NO841860L - PROCEDURE FOR THE PREPARATION OF CARBOXYL ACID ESTERS AND / OR CARBOXYLIC ACIDS - Google Patents

PROCEDURE FOR THE PREPARATION OF CARBOXYL ACID ESTERS AND / OR CARBOXYLIC ACIDS

Info

Publication number
NO841860L
NO841860L NO841860A NO841860A NO841860L NO 841860 L NO841860 L NO 841860L NO 841860 A NO841860 A NO 841860A NO 841860 A NO841860 A NO 841860A NO 841860 L NO841860 L NO 841860L
Authority
NO
Norway
Prior art keywords
exception
procedure
repeated
alcohol
unsaturated hydrocarbon
Prior art date
Application number
NO841860A
Other languages
Norwegian (no)
Other versions
NO158458B (en
Inventor
Howard Alper
James Bernard Woell
Bertrand Despeyroux
David John Harry Smith
Original Assignee
British Petroleum Co Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB838305182A external-priority patent/GB8305182D0/en
Priority claimed from GB838318644A external-priority patent/GB8318644D0/en
Priority claimed from PCT/GB1983/000240 external-priority patent/WO1984001376A1/en
Application filed by British Petroleum Co Plc filed Critical British Petroleum Co Plc
Publication of NO841860L publication Critical patent/NO841860L/en
Priority to NO872327A priority Critical patent/NO872327D0/en
Publication of NO158458B publication Critical patent/NO158458B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Foreliggende oppfinnelse vedrører generelt en fremgangs-The present invention generally relates to a process

måte for fremstilling av karboksylsyreestere og/eller karboksylsyrer og spesielt en fremgangsmåte for fremstil- method for producing carboxylic acid esters and/or carboxylic acids and in particular a method for producing

ling av karboksylsyreestere og/elle karboksylsyrer ved katalysert omsetning av et umettet hydrokarbon, karbonmonooksyd og enten vann eller en alkohol, eventuelt i nær- lation of carboxylic acid esters and/or carboxylic acids by catalyzed reaction of an unsaturated hydrocarbon, carbon monoxide and either water or an alcohol, possibly in the vicinity of

vær av oksygen.be of oxygen.

Fremgangsmåter for fremstilling av estere ved omsetning avProcesses for the production of esters by reaction of

et olefin med karbonmonooksyd og en alkohol i nærvær av en katalysator og i nærvær eller fravær av oksygen er kjent. Representativt for den publiserte teknikk er US patent an olefin with carbon monoxide and an alcohol in the presence of a catalyst and in the presence or absence of oxygen is known. Representative of the published technique is the US patent

nr. 4.303.589, belgisk patent nr. 877.770, japansk patent-publikåsjon nr. 53040709 og US patent nr. 3.780.074. No. 4,303,589, Belgian Patent No. 877,770, Japanese Patent Publication No. 53040709 and US Patent No. 3,780,074.

US patent nr. 4.303.589 (Monsanto) beskriver en fremgangs-US Patent No. 4,303,589 (Monsanto) describes a progress

måte for fremstilling av karboksylatestere ved (a) omsetning av interne olefiner med karbonmonooksyd og en alkohol ved 170-200°C og 84,4-126,5 kg/cm<2>manometertrykk i nærvær av en koboltkatalysator og en pyridin-promotor, method for the preparation of carboxylate esters by (a) reacting internal olefins with carbon monoxide and an alcohol at 170-200°C and 84.4-126.5 kg/cm<2> gauge pressure in the presence of a cobalt catalyst and a pyridine promoter,

(b) fortynning av reaksjonsblandingen med en stor mengde hydrokarbon for å bevirke faseseparering, (c) separering av esteren fra den andre fasen som inneholder mer enn 90% (b) diluting the reaction mixture with a large amount of hydrocarbon to effect phase separation, (c) separating the ester from the second phase containing more than 90%

av koboltkatalysatoren, og (d) resirkulering av katalysa-of the cobalt catalyst, and (d) recycling of catalys-

toren til trinn (a).tor to step (a).

Belgisk patent nr. 877.770 beskriver fremstilling av poly-karboksyliske estere ved omsetning av et olefin inneholdende minst to konjugerte dobbeltbindinger med karbonmonooksyd og en alkohol i nærvær av en base og en palladium/kobber-katalysator. Belgian Patent No. 877,770 describes the preparation of polycarboxylic esters by reacting an olefin containing at least two conjugated double bonds with carbon monoxide and an alcohol in the presence of a base and a palladium/copper catalyst.

Japansk patentpublikasjon nr. 53040709 beskrivver fremstilling av dikarboksylsyrediestere ved omsetning av et olefin, karbonmonooksyd, oksygen og en alkohol i nærvær av en katalysator inneholdende (a) et palladium-gruppemetall eller en forbindelse derav, (b) et kobbersalt Japanese Patent Publication No. 53040709 describes the preparation of dicarboxylic acid diesters by reacting an olefin, carbon monoxide, oxygen and an alcohol in the presence of a catalyst containing (a) a palladium group metal or a compound thereof, (b) a copper salt

og (c) er tertiært amin.and (c) is tertiary amine.

Sluttlig beskriver US patent nr. 3.780.074 fremstilling av alkadiensyreestere ved omsetning av en C4-12asyklisk konjugert alifatisk diolefin med en ^1-20raonohy droksy-alkohol og karbonmonooksyd i nærvær av palladium med valens 0 og en fosfin-akti vator ved 80-160°C i fravær av oksygen. Finally, US Patent No. 3,780,074 describes the preparation of alkadiene esters by reacting a C4-12 acyclic conjugated aliphatic diolefin with a ^1-20 raonohydroxy alcohol and carbon monoxide in the presence of 0-valence palladium and a phosphine activator at 80-160 °C in the absence of oxygen.

Det er også kjent fremgangsmåter for hydrof orestring av acetylen for fremstilling av isomere estere. F.eks. rapporterer G. P. Chiusli et al. i Chem. Ind., 977, (1968) omsetning av acetylen med karbonmonooksyd i nærvær av 4% oksygen og tiourea og en palladium (II)-kloridkatalysator. There are also known methods for the hydrophoreesterification of acetylene for the production of isomeric esters. E.g. reports G.P. Chiusli et al. in Chem. Ind., 977, (1968) reaction of acetylene with carbon monoxide in the presence of 4% oxygen and thiourea and a palladium (II) chloride catalyst.

En ulempe med denne prosessen er at selektiviteten til isomere estere (cis- og trans-diestere) er betydelig redu- A disadvantage of this process is that the selectivity of isomeric esters (cis- and trans-diesters) is significantly reduced.

sert av den ledsagende dannelsen av polymere materialer og isomere mukonatestere. characterized by the accompanying formation of polymeric materials and isomeric muconate esters.

