by the following requirements.

Claims (8)

1. Fremgangsmåte for fremstilling av en ferrolegering, karakterisert ved at den innbefatter: Fremstillig av kompakte stykker bestående hovedsakelig av en blanding av metallisert jern, et støkiometrisk overskudd av fast karbonholdig materiale, og et oksyd av et metall valgt fra gruppen bestående av silisium, nikkel, mangan, titan, vanadium, krom, molybden og kobolt; de kompakte stykkene og slagdannere fylles i en smelteovn; det faste karbonholdige materialet brennes for å redusere oksydene i de nevnte kompakte stykkene, for å smelte bestanddelene og for å danne en høylegeringssmelte.1. Process for producing a ferroalloy, characterized in that it includes: Manufactured from compact pieces consisting essentially of a mixture of metallized iron, a stoichiometric excess of solid carbonaceous material, and an oxide of a metal selected from the group consisting of silicon, nickel, manganese, titanium, vanadium, chromium, molybdenum and cobalt; the compact pieces and slag formers are filled in a melting furnace; the solid carbonaceous material is burned to reduce the oxides in said compact pieces, to melt the constituents and to form a high alloy melt. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at den videre innbefatter at det tilsettes karbon, metallisk aluminium, metallisk magnesium, eller en hvilken som helst kombinasjon derav til de nevnte kompakte stykkene før de fylles i ovnen.2. Method according to claim 1, characterized in that it further includes adding carbon, metallic aluminium, metallic magnesium, or any combination thereof to the said compact pieces before they are filled in the oven. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at den videre innbefater at ekstra fast karbonholdig materiale fylles i ovnen for å tilveiebringe ekstra varme og reaktivt karbon.3. Method according to claim 1, characterized in that it further includes filling the furnace with extra solid carbonaceous material to provide extra heat and reactive carbon. 4. Fremgangsmåte ifølge krav 1, karakterisert ved at den ytterligere innbefatter at fast jern, jernlegering, varmt brikettert jern, karbonstålskrap, legringstålskrap, gjenvunnet støpejern eller en blanding derav, fylles i smelteovnen.4. Method according to claim 1, characterized in that it further includes solid iron, iron alloy, hot briquetted iron, carbon steel scrap, alloy steel scrap, recovered cast iron or a mixture thereof being filled into the melting furnace. 5. Fremgangsmåte ifølge krav 1, karakterisert ved at den ytterligere innbefatter at det injiseres oksygen i ovnen for å lette forbrenningen.5. Method according to claim 1, characterized in that it further includes injecting oxygen into the furnace to facilitate combustion. 6. Fremgangsmåte ifølge krav 1, karakterisert ved at oksygenet er tilstede i form av foroppvarmet luft.6. Method according to claim 1, characterized in that the oxygen is present in the form of preheated air. 7. Fremgangsmåte ifølge krav 1, karakterisert ved at den videre innbefatter at det tilveiebringes varme til ovnen ved hjelp av oksygen-brennstoffbrennere, oksygenanriket luft/naturgassbrennere, plasmaflammer, eller elektroder.7. Method according to claim 1, characterized in that it further includes providing heat to the oven by means of oxygen-fuel burners, oxygen-enriched air/natural gas burners, plasma flames, or electrodes. 8. Fremgangsmåte ifølge krav 1, karakterisert ved at den videre innbefatter at det i de kompakte stykkene innbefatter minst en bestanddel valgt fra gruppen bestående av spon av rustfri stållegering, utboringer, spon, ilemenitt, kromitt, titanoksydkonsentrater, nikkellateritter, nikkeloksyder og stållegeringsvalsehud.8. Method according to claim 1, characterized in that it further includes that the compact pieces include at least one component selected from the group consisting of stainless steel alloy shavings, borings, shavings, ilemenite, chromite, titanium oxide concentrates, nickel laterites, nickel oxides and steel alloy roll skin.
NO861232A 1985-04-01 1986-03-26 PROCEDURE FOR THE PRE-ALREADY PREPARATION. NO861232L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71868885A 1985-04-01 1985-04-01

Publications (1)

Publication Number Publication Date
NO861232L true NO861232L (en) 1986-10-02

Family

ID=24887092

Family Applications (1)

Application Number Title Priority Date Filing Date
NO861232A NO861232L (en) 1985-04-01 1986-03-26 PROCEDURE FOR THE PRE-ALREADY PREPARATION.

