NO841709L - ANISOTROPICAL VASKECELLE - Google Patents

ANISOTROPICAL VASKECELLE

Info

Publication number
NO841709L
NO841709L NO841709A NO841709A NO841709L NO 841709 L NO841709 L NO 841709L NO 841709 A NO841709 A NO 841709A NO 841709 A NO841709 A NO 841709A NO 841709 L NO841709 L NO 841709L
Authority
NO
Norway
Prior art keywords
liquid crystal
line
signal
cell according
crystal cell
Prior art date
Application number
NO841709A
Other languages
Norwegian (no)
Inventor
Paul Gerber
Original Assignee
Hoffmann La Roche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche filed Critical Hoffmann La Roche
Publication of NO841709L publication Critical patent/NO841709L/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3452Pyrazine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1392Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using a field-induced sign-reversal of the dielectric anisotropy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3036Cy-C2H4-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3075Cy-COO-Ph

Description

Foreliggende oppfinnelse vedrører en flytende krystallcelle for optisk visning av elektriske signaler med en kolesterisk flytende krystall mellom to bærerflater utstyrt med styringselektroder . The present invention relates to a liquid crystal cell for the optical display of electrical signals with a cholesteric liquid crystal between two carrier surfaces equipped with control electrodes.

Flytende krystallceller med kolesteriske flytende krystaller er kjente. Ved disse celler benytter man seg av at kolesteriske flytende krystaller foreligger i flere, det vil som regel si to optisk forskjellige tilstandsformer, mellom hvilke de kan kobles hit og dit ved å legge på egnede spenninger. Liquid crystal cells with cholesteric liquid crystals are known. These cells make use of the fact that cholesteric liquid crystals exist in several, that is, as a rule, two optically different state forms, between which they can be connected here and there by applying suitable voltages.

I en celle uten pålagt elektrisk spenning er i allminnelig-het en tilstandsform stabil, ved hvilken molekylene i det vesentlige ligger parallelt med bærerflåtene, og således står den kolesteriske heliks-akse i det vesentlige loddrett på substratplanet. Tilstandsformer som har en slik molekyl^anordning, kalles i litteraturen for det meste Grandjean-eller planære teksturer. Da disse begreper imidlertid på In a cell without an applied electric voltage, a form of state is generally stable, in which the molecules lie essentially parallel to the carrier rafts, and thus the cholesteric helix axis is essentially perpendicular to the substrate plane. Forms of state that have such a molecular arrangement are mostly called Grandjean or planar textures in the literature. As these terms however on

den ene side står for en teoretisk idealform av den tilsvarende tekstur, men på den annen side i praksis ofte også anvendes for å angi mer eller mindre deformerte teksturer, on the one hand it stands for a theoretical ideal form of the corresponding texture, but on the other hand in practice it is often also used to indicate more or less deformed textures,

og derfor kan gi anledning til misforståelser, unngås de i den foreliggende beskrivelse. I stedet for dette benyttes av og til heliks-aksens retning for å beskrive en tekstur. and therefore may give rise to misunderstandings, they are avoided in the present description. Instead, the direction of the helix axis is sometimes used to describe a texture.