Man har nå funnet at karboksylsyreestere og/eller karboksylsyrer kan fremstilles ved omsetning av et umettet hydrokarbon med karbonmonooksyd og enten vann eller en alkohol i nærvær av en protonisk syre og som katalysator (a) minst ett av metallene palladium, rodium, rutenium, juridium og kobolt, og (b) kobber, både i nærvær og fravær av oksygen. I motsetning til de fleste av de tidligere kjente fremgangsmåter som benytter en base som en vesentlig reaktant, anvender foreliggende fremgangsmåte en syre. Fremgangsmåten ifølge oppfinnelsen kan i motsetning til tidligere kjente prosesser utføres under relativt milde betingelser og utviser en høy regiospesifisitet til ønskede produkter. It has now been found that carboxylic acid esters and/or carboxylic acids can be produced by reacting an unsaturated hydrocarbon with carbon monoxide and either water or an alcohol in the presence of a protonic acid and as catalyst (a) at least one of the metals palladium, rhodium, ruthenium, yuridium and cobalt, and (b) copper, both in the presence and absence of oxygen. In contrast to most of the previously known methods which use a base as an essential reactant, the present method uses an acid. The method according to the invention, in contrast to previously known processes, can be carried out under relatively mild conditions and exhibits a high regiospecificity for desired products.

Ifølge et trekk ved foreliggende oppfinnelse tilveiebringes følgelig en fremgangsmåte for fremstilling av en karboksy1syreester og denne fremgangsmåte omfatter omsetning av et umettet hydrokarbon med karbonmonooksyd og Accordingly, according to a feature of the present invention, a method for the production of a carboxylic acid ester is provided and this method comprises the reaction of an unsaturated hydrocarbon with carbon monoxide and

en alkohol i nærvær av en protonisk syre og som katalysa-an alcohol in the presence of a protonic acid and as catalysis-

tor (a) minst ett av metallene palladium, rodium, rutenium, iridium og kobolt, og (b) kobber. tor (a) at least one of the metals palladium, rhodium, ruthenium, iridium and cobalt, and (b) copper.

Det umettede hydrokarbon kan hensiktsmessig være et olefin. Olefinet kan hensiktsmesig være et asyklisk olefin inneholdende 2-30 karbonatomer pr. molekyl eller et syklisk olefin inneholdende 5-30 karbonatomer pr. molekyl. Olefinet kan enten ha en, to eller tre olefiniske karbon-karbon-dobbeltbindinger pr. molekyl, hvilke dobbeltbindinger kan være interne eller terminale og kan være konjugerte eller ikke-konjugerte i olefiner inneholdende flere karbon-karbon-dobbeltbindinger. Egnede olefiner kan representeres ved den generelle forrmel RCH = CHR''"hvor R The unsaturated hydrocarbon may conveniently be an olefin. The olefin can suitably be an acyclic olefin containing 2-30 carbon atoms per molecule or a cyclic olefin containing 5-30 carbon atoms per molecule. The olefin can either have one, two or three olefinic carbon-carbon double bonds per molecule, which double bonds may be internal or terminal and may be conjugated or non-conjugated in olefins containing multiple carbon-carbon double bonds. Suitable olefins can be represented by the general formula RCH = CHR''"where R

og R uavhengig er enten hydrogen, alkyl, alkenyl, alka-dienyl, cykloalkyl, aryl, alkaryl, cykloalkenyl eller cykloalkadienylgrupper, eller R og R''"danner sammen et syklisk system. Eksempler på egnede mono-olefiner innbefatter propylen, 1-buten, 2-buten, 1-penten, 2-penten, 1- heksen, 2-heksen, 3-heksen, 1-okten, 1-desen, cyklododesen, 2-metyl-l-undesen, styren, 4-metylstyren, 4-isopropylstyren og lignende. Eksempler på egnede diolefiner innbefatter 1,3-butadien , 1,3-pentadien, 1,5-heksadien, 4-vinylcykloheksen, 1,7-oktadien, 1,9-dekadien og lignende. Alternativt kan diolefiner være allen eller en allen-homolog, f.eks. dimetylallen. Eksempler på egnede triolefiner innbefatter 1,5,9-cyklododekatrien, cyklo-heptatrien og lignende. Blandinger av olefiner kan også benyttes. Terminale mono-ole finer reagerer for dannelse av estere med forgrenet kjede. Interne mono-olefiner, f.eks. 2- desen og 4-mety1-2-penten, reagerer utelukkende ved 2-stillingen, idet cis-isomeren er mer reaktiv enn trans-isomeren. and R independently are either hydrogen, alkyl, alkenyl, alkadienyl, cycloalkyl, aryl, alkaryl, cycloalkenyl or cycloalkadienyl groups, or R and R"" together form a cyclic system. Examples of suitable mono-olefins include propylene, 1-butene , 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 3-hexene, 1-octene, 1-decene, cyclododecene, 2-methyl-l-undecene, styrene, 4-methylstyrene, 4 -isopropylstyrene and the like. Examples of suitable diolefins include 1,3-butadiene, 1,3-pentadiene, 1,5-hexadiene, 4-vinylcyclohexene, 1,7-octadiene, 1,9-decadiene and the like. Alternatively, diolefins can be allene or an allene homolog, e.g., dimethylallene. Examples of suitable triolefins include 1,5,9-cyclododecatriene, cycloheptatriene, and the like. Mixtures of olefins may also be used. Terminal mono-olefins react to form esters with branched chain Internal mono-olefins, eg 2-decene and 4-methyl-2-pentene, react exclusively at the 2-position, the cis isomer being more reactive than tran the s-isomer.

Det umettede hydrokarbon kan alternativt være et alkyn. Alkynet kan enten være et terminalt eller internt alkyl. Egnede terminale alkyner innbefatter acetylen, 1-pentyn, 1-heksyn, 1-oktyn, benzylacetylen, cykloheksylacetylen og 3-mety1-1-pentyn . Egnede interne alkyner innbefatter 2-heptyn, 2-nonyn, 4-mety1-2-pentyn og 2,9-dimety1-5-desyn. Typisk, ved anvendelse av acetylen som det umettede hydrokarbon omfatter produktet hovedsakelig dimetylmaleat sammen med en mindre andel av dimetylfumarat. Vanligvis gir terminale alkyner cis-diesteren som hovedprodukt og trans-diesteren som et biprodukt. Interne alkyner gir på Alternatively, the unsaturated hydrocarbon may be an alkyne. The alkyne can be either a terminal or internal alkyl. Suitable terminal alkynes include acetylene, 1-pentyne, 1-hexyne, 1-octyne, benzylacetylene, cyclohexylacetylene and 3-methyl-1-pentyne. Suitable internal alkynes include 2-heptyne, 2-nonyne, 4-methyl-2-pentyne and 2,9-dimethyl-5-desyne. Typically, when using acetylene as the unsaturated hydrocarbon, the product comprises mainly dimethyl maleate together with a minor proportion of dimethyl fumarate. Generally, terminal alkynes give the cis-diester as the main product and the trans-diester as a by-product. Internal alkynes give on

den annen side vanligvis monoestere, ikke diestere, og videre har monoestrene tilbøyelighet til å ha cis-sstereo-k j emi. on the other hand, usually monoesters, not diesters, and further, the monoesters tend to have cis-stereochemistry.