Country Status (12)

Country Link
JP (1) JPS61231134A (en)
AU (1) AU5375186A (en)
BE (1) BE904480A (en)
BR (1) BR8601396A (en)
CA (1) CA1233644A (en)
DE (1) DE3610248A1 (en)
FR (1) FR2579625A1 (en)
GB (1) GB2173216A (en)
IT (1) IT1190249B (en)
NO (1) NO861232L (en)
SE (1) SE8601450L (en)
ZA (1) ZA862076B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242483A (en) * 1992-08-05 1993-09-07 Intevep, S.A. Process for the production of vanadium-containing steel alloys
US6030434A (en) * 1999-03-31 2000-02-29 International Briquettes Holding Method for hot agglomeration of solid metallized iron particles to produce alloyed briquettes
EP1942201A1 (en) * 2007-01-04 2008-07-09 China Steel Corporation Ore sintering composition and ore sintering method
US9540707B2 (en) * 2011-11-25 2017-01-10 Ab Ferrolegeringar Iron and molybdenum containing agglomerates
DE102012111679A1 (en) * 2012-01-19 2013-07-25 Gesenkschmiede Schneider Gmbh Low-alloy steel and components manufactured using it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113479A (en) * 1976-02-27 1978-09-12 Amax Inc. Vacuum smelting process for producing ferrotungsten
JPS5873742A (en) * 1981-07-07 1983-05-04 Sumitomo Metal Ind Ltd Manufacture of ferroalloy
US4369062A (en) * 1981-09-28 1983-01-18 Strange Robert R Method of making briquettes and product

Also Published As

Publication number Publication date
AU5375186A (en) 1986-10-09
JPS61231134A (en) 1986-10-15
ZA862076B (en) 1986-11-26
SE8601450D0 (en) 1986-03-27
DE3610248A1 (en) 1986-10-02
GB8605370D0 (en) 1986-04-09
FR2579625A1 (en) 1986-10-03
IT8647839A0 (en) 1986-03-28
IT1190249B (en) 1988-02-16
SE8601450L (en) 1986-10-02
CA1233644A (en) 1988-03-08
BR8601396A (en) 1986-12-09
BE904480A (en) 1986-07-16
GB2173216A (en) 1986-10-08

Similar Documents

Publication Publication Date Title
TWI280283B (en) A slag conditioner composition, process for manufacture and method of use in steel production
RU2226220C2 (en) Steelmaking slag reprocessing method
US4731112A (en) Method of producing ferro-alloys
KR101839399B1 (en) Sodium based briquette with high efficiency of de-p and de-s simultaneously and manufacturing method thereof
US3198624A (en) Process for the manufacture of stainless steel
NO861232L (en) PROCEDURE FOR THE PRE-ALREADY PREPARATION.
CN104164530A (en) Method for producing cast iron by adopting electric furnace blowing smelting and purification
US4728358A (en) Iron bearing briquet and method of making
CN110431243A (en) The method for preparing the particle of iron content and chromium
US4115133A (en) Unburnt refractory masses or bricks for metallurgical vessels based on chrome-ore and carbon-containing binder
US4374667A (en) Ferrovanadium carbide addition agents and process for their production
RU2657258C1 (en) High-temperature magnesium flux for steel-fuel furnace and method of high-temperature magnesium flux producing for steel-fuel furnace
US3942977A (en) Process for making iron or steel utilizing lithium containing material as auxiliary slag formers
RU2142018C1 (en) Briquette for metallurgical production
US3834899A (en) Method of manufacturing low-carbon ferrochromium
GB1446021A (en) Method for the refining of molten metal
RU2808305C1 (en) Processing method for oxidized nickel ore
US3271139A (en) Process for the production of low sulfur ferrochromium
RU2697673C1 (en) Method of refining ferrosilicon from aluminum
JP3776156B2 (en) Method for producing low phosphorus high manganese steel
SU771168A1 (en) Exothermal briquet
US1975338A (en) Process of forming chromium iron alloys
RU2180007C2 (en) Method of melting iron-carbon alloys in hearth-tire furnaces
SU1273400A1 (en) Method of smelting silicomanganese
JPH0570853A (en) Process for recovering metallic component from metallurgicalslag precipitate or fine slag powder by suspension melting