Ved den andre av de her interessante strukturer ligger heliks-aksen i det vesentlige parallelt med bærerplatene. Denne struktur ligger, p.g.a. de uheldige tilpasningsforhold i kantsonene energetisk høyere enn de med platenormal heliks-akse. Derfor dannes ved lite forhold av.celletykkelse d til kolesterisk skruhøyde P denne tilstand uten pålagt felt igjen tilbake i den stabilere tekstur med platenormal heliks-akse. Ved store verdier for ^ (typisk større enn 10) er kantsonens innflytelse imidlertid så liten, at teksturen med plateparallell heliks-akse heller ikke tilbakedannes over flere dager. I disse tilfeller synes til og med spørsmålet om større stabilitet for en av de to teksturer å være åpent.. De optiske egenskaper for de to tilstander er meget forskjellige.Teksturen med platenormal heliks-akse reflekterer enten venstre- eller høyredreiende sirkulært polarisert lys med bølgelengder X med verdien n.P, idet n er midlere bryt-ningsindeks. For en høyere refleksjonskoeffisient må det derunder gjelde at d.^n er større enn bølgelengden, hvorunder. Ain er anisotropien til brytningsindeksen. Den andre, ikke-réflekterte sirkulære polariserte komponent av det innfallende lys går i det vesentlige uforstyrret gjennom teksturen. Foran absorberende bakgrunn ser man for n.P i det synlige bølgelengdeområdet dé typiske kolesteriske reflek-sjons farger. In the case of the second of the structures of interest here, the helix axis lies essentially parallel to the carrier plates. This structure is located, due to the unfavorable adaptation conditions in the edge zones are energetically higher than those with a plate-normal helix axis. Therefore, at a small ratio of cell thickness d to cholesteric screw height P, this state is formed without an applied field again in the more stable texture with plate-normal helix axis. However, at large values for ^ (typically greater than 10), the influence of the edge zone is so small that the texture with plate-parallel helix axis is not restored over several days either. In these cases, even the question of greater stability for one of the two textures seems to be open. The optical properties for the two states are very different. The texture with plate-normal helix axis reflects either left- or right-rotating circularly polarized light with wavelengths X with the value n.P, where n is the average refractive index. For a higher reflection coefficient, it must also apply that d.^n is greater than the wavelength, under which. Ain is the anisotropy of the refractive index. The second, non-reflected circularly polarized component of the incident light passes through the texture essentially undisturbed. In front of an absorbing background, one sees for n.P in the visible wavelength range the typical cholesteric reflection colors.

Flytende-krystallen i tilstand med plateparallell heliks-akse derimot, lar. lys passere ureflektert, hvorunder imidlertid en spredning forover inntreffer i et snevert vinkel-område. Foran absorberende bakgrunn synes flytende-krystall-sjiktet i denne tilstand derfor mørk. The liquid crystal in a state with plate-parallel helix axis, on the other hand, allows light passes unreflected, during which, however, forward scattering occurs in a narrow angle range. In front of an absorbing background, the liquid crystal layer in this state therefore appears dark.

De to tilstander viser foran godt absorberende bakgrunn og ved bra speilblanke overflater en tydelig kontrast. Også i transmisjon kan man oppnå en god kontrast når lite disper-gert lys føres slik gjennom blender at strødd lys i tilstand med plateparallell heliks-akse ikke lenger kan passere blenderne. På denne driftsmåten kreves ikke tilstandens refleksjonsegenskap med platenormal. heliks-akse. The two states show a clear contrast in front of a well-absorbing background and on good mirror-gloss surfaces. Also in transmission, a good contrast can be achieved when little dispersed light is passed through the aperture in such a way that scattered light in a state with a plate-parallel helix axis can no longer pass through the apertures. In this mode of operation, the reflection property of the state with the plate normal is not required. helix axis.

De to forannevnte definerte teksturer og deres optiske egenskaper er allerede beskrevet på begynnelsen av dette år-hundre. En anvendelse av de derved bestemte optiske egenskaper var imidlertid beheftet med den ulempe at det ikke lyktes å, på enkelt måte overføre de to tilstander i hver-andre i begge retninger såsom ved elektriske felt. The two aforementioned defined textures and their optical properties were already described at the beginning of this century. An application of the thereby determined optical properties was, however, fraught with the disadvantage that it was not possible to simply transfer the two states into each other in both directions, as in the case of electric fields.

Fra US patent nr. 3.642.348 er det kjent at en kolesterisk flytende krystall som befinner seg i hviletilstand i Grandjean-tekstur kan omvandles i den fokalkoniske :tekstur ved å legge på et likespennings- eller et lavfrekventert veksel-strømsfelt. Etter redusering eller utkobling av feltet,- relakserer krystallene igjen til sin hviletilstand, Grandjean-teksturen. Denne tilbakedannelse kan skje i løpet av brøk-delen av sekunder, men kan også strekke seg over timer. Den kan akselereres ved mekaniske påvirkninger eller ved opp-varming. From US patent no. 3,642,348 it is known that a cholesteric liquid crystal which is in a state of rest in the Grandjean texture can be transformed into the focal conic texture by applying a direct voltage or a low-frequency alternating current field. After reducing or switching off the field, - the crystals relax back to their resting state, the Grandjean texture. This recovery can take place in fractions of seconds, but can also extend over hours. It can be accelerated by mechanical influences or by heating.