Karbonmonooksydet kan tilveiebringes ved hjelp av en hvilken som helst egnet kilde. Karbonmonoksyd-trykket kan hensiktsmessig være det autogene trykket ved den benyttede reaksjonstemperatur. Alternativt kan forhøyede trykk, hensiktsmessig i områo det 0,14-17,6 kg/cm<2>manometertrykk over det autogene trykk ved reaksjonstemperaturen, benyttes, The carbon monoxide can be provided by any suitable source. The carbon monoxide pressure can conveniently be the autogenous pressure at the reaction temperature used. Alternatively, elevated pressures, suitably in the range of 0.14-17.6 kg/cm<2> manometer pressure above the autogenous pressure at the reaction temperature, can be used,

Med hensyn til alkoholreaktanten kan enverdige og flerverdige alkoholer benyttes. Egnede alkoholer kan representeres ved formelen R^CHOH hvor R uavhengig er hydrogen, alkyl, aryl eller hydroksyalky1, eller de to R-gruppene danner sammen en ring. Alkoholen er hensiktsmessig en alkanol. Eksempler på egnede alkoholer Innbefatter metanol, etanol, propanoler, butanoler, penta-noler, heksanoler, f.eks. 2-etylheksanol, benzylalkohol og 1,4-butadiol . Mengden av benyttet alkohol kan hensiktsmessig være i det minste den støkiometri ske mengden som skal til for å reagere med det umettede hydro-karbonet. Det er imidlertid foretrukket å benytte et vesentlig overskudd av alkohol over den støkiometr i ske mengden, idet alkoholen da representerer den dobbelte rollen av å være reaktant og fortynningsmiddel for reaksjonen. With regard to the alcohol reactant, monohydric and polyhydric alcohols can be used. Suitable alcohols can be represented by the formula R^CHOH where R is independently hydrogen, alkyl, aryl or hydroxyalkyl, or the two R groups together form a ring. The alcohol is conveniently an alkanol. Examples of suitable alcohols include methanol, ethanol, propanols, butanols, pentanols, hexanols, e.g. 2-ethylhexanol, benzyl alcohol and 1,4-butadiol. The amount of alcohol used can conveniently be at least the stoichiometric amount required to react with the unsaturated hydrocarbon. However, it is preferred to use a significant excess of alcohol above the stoichiometric amount in the spoon, as the alcohol then represents the double role of being reactant and diluent for the reaction.

Den protoniske syren kan enten være en mineralsyre, fortrinnsvis saltsyre eller svovelsyre, eller en organisk syre som hensiktsmessig kan være en karboksylsyre• The protonic acid can either be a mineral acid, preferably hydrochloric or sulfuric acid, or an organic acid which can conveniently be a carboxylic acid•

Med hensyn til katalysatoren benyttes en eller flere av metallene palladioum, rodium, rutenium, iridium og kobolt som komponent (a). Metallet (metallene) kan være i form av det elementære metall (metallene), slik som et findelt pulver, eller i form av en forbindelse av metallet (metallene). Egnede forbindelser av metallet (metallene) innbefatter kloridene, iodidene, acetatene og nitratene, fortrinnsvis kloridene. Metallet er fortrinnsvis palladium, hensiktsmessig i form av palladium (Il)klorid. With regard to the catalyst, one or more of the metals palladium, rhodium, ruthenium, iridium and cobalt are used as component (a). The metal(s) may be in the form of the elemental metal(s), such as a finely divided powder, or in the form of a compound of the metal(s). Suitable compounds of the metal(s) include the chlorides, iodides, acetates and nitrates, preferably the chlorides. The metal is preferably palladium, suitably in the form of palladium (II) chloride.

Kobber, som utgjør komponent (b) i katalysatoren, kan hensiktsmessig tilsettes som en kupro- eller kupri-forbindelse eller som en blanding derav. En rekke for-skjellige kobberf orbinde 1ser kan benyttes i foreliggende fremgangsmåte. Eksempler på egnede kobberforbindelser innbefatter kobber (I) acetat, kobber (II) acetylacetonat, kobber (I) bromid, kobber (I) klorid, kobber (II) klorid, kobber (I) iodid, kobber (II) nitrat og lignende. Copper, which constitutes component (b) in the catalyst, can suitably be added as a cupro- or cupri-compound or as a mixture thereof. A number of different copper compounds can be used in the present method. Examples of suitable copper compounds include copper (I) acetate, copper (II) acetylacetonate, copper (I) bromide, copper (I) chloride, copper (II) chloride, copper (I) iodide, copper (II) nitrate and the like.

Med hensyn til forholdene for katalysatorkomponentene, kan molarforholdet for kobberkomponent (b) til metallkomponent (a) hensiktsmessig være i området fra 1:1 til 200:1, fortrinnsvis fra 2:1 til 50:1. With respect to the ratios of the catalyst components, the molar ratio of copper component (b) to metal component (a) can suitably be in the range from 1:1 to 200:1, preferably from 2:1 to 50:1.

Molarforholdet for umettet hydrokarbon til metallkomponen-The molar ratio of unsaturated hydrocarbon to metal compo-

ten (a) kan hensiktsmessig være i området fra 5:1ten (a) can suitably be in the range from 5:1

til 1000:1, fortrinnsvis fra 10:1 til 250:1. to 1000:1, preferably from 10:1 to 250:1.

Oksygen kan være til stede eller være fraværende. Det er imidlertid foretrukket å operere i nærvær av oksygen, Oxygen may or may not be present. However, it is preferred to operate in the presence of oxygen,

fordi ved å gjøre dette, kan produktutbyt tet bli for-bedret. Oksygen tilføres til reaksjonen enten som vesent- because by doing this, the product yield can be improved. Oxygen is added to the reaction either as essential

lig ren oksygen eller sammenblandet med andre gasser somequal to pure oxygen or mixed with other gases such as

er vesentlig inerte under raksjonsbetingelsene. Luft kan hensiktsmessig benyttes som oksygenkilde. Oksygentrykket kan hensiktsmessig være det autogene trykket ved den benyttede reaksjonstemperatur. Alternativt kan forhøyede trykk benyttes dersom dette erønskelig. are essentially inert under the reaction conditions. Air can be suitably used as an oxygen source. The oxygen pressure can conveniently be the autogenous pressure at the reaction temperature used. Alternatively, elevated pressures can be used if this is desirable.