Fra tysk Offenlegungsschrift 25.38.212 er det kjent at teks-turomvandlingen av Grandjean i fokalkonisk tilstand skjer under medvirkning av en elektrohydrodynamisk effekt, som innstiller seg i dielektrisk negativt nematisk materiale ved tilstrekkelig lave frekvenser. From German Offenlegungsschrift 25.38.212 it is known that the textural transformation of Grandjean in the focalconic state occurs under the influence of an electrohydrodynamic effect, which sets itself up in dielectric negative nematic material at sufficiently low frequencies.

Fra US patent nr. 3.680 .950 er' det kjent å omkoble en flytende-krystall med negativ dielektrisitetsanisotropi gjennom den orienterende effekten til et høyere frekvent elektrisk vekselstrømsfelt fra fokalkonisk til Grandjean-tilstand.. From US patent no. 3,680,950 it is known to switch a liquid crystal with negative dielectric anisotropy through the orienting effect of a higher frequency electric alternating current field from focal conic to Grandjean state.

Derunder har alle disse effekter, når man kombinerer dem til en visecelle som kan kobles i begge retninger, en betydelig ulempe: som følge av strømgangen, som fremkaller de elektro-hydrodynamiske turbulenser, spaltes den flytende krystall langsomt, men kontinuerlig. Dens levetid er liten. Underneath, all these effects, when you combine them into a vice cell that can be connected in both directions, have a significant disadvantage: as a result of the current flow, which induces the electro-hydrodynamic turbulences, the liquid crystal slowly but continuously splits. Its lifespan is short.

Det må påpekes at det, ved den her interessante effekt og de. foran nevnte kjente effekter, dreier seg om teksturskifte innenfor den kolesteriske fase og ikke om prinsippielt for-.skjellige faseskifteeffekter. It must be pointed out that, by this interesting effect and those. The previously mentioned known effects relate to textural change within the cholesteric phase and not to fundamentally different phase change effects.

Ved faseskifteeffekter har flytende-krystallen bare en kolesterisk struktur i en av de to koblingstilstandér, mens den ved pålagt holdefelt er homøotropnématisk. In the case of phase change effects, the liquid crystal only has a cholesteric structure in one of the two coupling states, while in the case of an applied holding field it is homeotropic nematic.

I tysk utlegningsskrift nr. 25.42.189 er det f.eks. beskrevet en slik celle, som inneholder en kolesterisk flytende-krystallblanding som har en energetisk stabil fokalkonisk struktur når ikke noe elektrisk felt er pålagt, og som kan omkobles fra denne tilstand i en homøotropnématisk struktur, In German explanatory document no. 25.42.189, it is e.g. described such a cell, which contains a cholesteric liquid-crystal mixture which has an energetically stable focalconic structure when no electric field is applied, and which can be switched from this state into a homeotropic nematic structure,

i hvilken den forblir når et egnet holdefelt pålegges. Etter at holdefeltet er koblet ut, går flytende-krystallen igjen in which it remains when a suitable containment field is imposed. After the holding field is switched off, the liquid crystal runs again

over i den stabile fokalkoniske tilstand.into the stable focalconic state.

Bortsett fra at denne faseskiftevirkning er prinsippielt forskjellig fra den her betraktede teksturveksel, har også faseskifte så betydelige ulemper at det hittil ikke har funnet noen teknisk anvendelse, selv om det har vært kjent lenge. Dertil kreves, for faseskifte en meget høy styrings-spenning og for opprettholdelsen a<y>den ikke-stabile tilstand, en høy vedlikeholdsspenning. Apart from the fact that this phase change effect is fundamentally different from the texture change considered here, phase change also has such significant disadvantages that it has not yet found any technical application, even though it has been known for a long time. In addition, a very high control voltage is required for phase change and for the maintenance of the non-stable state, a high maintenance voltage.

Oppgaven for foreliggende oppfinnelse er å tilveiebringe en flytende-krystallcelle som gjennom den orienterende virkning av elektriske felt kan kobles mellom to stabile, optisk forskjellige tilstander, og ved hvilken det ikke behøver å gå noen strøm i den flytende krystall, slik at godt isolerende flytende-krystallmateriale kan brukes for å unngå nedbryt-ningsfenomener. The task of the present invention is to provide a liquid-crystal cell which, through the orienting effect of electric fields, can be switched between two stable, optically different states, and in which no current needs to flow in the liquid crystal, so that well-insulating liquid- crystal material can be used to avoid degradation phenomena.