Et ekstra oppløsningsmiddel kan om ønskelig benyttes. Det spesielle oppløsningsmiddel som anvendes, kan danne en enkel fase med alkoholreaktanten. Alternativt kan det benyttes et oppløsningsmiddel som kan danne en annen væskefase. Det spesielle oppløsningsmiddel som benyttes, An additional solvent can be used if desired. The particular solvent used can form a single phase with the alcohol reactant. Alternatively, a solvent can be used which can form another liquid phase. The particular solvent used,

bør være inert under reaksjonsbetingelsene. Egnede opp-løsningsmidler som danner en enkel fase med alkoholreaktanten, innbefatter oksygenerte hydrokarboner, f.eks. tetrahydrofuran. Egnede oppløsningsmidler som kan danne en annen væskefase, innbefatter alifatiske hydrokarboner, sykloalifatiske hydrokarboner, aromatiske hydrokarboner, alkylsubstituerte aromatiske hydrokarboner eller halo-generte alifatiske eller aromatiske hydrokarboner. Eksempler på egnede oppløsningsmidler som kan danne en should be inert under the reaction conditions. Suitable solvents which form a single phase with the alcohol reactant include oxygenated hydrocarbons, e.g. tetrahydrofuran. Suitable solvents which can form a second liquid phase include aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons, alkyl-substituted aromatic hydrocarbons or halogenated aliphatic or aromatic hydrocarbons. Examples of suitable solvents that can form a

annen væskefase innbefatter benzen, toluen, heksan, cyklo-heksan, klorbenzen, brombenzen, en xylen, diklormetan, kloroform og 1,2-dikloretan. Det vil forstås av fagfolk innen teknikken at det organiske opp 1 øs ningsmiddelet bør velges under hensyntagen til forskjellen i kokepunkter mellom reaksjonsproduktene og oppløsningsraiddelet for dermed å lette separering av reaksjonsblandingen i dens enkelte komponenter. Mengden av supplerende oppløsnings-middel basert på olef inreaktanten kan variere over et bredt område, hensiktsmessig fra 20 til 0,2, fortrinnsvis fra 5 til 1, volumdeler supplerende oppløsningsmiddel pr. volumdel ole f inreakant. other liquid phase includes benzene, toluene, hexane, cyclohexane, chlorobenzene, bromobenzene, a xylene, dichloromethane, chloroform and 1,2-dichloroethane. It will be understood by those skilled in the art that the organic solvent should be selected taking into account the difference in boiling points between the reaction products and the solvent portion in order to facilitate separation of the reaction mixture into its individual components. The amount of supplementary solvent based on the olef inreactant can vary over a wide range, suitably from 20 to 0.2, preferably from 5 to 1, parts by volume of supplementary solvent per volume fraction ole f inreactant.

Dersom, i en modifikasjon av oppfinnelsen, alkoholreaktanten erstattes med vann, forutsatt at mengden av vann er mindre enn 8 molekvivalenter basert på den umettede hydrokarbonreaktanten og et oppløsningsmiddel annet enn en alkohol benyttes, så vil istedenfor karboksylsyreeester den tilsvarende karboksylsyren dannes. If, in a modification of the invention, the alcohol reactant is replaced with water, provided that the amount of water is less than 8 molar equivalents based on the unsaturated hydrocarbon reactant and a solvent other than an alcohol is used, then instead of carboxylic acid ester the corresponding carboxylic acid will be formed.

Mengden av vann som benyttes, er fortrinnsvis mindre enn 5, enda mer foretrukket ca. 1 molekvivalent basert på den umettede hydrokarbonreaktanten. The amount of water used is preferably less than 5, even more preferably approx. 1 molar equivalent based on the unsaturated hydrocarbon reactant.

Et hvilket som helst egnet oppløsningsmiddel annet enn en alkohol kan benytttes. Egnede oppløsningsmidler innbefatter etere og hydrokarboner, f.eks. parafiniske og aromatiske hydrokarboner. Oppløsningsmiddelet er fortrinnsvis en eter. Eksempler på egnede etere innbefatter tetrahydrofuran, dioksan, glymer og kroneetere, av hvilke tetrahydrofuran er foretrukket. Any suitable solvent other than an alcohol may be employed. Suitable solvents include ethers and hydrocarbons, e.g. paraffinic and aromatic hydrocarbons. The solvent is preferably an ether. Examples of suitable ethers include tetrahydrofuran, dioxane, glyme and crown ethers, of which tetrahydrofuran is preferred.

Fremgangsmåten kan hensiktsmessig utføres ved omgivelses-temperatur, skjønt forhøyede temperaturer, f.eks. i området 20-150oC eller enda høyere, kan benyttes. Reaksjonstiden kan variere over et bredt område, hensiktsmessig fra ca. 30 min. til 8 timer, skjønt lengre reaksjonstider kan benyttes dersom dette er ønsket. The method can conveniently be carried out at ambient temperature, although elevated temperatures, e.g. in the range 20-150oC or even higher, can be used. The reaction time can vary over a wide range, suitably from approx. 30 min. to 8 hours, although longer reaction times can be used if desired.

Fremgangsmåten kan utføres satsvis eller kontinuerlig, fortrinnsvis kontinuerlig. The method can be carried out batchwise or continuously, preferably continuously.

Oppfinnelsen skal nå beskrives i større detalj under henvisning til følgende eksempler: The invention will now be described in greater detail with reference to the following examples:

Prosess utført 1 nærvær av oksygenProcess carried out 1 presence of oxygen

Eksempel 1Example 1

Palladium (II) klorid (0,1 g 0,56 mmol) ble tilsatt til metanol (50 ml) gjennom hvilket ble boblet karbonmonooksyd (1 atmosfære). Etter 1 min. ble kons. saltsyre (0,5 ml) tilsatt. Når oppløsningen ble gulfarget (hvilket indikerer at palladiumkloridet var oppløst), ble kobber (II) klorid (0,5 g 3,7 mmol) tilsatt, og oksygen (1 atmosfære) ble boblet gjennom oppløsningen i tillegg til karbonmonooksydet. 1-desen (6 mmol) ble deretter tilsatt, og reaksjonsblandingen ble omrørt i 4 timer ved 25°C. Etter to timer ble ytterligere 0,5 ml kons. saltsyre tilsatt. Palladium (II) chloride (0.1 g 0.56 mmol) was added to methanol (50 mL) through which carbon monoxide (1 atmosphere) was bubbled. After 1 min. became conc. hydrochloric acid (0.5 ml) added. When the solution turned yellow (indicating that the palladium chloride had dissolved), copper (II) chloride (0.5 g, 3.7 mmol) was added, and oxygen (1 atmosphere) was bubbled through the solution in addition to the carbon monoxide. 1-Decene (6 mmol) was then added and the reaction mixture was stirred for 4 hours at 25°C. After two hours, a further 0.5 ml of conc. hydrochloric acid added.

Reakjonsproduktet ble deretter ekstrahert med heksan, og heksanen fordampet for å gi et rent produkt som ble iden-tifisert som metyl-2-metyldekanoat. Esteren ble oppnådd i 100% utbytte basert på olefin-reaktant. The reaction product was then extracted with hexane and the hexane evaporated to give a pure product which was identified as methyl 2-methyldecanoate. The ester was obtained in 100% yield based on olefin reactant.

Eksempel 2Example 2

Eksempel 1 ble gjentatt med den unntagelse at 1-desen ble erstattet med 1,7-oktadien. Example 1 was repeated with the exception that 1-decene was replaced by 1,7-octadiene.