Ifølge oppfinnelsen oppnås dette,ved at en celle av den inn-ledningsvis nevnte art,• eksisterer flytende-krystallen i to optisk forskjellige stabile teksturer og har en dielektrisk anisotropi som er positiv ved frekvenser under en terskel-verdi, hvorved flytende-krystallen ved pålegning av en vekselstrøm med en slik lav frekvens, antar en av de to stabile teksturer, og ved frekvenser over terskelverdien er negativ, hvorved flytende-krystallen ved pålegning av en vekselstrøm med en slik høyere frekvens går over i den andre stabile tilstand. According to the invention, this is achieved in that a cell of the type mentioned at the outset, the liquid crystal exists in two optically different stable textures and has a dielectric anisotropy that is positive at frequencies below a threshold value, whereby the liquid crystal upon application of an alternating current with such a low frequency, assumes one of the two stable textures, and at frequencies above the threshold value is negative, whereby the liquid crystal when an alternating current with such a higher frequency is applied passes into the other stable state.

Den kolesteriske flytende-krystall er fortrinnsvis en blanding av nematiske flytende-krystaller med kolesteriske til-setninger. The cholesteric liquid crystal is preferably a mixture of nematic liquid crystals with cholesteric additives.

De to stabile tilstandsformer som flytende-krystallen befinner seg i, er teksturen med plateparallell heliks-akse, som flytende-krystallen inntar ved pålegning av en lavere frekvensspenning, og teksturen med plateloddrett heliks-akse, hvilken flytende-krystallen går over ved pålegning av en høyfrekvensspenning. The two stable state forms in which the liquid crystal is located are the texture with a plate-parallel helix axis, which the liquid crystal assumes when a lower frequency voltage is applied, and the texture with a plate-perpendicular helix axis, which the liquid crystal passes through when a high frequency voltage.

Overflaten av den øvre platen som vender mot flytende-krystallen, dvs. den plate gjennom hvilken lysinnfallet.finner sted, har fortrinnsvis en homogen veggorientering. De ønskede elektrooptiske effekter inntrer imidlertid også i celler som ikke har noen, henholdsvis homøotrope eller også hydride veggorienteringer. The surface of the upper plate which faces the liquid crystal, i.e. the plate through which the incident light takes place, preferably has a homogeneous wall orientation. However, the desired electro-optical effects also occur in cells that have no homeotropic or hydride wall orientations.

Oppfinnelsen beskrives i det følgende gjennom utførelses-formene på tegningene. Fig. 1 viser'skjematisk en celle med en kolesterisk flytende-krystall med plateparallell heliks-akse, Fig. 2 viser skjematisk en celle med en flytende-krystall The invention is described in the following through the embodiments of the drawings. Fig. 1 schematically shows a cell with a cholesteric liquid crystal with plate-parallel helix axis, Fig. 2 schematically shows a cell with a liquid crystal

med.platenormal heliks-akse,with.plate normal helix axis,

Fig. 3 viser en skjematisk kurve av forløpet til dielektrisk anisotropi avhengig av frekvensen til et elektrisk felt som er lagt på flytende-krystallen, Fig. 3 shows a schematic curve of the course of dielectric anisotropy depending on the frequency of an electric field applied to the liquid crystal,

Fig. 4 viser skjematisk en matrisseviser som skal oppnåsFig. 4 schematically shows a matrix indicator to be obtained

med den nye effekt, ogwith the new effect, and

Fig. 5 viser skjematisk signalformen for styring av en matrisseviser ifølge, fig. 4. Fig. 1 viser et skjematisk tverrsnitt gjennom en del av en flytende-krystallcelle. Cellen består som normalt av to, med avstand fra.hverandre anordnede bærerplater 1, 2, mellom hvilke er anordnet et kolesterisk flytende-krystallsjikt 3'. Fig. 5 schematically shows the signal form for controlling a matrix indicator according to fig. 4. Fig. 1 shows a schematic cross section through part of a liquid crystal cell. The cell normally consists of two carrier plates 1, 2 arranged at a distance from each other, between which a cholesteric liquid crystal layer 3' is arranged.

Den øvre bærerplate 1 er den, gjennom hvilken lysinnfallet finner sted, og på hvis side observatøren befinner seg i tilfelle av en reflektivt virkende visning. Overflaten av bærerplaten 1 som vender mot flytende krystallen, er slik behandlet at den orienterer de tilgrensende flytende-krys-tallmolekyler homogent. Denne såkalte homogene veggorientering kan oppnås med de vanlige metoder, det vil altså si f.eks. ved gnidning, skrådamppåføring, osv. The upper carrier plate 1 is the one through which the incident light takes place, and on whose side the observer is in the case of a reflective display. The surface of the carrier plate 1 facing the liquid crystal is treated in such a way that it orients the adjacent liquid crystal molecules homogeneously. This so-called homogeneous wall orientation can be achieved with the usual methods, that means e.g. by rubbing, oblique steam application, etc.

Bærerplatens 1 homogene veggorientering er ikke ubetinget nødvendig for funksjonen til visningsdelen. Den tjener imidlertid til å oppnå en bedre optisk homogenitet, spesielt i den tilstand hvori heliks-aksen til flytende-krystallen står loddrett på bærerplaten. The homogeneous wall orientation of the carrier plate 1 is not absolutely necessary for the function of the display part. However, it serves to achieve a better optical homogeneity, especially in the state in which the helix axis of the liquid crystal is vertical to the carrier plate.

Begge bærerplater 1, 2 er på sidene som vender mot flytende-krystallen utstyrt med elektroder, gjennom hvilke styringen finner sted. Disse elektroder består på kjent måte av tynne, for det meste pådampede sjikt av indiumoksyd osv.'. Both carrier plates 1, 2 are on the sides facing the liquid crystal equipped with electrodes, through which the control takes place. These electrodes consist in a known manner of thin, mostly evaporated layers of indium oxide, etc.'.

Da visningen skyldes den optiske forskjell mellom de to teksturer hos den kolesteriske flytende-krystall, må flytende-krystallen være synlig gjennom den øvre bærerplaten 1. Det betyr at bærerplaten må bestå av glass, gjennomsiktig kunststoff osv.. Også den øvre elektrode 4 må være gjennomsiktig. As the display is due to the optical difference between the two textures of the cholesteric liquid crystal, the liquid crystal must be visible through the upper carrier plate 1. This means that the carrier plate must consist of glass, transparent plastic, etc. The upper electrode 4 must also be transparent.

Den nedre bærerplate skal absorbere lys, hvilket i allminne-lighet oppnås ved at også bærerplaten er lysgjennomskinnelig og et absorberende sjikt 6 er anbragt på dens utvendige side. Selvfølgelig er også andre konfigurasjoner tenkelige, f.eks. absorberende utforming av elektroden 5 eller av bærerplaten 2 selv. The lower carrier plate must absorb light, which is generally achieved by the carrier plate also being translucent and an absorbing layer 6 being placed on its outer side. Of course, other configurations are also conceivable, e.g. absorbent design of the electrode 5 or of the carrier plate 2 itself.

Elektrodene 4, 5 er forbundet med en styringselektronikk, som for denne beskrivelse bare er vist skjematisk ved to vekselstrømskilder 7, 8 med forskjellige frekvenser og en bryter 9. For konkret og -detaljert utforming av styrings-elektronikken vises til den omfattende vanlige litteratur som er kjent for fagmannen.- The electrodes 4, 5 are connected to a control electronics, which for this description is only shown schematically by two alternating current sources 7, 8 with different frequencies and a switch 9. For a concrete and detailed design of the control electronics, reference is made to the extensive common literature which is known to the person skilled in the art.-

Flytende-krystallsjiktet 3 består av en såkalt tofrekvens-blanding såsom beskrevet i Appl. Phys. Lett. _41, 697(1982), som kan tilblandes egnede kirale molekyler, slik at to-frekvensegenskapen på den ene side opprettholdes, og på den The liquid crystal layer 3 consists of a so-called two-frequency mixture as described in Appl. Phys. Easy. _41, 697(1982), which can be mixed with suitable chiral molecules, so that the two-frequency property is maintained on the one hand, and on the other

■ annen side induseres de aktuelle kolesteriske egenskaper i blandingen, i foreliggende tilfelle altså refleksjonsevnen i det synlige området. ■ on the other hand, the relevant cholesteric properties are induced in the mixture, in this case the reflectivity in the visible area.