Eksempel 3Example 3

Eksempel 1 ble gjentatt med den unntagelse at 1-desen ble erstattet med 1,9-dekadi en, og reaksjonstiden ble redusert til 3 timer. Example 1 was repeated with the exception that 1-decene was replaced by 1,9-decadiene, and the reaction time was reduced to 3 hours.

Eksempel 4Example 4

Eksempel 1 ble gjentatt med den unntagelse at 1-desen ble erstattet med cyklododesen. Example 1 was repeated with the exception that 1-decene was replaced by cyclododecene.

Eksempel 5Example 5

Eksempel 1 ble gjentatt med den unntagelse at 1-desen ble erstattet med propen. Example 1 was repeated with the exception that 1-decene was replaced by propene.

Eksempel 6Example 6

Eksempel 1 ble gjentatt med den unntagelse at 1-desen ble erstattet med 2-mety1-1-undesen, og produktet ble separert ved destillasjon etter ekstraksjon med heksan. Example 1 was repeated with the exception that 1-decene was replaced by 2-methyl-1-undecene, and the product was separated by distillation after extraction with hexane.

Eksempel 7Example 7

Ekempel 6 ble gjentatt med den unntagelse at 2-metyl-l-undesen ble erstattet med 4-mety1-styren. Example 6 was repeated with the exception that 2-methyl-1-undesene was replaced by 4-methyl-styrene.

Resultatene fra eksemplene 2-7 sammen med dem fra eksempel 1 er angitt i tabell 1. The results from Examples 2-7 together with those from Example 1 are given in Table 1.

Eksempel 8Example 8

Ekempel 1 ble gjentatt med den unntagelse at kons. saltsyre ble erstatet med kons. svovelsyre (0,33 g). Example 1 was repeated with the exception that conc. hydrochloric acid was replaced by conc. sulfuric acid (0.33 g).

Metyl-2-metyldekanoat ble oppnådd i et utbytte på 92%.Methyl 2-methyldecanoate was obtained in a yield of 92%.

Eksempel 9Example 9

Fremgangsmåten i eksempel 1 ble gjentatt med den unntagelse at det istedenfor metanol ble benyttet 1,4-butandiol (0,7 g), og tetrahydrofuran (30 ml) ble benyttet som et supplerende oppløsningsmiddel. Mengdene av andre reaktanter var som følger: The procedure in Example 1 was repeated with the exception that 1,4-butanediol (0.7 g) was used instead of methanol, and tetrahydrofuran (30 ml) was used as a supplementary solvent. The amounts of other reactants were as follows:

palladium (II) klorid = 0,7 mmolpalladium (II) chloride = 0.7 mmol

kobber (II) klorid = 6 mmolcopper (II) chloride = 6 mmol

kons. saltsyre = 0,1 mlconc. hydrochloric acid = 0.1 ml

1-desen = 1,09 g 1-decene = 1.09 g

Karbonmonooksyd/oksygen ble boblet gjennom blandingen 1 16 timer. Carbon monoxide/oxygen was bubbled through mixture 1 for 16 hours.

Etter destillasjon av råproduktet ble den rene monoesteren After distillation of the crude product, the pure monoester was obtained

med formelen with the formula

oppnådd i et utbytte på 50%. achieved in a yield of 50%.

Eksempel 10Example 10

Pallium (II) klorid (0,1 g, 0,56 mmol) ble tilsatt til metanol (50 ml), hvorigjennom det ble boblet karbonmonooksyd (1 atmosfære). Etter ett minutt ble kons. saltsyre (0,5 ml) tilsatt. Da oppløsningen var blitt gulfarget (hvilket indikerer at palladiumkloridet var oppløst), ble kobber (II) klorid (0,5 g, 3,7 mmol) tilsatt, og oksygen (1 atmosfære) ble boblet gjennom oppløsningen i tillegg til karbonmonooksydet. Acetylen (6 mmol) ble deretter boblet gjennom oppløsningen i 4 timer ved 25°C. Etter to timer ble ytterligere 0,5 ml kons. saltsyre tilsatt. Pallium (II) chloride (0.1 g, 0.56 mmol) was added to methanol (50 mL), through which carbon monoxide (1 atmosphere) was bubbled. After one minute, conc. hydrochloric acid (0.5 ml) added. When the solution had turned yellow (indicating that the palladium chloride had dissolved), copper (II) chloride (0.5 g, 3.7 mmol) was added, and oxygen (1 atmosphere) was bubbled through the solution in addition to the carbon monoxide. Acetylene (6 mmol) was then bubbled through the solution for 4 hours at 25°C. After two hours, a further 0.5 ml of conc. hydrochloric acid added.

Reaksjonsproduktet ble deretter ekstrahert med heksan og heksanen inndampet. Analyse av produktet ga dimetylmaleat (86% utbytte) og dimetylfumarat (14% utbytte). The reaction product was then extracted with hexane and the hexane evaporated. Analysis of the product gave dimethyl maleate (86% yield) and dimethyl fumarate (14% yield).

Eksempel 11Example 11

Fremgangsmåten i eksempel 1 ble gjentatt med unntagelse av at acetylen ble erstattet med 1-pentyn. Cis- og trans-C3H7C(C00CH3)=CHC00CH3ble oppnådd i utbytte på 72 og 25%, respektivt. The procedure in Example 1 was repeated with the exception that acetylene was replaced by 1-pentyne. Cis- and trans-C3H7C(CO0CH3)=CHC00CH3 were obtained in yields of 72 and 25%, respectively.

Eksempel 12Example 12

Fremgangsmåten i eksempel 1 ble gjentatt med unntagelse avThe procedure in example 1 was repeated with the exception of

at acetylen ble erstattet med 1-heksyn. Cis- og trans-C4H9C(COOCH3)=CHCOOC<H>3ble oppnådd i utbytte på 76 og 24%, respektivt. that acetylene was replaced by 1-hexyne. Cis- and trans-C4H9C(COOCH3)=CHCOOC<H>3 were obtained in yields of 76 and 24%, respectively.

Eksempel 13Example 13

FFremgangsmåten i eksempel 10 ble gjentatt med unntagelseFThe procedure in example 10 was repeated with an exception

av at acetylen ble erstattet med 1-oktyn. Cis- og trans-<C>6<H>13C(C00CH3)=CHC00CH3ble oppnådd i utbytte på 80 og of acetylene being replaced by 1-octyne. Cis- and trans-<C>6<H>13C(C00CH3)=CHC00CH3 were obtained in yields of 80 and

20%, respektivt.20%, respectively.

Eksempel 14Example 14

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med benzylacetylen• Cis- og trans- PhCH2CH2<C>(C00CH3)=CHC00CH3ble oppnådd i utbytte på for acetylene to be replaced by benzylacetylene• Cis- and trans- PhCH2CH2<C>(C00CH3)=CHC00CH3 were obtained in yields of

74 og 26%, respektivt.74 and 26%, respectively.

Eksempel 15Example 15

Fremgangssmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med cykloheksylacetylen.for acetylene to be replaced by cyclohexylacetylene.

Cis- og trans- ^ C(COOCH3)=CHC00CH3 ble oppnådd i utbytte på 85 og respektivt. Cis- and trans- ^ C(COOCH3)=CHC00CH3 were obtained in yields of 85 and respectively.

Eksempel 16Example 16

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med 3-mety1-1-pentyn. Cis-for acetylene to be replaced by 3-methyl-1-pentyne. Cis-

og trans- C2<H>5<C>H(CH3)C(COOCH3)<=>CHC00CH3ble oppnådd i utbytte på 84 og 16%, respektivt. and trans-C2<H>5<C>H(CH3)C(COOCH3)<=>CHC00CH3 were obtained in yields of 84 and 16%, respectively.

Eksempel 17Example 17

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med 2-heptyn. C<H>3(CH2)3CH=C(CH3)C00CH3og en eter ble oppnådd i utbytte for acetylene to be replaced by 2-heptyne. C<H>3(CH2)3CH=C(CH3)C00CH3 and an ether was obtained in yield

på 90 og 10% respektivt.of 90 and 10% respectively.

Eksempel 18Example 18

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

av at acetylen ble erstattet med 2-nonyn. of acetylene being replaced by 2-nonyne.

C<H>3(CH2)5CH=C(CH3)C00CH3og en eter ble oppnådd i et forhold på 60 og 40% utbytte, respektivt. C<H>3(CH2)5CH=C(CH3)CO0CH3 and an ether were obtained in a ratio of 60 and 40% yield, respectively.

Eksempel 19Example 19

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med 4-metyl-2-pentyn (CH3)2CHCH=C(CH3)C00CH3og en eter ble oppnådd i utbytte på 75 og 25%, respektivt. for acetylene to be replaced by 4-methyl-2-pentyne (CH3)2CHCH=C(CH3)C00CH3 and an ether was obtained in yields of 75 and 25%, respectively.

Eksempel 20Example 20

Fremgangsmåten i eksempel 10 ble gjentatt med unntagelseThe procedure in example 10 was repeated with an exception

for at acetylen ble erstattet med 2,9-dimety1-5-desyn. for acetylene to be replaced by 2,9-dimethyl-5-decene.

Cis-(CH3)2CHCH2CH2CH=C(CH2<C>H2CH(CH3)2COOCH3og en eter ble oppnådd i utbytte på 70 og 30%, respektivt. Cis-(CH3)2CHCH2CH2CH=C(CH2<C>H2CH(CH3)2COOCH3 and an ether were obtained in yields of 70 and 30%, respectively.

Eksempel 21Example 21

Eksempel 15 ble gjentatt med unntagelse for at metanol ble erstattet med etanol, cis- og trans- Example 15 was repeated with the exception that methanol was replaced by ethanol, cis- and trans-

<C>6<H>11C(C00C2H5)=CHC00C2H5ble oppnådd i utbytte på 86 og<C>6<H>11C(C00C2H5)=CHC00C2H5 was obtained in a yield of 86 and

13%, respektivt.13%, respectively.

Eksempel 22Example 22

Eksempel 17 ble gjentatt med unntagelse av at n-propyl-alkohol ble benyttet istedenfor metanol. Example 17 was repeated with the exception that n-propyl alcohol was used instead of methanol.

Cis-CH3(CH2)3CH=C(CH3)C00<C>3<H>7ble oppnådd i utbytte påCis-CH3(CH2)3CH=C(CH3)C00<C>3<H>7 was obtained in a yield of

76%. 76%.

I eksemplene 10-22 er de prosentvise utbytter basertIn examples 10-22, the percentage dividends are based

på alkyn-reaktant• on alkyne reactant•

Eksempel 23 Example 23

Karbonmonooksyd ble boblet gjennom en oppløsning inneholdende tetrahydrofuran (30 ml) og vann (1 ml). Palladium (II) klorid (0,140 g, 0,78 mmol) ble tilsatt, fulgt av kons. saltsyre (1,0 ml), kobber (II) klorid (0,84 g, Carbon monoxide was bubbled through a solution containing tetrahydrofuran (30 mL) and water (1 mL). Palladium (II) chloride (0.140 g, 0.78 mmol) was added, followed by conc. hydrochloric acid (1.0 ml), copper (II) chloride (0.84 g,

6,24 mmol), og deretter ble oksygen boblet gjennom blan- 6.24 mmol), and then oxygen was bubbled through the mixture

dingen. 1-desen (7,8 mmol) ble tilsatt, og reaksjonsblandingen ble omrørt ved romtemperatur i 4 timer. the thing. 1-Decene (7.8 mmol) was added and the reaction mixture was stirred at room temperature for 4 hours.

Produktet ble opparbeidet ved tilsetning av destillert vann (50 ml) og ekstraksjon tre ganger med heksan (totalt 250 ml). Ekstrakter ble tørket under anvendelse av magnesiumsulfat og deretter konsentrert. Ytterligere rensing ble utført ved oppløsning av syren i IM NaOH, ekstrahering med eter, surgjøring og ekstrahering igjen med eter. The product was worked up by adding distilled water (50 ml) and extracting three times with hexane (250 ml in total). Extracts were dried using magnesium sulfate and then concentrated. Further purification was accomplished by dissolving the acid in 1M NaOH, extracting with ether, acidifying, and extracting again with ether.

2-metyldekansyre ble oppnådd i 100% utbytte.2-Methyldecanoic acid was obtained in 100% yield.

Eksempel 24Example 24

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelse for at 1-benzen ble erstattet med 1-okten, og reaksjonstiden bleøket til 18 timer. The procedure in example 23 was repeated with the exception that 1-benzene was replaced by 1-octene, and the reaction time was increased to 18 hours.

2-metyloktansyre ble oppnådd i 92% utbytte.2-Methyloctanoic acid was obtained in 92% yield.

Eksempel 25Example 25

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelse for at 1-desen ble erstattet med vinylcykloheksen. The procedure in example 23 was repeated with the exception that 1-decene was replaced with vinylcyclohexene.

C6<H>11CH(C<H>3)C00H ble oppnådd i 53% utbytte.C6<H>11CH(C<H>3)COOH was obtained in 53% yield.

Eksempel 2 6Example 2 6

Fremgangsmåten i eksempel 25 ble gjentatt med unntagelse for at reaksjonstiden ble øket til 18 timer. The procedure in example 25 was repeated with the exception that the reaction time was increased to 18 hours.

C6H11CH(CH3)COOH ble oppnådd i 89% utbytte.C6H11CH(CH3)COOH was obtained in 89% yield.

Eksempel 27Example 27

Fremgangsmåten i eksempel 23 ble gjentatt md unntagelse for at 1-desen ble erstattet med 1,7-oktadien, og reaksjonstiden ble øket til 18 timer. The procedure in example 23 was repeated with the exception that 1-decene was replaced by 1,7-octadiene, and the reaction time was increased to 18 hours.

HOCOCH(CH3)(CH2)4CH(CH3)COOH ble oppnådd i 93% utbytte. HOCOCH(CH3)(CH2)4CH(CH3)COOH was obtained in 93% yield.

Eksempel 28Example 28

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelse for at 1-desen ble erstattet med 1,9-dekadien, og reaksjonstiden bleøket til 18 timer. The procedure in example 23 was repeated with the exception that 1-decene was replaced by 1,9-decadiene, and the reaction time was increased to 18 hours.

HOCOCH(CH3)(CH2)6CH(CH3)COOH ble oppnådd i 100% utbytte. HOCOCH(CH3)(CH2)6CH(CH3)COOH was obtained in 100% yield.

Eksempel 29Example 29

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelse for at 1-desen ble erstattet med cis-2-desen. The procedure in example 23 was repeated with the exception that 1-decene was replaced by cis-2-decene.

C<H>3(CH2)7CH(CH3)COOH ble oppnådd i 59% utbytte.C<H>3(CH2)7CH(CH3)COOH was obtained in 59% yield.

Eksempel 30Example 30

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelse for at 1-desen ble erstattet med trans-2-desen. The procedure in Example 23 was repeated with the exception that 1-decene was replaced with trans-2-decene.

C<H>3(CH2)7CH(C<H>3)C00H ble oppnådd i 30% utbytte.C<H>3(CH2)7CH(C<H>3)COOH was obtained in 30% yield.

Eksempel 31Example 31

Fremgangsmåten i eksempel 30 ble gjentatt med unntagelseThe procedure in example 30 was repeated with an exception

for at tiden bleøket til 18 timer.so that the time was increased to 18 hours.

C<H>3(CH2)7CH(CH3)C00H ble oppnådd i 77% utbytte.C<H>3(CH2)7CH(CH3)COOH was obtained in 77% yield.

Eksempel 32Example 32

Fremgansmåten i eksempel 23 ble gjentatt med unntagelseThe procedure in example 23 was repeated with an exception

for at cyklododesen ble benyttet istedenfor 1-desen. Utbytte av syklododekan karboksylsyre var 64%. because cyclododecene was used instead of 1-decene. Yield of cyclododecane carboxylic acid was 64%.

Eksempel 33Example 33

Fremgangsmåten i eksempel 23 ble gjentatt med unntagelseThe procedure in example 23 was repeated with an exception

for at cis-4-metyl-2-penten ble benyttet istedenfor 1-desen. Utbyttet av 2,4-dimetylpentansyre var 84%. because cis-4-methyl-2-pentene was used instead of 1-decene. The yield of 2,4-dimethylpentanoic acid was 84%.

Eksempel 34Example 34

Fremgangssmåteni eksempel 23 ble gjentatt med unntagelseThe procedure in Example 23 was repeated with an exception

for at trans-4-mety 1-2-penten ble benyttet istedenfor 1-desen. Utbytte av 2,4-dimetylpentansyre var 64%. because trans-4-methyl 1-2-pentene was used instead of 1-decene. Yield of 2,4-dimethylpentanoic acid was 64%.

Eksempel 35Example 35

Fremgangsmåten i eksempel 23 ble benyttet med unntagelse for at istedenfor 1-desen ble 1,7-oktadien (1,15 ml, The procedure in example 23 was used with the exception that instead of 1-decene, 1,7-octadiene (1.15 ml,

7,8 mmol) benyttet. Mengdene av de andre reaktantene var som følger: 7.8 mmol) used. The amounts of the other reactants were as follows:

Tetrahydroffuran = 30 mlTetrahydrofuran = 30 ml

Palladium (II) klorid = 0,130 g (0,7 mmol) Kons. saltsyre = 0,1 ml Palladium (II) chloride = 0.130 g (0.7 mmol) Conc. hydrochloric acid = 0.1 ml

Kobber (II) klorid = 6 mmol.Copper (II) chloride = 6 mmol.

Vann = 0,14 ml (7.8 mmol) Water = 0.14 ml (7.8 mmol)

Karbonmonooksyd/oksygen ble boblet gjennom blandingen i 16 t imer. Carbon monoxide/oxygen was bubbled through the mixture for 16 hours.

En 80% blanding av monosyrer med formelen An 80% mixture of monoacids with the formula

CH3CH(C00H)(CH2)4CH=CH2CH3CH(COOH)(CH2)4CH=CH2

og and

CH3CH(C00H)(CH2)3CH=CH2CH3CH 3 CH(COOH)(CH 2 ) 3 CH=CH 2 CH 3

ble oppnådd.was achieved.

Fremgangssmåte foretatt i fravær av oksygenProcedure carried out in the absence of oxygen

Eksempel 36Example 36

Palladium (II) klorid (0,1 g, 0,56 mmol) ble tilsatt til metanol (50 ml) hvorigjennom det ble boblet karbonmonooksyd (1 atmosfære). Deretter ble lm kons. saltsyre (1,0 ml) tilsatt. Oppløsningen ble gulfarget. 1-desen (6 mmol) ble tilsatt, og reaksjonsbland ingen ble omrørt ved romtemperatur. Da reaksjonsblandingen ble grønnfarget, ble en liten mengde kobber (II) klorid tilsatt (1:1 totalforhold for palladium (II) klorid til kobber (II) klorid). Denne operasjon ble gjentatt så lenge som oppløsningen ble grønnfarget. Til slutt forble oppløs-ningen gul, og ved dette punkt ble den ekstrahert med heksan. Heksanen ble deretter inndampet, hvilket ga metyl-2-metyl-dekanoat i 100% utbytte. Palladium (II) chloride (0.1 g, 0.56 mmol) was added to methanol (50 mL) through which carbon monoxide (1 atmosphere) was bubbled. Then the lm was conc. hydrochloric acid (1.0 ml) added. The solution turned yellow. 1-Decene (6 mmol) was added and the reaction mixture was stirred at room temperature. When the reaction mixture turned green, a small amount of copper (II) chloride was added (1:1 total ratio of palladium (II) chloride to copper (II) chloride). This operation was repeated until the solution turned green. Finally, the solution remained yellow, at which point it was extracted with hexane. The hexane was then evaporated to give methyl 2-methyl decanoate in 100% yield.

Eksempel 37 Example 37

Eksempel 36 ble gjentatt med unntagelse for at 1-desen ble erstattet med 1-penten. Example 36 was repeated with the exception that 1-decene was replaced by 1-pentene.

Eksempel 38Example 38

Eksempel 36 ble gjentatt med unntagelse for at 1-desen ble erstattet med 2-mety1-1-undesen, og produktet ble separert ved destillasjon etter ekstraksjon med heksan. Example 36 was repeated with the exception that 1-decene was replaced by 2-methyl-1-undecene, and the product was separated by distillation after extraction with hexane.

Eksempel 39Example 39

Eksempel 36 ble gjentatt med unntagelse for at 1-desen ble erstattet med 4-metyl-styren, og produktet ble separert ved desillasjon etter ekstraksjon med heksan. Example 36 was repeated with the exception that 1-decene was replaced by 4-methylstyrene, and the product was separated by desilation after extraction with hexane.

Resultatene fra eksemplene 36-39 sammen med dem for eksempel 36, er angitt i tabell 2. The results of Examples 36-39 together with those of Example 36 are set forth in Table 2.

I eksemplene 23-39 er de prosentvise utbytter basert på olefin-reaktant. In Examples 23-39, the percentage yields are based on olefin reactant.

Claims (10)

1. Fremgangsmåte for fremstilling av en karboksyl-syreester, karakterisert ved at man omsetter umettet hydrokarbon med karbonmonooksyd og en alkohol i nærvær av en protonisk syre og som katalysator (a) minst ett av metallene palladium, rodium, rutenium, iridium og kobolt, og (b) kobber.1. Process for the production of a carboxylic acid ester, characterized by reacting an unsaturated hydrocarbon with carbon monoxide and an alcohol in the presence of a protonic acid and as catalyst (a) at least one of the metals palladium, rhodium, ruthenium, iridium and cobalt, and (b) copper. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det umettede hydrokarbon er en olefin.2. Method according to claim 1, characterized in that the unsaturated hydrocarbon is an olefin. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at den umettede hydrokarbon er en alkyn.3. Method according to claim 1, characterized in that the unsaturated hydrocarbon is an alkyne. 4. Fremgangsmåte hvilket som helst av de foregående krav, karakterisert ved at alkoholen har formelen I^CHOH hvor R uavhengig er hydrogen, alkyl, aryl eller hydroksyalky1, eller de to R-gruppene danner sammen en ring.4. Method any of the preceding claims, characterized in that the alcohol has the formula I^CHOH where R is independently hydrogen, alkyl, aryl or hydroxyalkyl, or the two R groups together form a ring. 5. Fremgangsmåte ifølge hvilket som helst av de foregående krav, karakterisert ved at den protoniske syren enten er saltsyre eller svovelsyre.5. Method according to any one of the preceding claims, characterized in that the protonic acid is either hydrochloric acid or sulfuric acid. 6. Fremgangsmåte ifølge hvilket som helst av de foregående krav, karakterisert ved at komponent (a) i katalysatoren er palladium.6. Method according to any one of the preceding claims, characterized in that component (a) in the catalyst is palladium. 7. Fremgangsmåte ifølge hvilket som helst av de foregående krav, karakterisert ved at et supplerende oppløsningsmiddel benyttes.7. Method according to any one of the preceding claims, characterized in that a supplementary solvent is used. 8. Modifikasjon av fremgangsmåten ifølge hvilket som helst av de foregående krav, karakterisert ved at det umettede hydrokarbon omsettes med karbonmonooksyd og vann, forutsatt at mengden av vann er mindre enn 8 molekvivalenter basert på det umettede hydrokarbon, i nærvær av et oppløsnings-middel annet enn en alkohol, og det derved fremstilte produkt er en karboksylsyre.8. Modification of the method according to any one of the preceding claims, characterized in that the unsaturated hydrocarbon is reacted with carbon monoxide and water, provided that the amount of water is less than 8 molar equivalents based on the unsaturated hydrocarbon, in the presence of a solvent other than an alcohol, and the product thereby produced is a carboxylic acid. 9.. Fremgangsmåte ifølge krav 8, karakterisert ved at oppløsningsmiddelet er en eter.9.. Method according to claim 8, characterized in that the solvent is an ether. 10. Fremgangsmåte ifølge krav 9, karakterisert ved at eteren er tetrahydrofuran.10. Method according to claim 9, characterized in that the ether is tetrahydrofuran.
NO84841860A 1982-09-30 1984-05-09 PROCEDURE FOR PREPARING CARBOXYL ACID ESTERS. NO158458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO872327A NO872327D0 (en) 1982-09-30 1987-06-03 PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACIDS.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB8227972 1982-09-30
GB838305182A GB8305182D0 (en) 1983-02-24 1983-02-24 Production of unsaturated carboxylic acids
GB838318644A GB8318644D0 (en) 1983-07-09 1983-07-09 Production of carboxylic acids
PCT/GB1983/000240 WO1984001376A1 (en) 1982-09-30 1983-09-28 Process for the production of carboxylic acid esters and/or carboxylic acids

Publications (2)

Publication Number Publication Date
NO841860L true NO841860L (en) 1984-05-09
NO158458B NO158458B (en) 1988-06-06

Family

ID=27449391

Family Applications (1)

Application Number Title Priority Date Filing Date
NO84841860A NO158458B (en) 1982-09-30 1984-05-09 PROCEDURE FOR PREPARING CARBOXYL ACID ESTERS.

Country Status (1)

Country Link
NO (1) NO158458B (en)

Also Published As

Publication number Publication date
NO158458B (en) 1988-06-06

Similar Documents

Publication Publication Date Title
US4681707A (en) Process for the production of carboxylic acid esters and/or carboxylic acids
EP0105704B1 (en) Process for the production of carboxylic acid esters and/or carboxylic acid
Harris Jr et al. Synthesis of bicyclic nitrogen compounds via tandem intramolecular Heck cyclization and subsequent trapping of intermediate. pi.-allylpalladium complexes
Harvey et al. Cyclization reactions of molybdenum and chromium carbene complexes with 1, 6-and 1, 7-enynes: effect of tether length and composition
NO883728L (en) PROCEDURE FOR ASYMMETRIC PREPARATION OF CARBOXYL ACID ESTERS AND / OR CARBOXYL ACIDS.
US3952034A (en) Carbonylation of olefins and acetylenes
EP0176370A1 (en) Process for the production of lacetones
US3665034A (en) Process for the production of carboxylic acids
NO841860L (en) PROCEDURE FOR THE PREPARATION OF CARBOXYL ACID ESTERS AND / OR CARBOXYLIC ACIDS
US9695104B2 (en) Process for ruthenium-catalyzed transvinylation of carboxylic acids
NO872327L (en) PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACIDS.
EP0937025B1 (en) Manufacture of adipic acid
EP0440995A1 (en) Process for preparing 1-octene
CN111499600A (en) Synthesis method of polysubstituted 2, 3-dihydrofuran compound
EP4168383B1 (en) Process for making a conjugated diene from an allyl alcohol
US6093857A (en) Preparation of cyclopentanols
CN116867762A (en) Process for producing cyclohexenone compound
EP0444171A1 (en) Asymmetric synthesis of acids by the palladium catalysed hydrocarboxylation of olefins
US3338960A (en) Preparation of halogenated unsaturated acids
WO2008015714A2 (en) Process for the preparation of 1,1-dichloro-2-alkylethylene
US4827056A (en) Process for preparing chlorinated olefins
JP3516699B2 (en) Method for producing fused ring-containing compound
JP4558742B2 (en) Method for producing trimethylhydroquinone dialkanoate
US5583271A (en) Method for continuously producing alkadienols
KR20020079481A (en) Process for preparing c5 acetate