En spesielt godt egnet flytende-krystallblanding har f.eks. følgende sammensetning: den nematiske to-frekvensblanding består av følgende bestanddeler i de angitte vektsforhold: A particularly well-suited liquid-crystal mixture has e.g. following composition: the nematic two-frequency mixture consists of the following components in the indicated weight ratios:

Denne mellom -6°C og +79°C nematiske virkning har ved 22°C en overgangsfrekvens fc fra ca. 1,4 kHz. Ved frekvenser mindre enn fc er den dielektriske anisotropi positiv, for f større enn fc negativ. This between -6°C and +79°C nematic effect has at 22°C a transition frequency fc from approx. 1.4 kHz. At frequencies less than fc the dielectric anisotropy is positive, for f greater than fc negative.

Denne nematiske blanding tilsettes følgende kirale tilset-ninger (i vekt-%) for å oppnå en god synlig fargevirkning i det grønne spektralområdet. The following chiral additives (in weight%) are added to this nematic mixture to achieve a good visible color effect in the green spectral range.

Med den tekstur som er vist i fig. 1 har flytende-krystallen den for den kolesteriske fase typiske skrueformig dreiede molekylanordning, hvorunder skrueaksen ligger mer eller mindre parallelt med plateoverflåtene. Dette er skjematisk antydet'på fig. 1 med en rekke molekyler projisert på teg-ningsplanet. With the texture shown in fig. 1, the liquid crystal has the helically twisted molecular arrangement typical of the cholesteric phase, under which the axis of the screw lies more or less parallel to the plate surfaces. This is indicated schematically in fig. 1 with a number of molecules projected onto the drawing plane.

Forbindes bryteren 9 kort tid med spénningskilden 7, kommer. If the switch 9 is briefly connected to the voltage source 7,

en impuls med en frekvens på mer enn 1,4 kHz, fortrinnsvis ca. 10 kHz på flytende-krystall 3, hvorpå denne går over i tilstanden med platenormal heliks akse. Denne tilstand er vist i fig. 2. Ved den. skjematiske fremstilling på fig. 2 dreier det seg om den samme celle som i fig. 1. Bare flytende-krystallen 3 har nå én annen tekstur som utmerker seg ved at de utformede skruvindinger med sin akse står loddrett på bærerplatene 1, 2. Molekylene er dermed i denne tilstand orientert i det vesentlige parallelt med plateoverflaten. an impulse with a frequency of more than 1.4 kHz, preferably approx. 10 kHz on liquid crystal 3, whereupon this passes into the state with plate-normal helix axis. This condition is shown in fig. 2. By it. schematic representation in fig. 2, it concerns the same cell as in fig. 1. Only the liquid crystal 3 now has a different texture, which is distinguished by the fact that the designed screw windings are vertical with their axis on the carrier plates 1, 2. The molecules are thus oriented in this state essentially parallel to the plate surface.

Teksturen med platenormal heliks-akse forblir likeledes uten energitilførsel utenfra gjennom lengre tid bestående uforandret. Dette er antydet ved at også i fig. 2 er bryteren 9 åpen. Omlegges bryteren 9 slik at spenningskilden 9 forbindes med elektrodene, dvs. tilføres en spenningsimpuls med frekvens på mindre enn 1,4 kHz, det vil fortrinnsvis si ca. 100 Hz, går'flytende-krystallen igjen over i sin tekstur med plateparallell heliks-akse. The texture with plate-normal helix axis also remains unchanged without external energy supply for a long time. This is indicated by the fact that also in fig. 2, the switch 9 is open. If the switch 9 is switched so that the voltage source 9 is connected to the electrodes, i.e. a voltage pulse is supplied with a frequency of less than 1.4 kHz, that is preferably approx. 100 Hz, the liquid crystal reverts to its texture with plate-parallel helix axis.

Visningscellen har altså to virkelig stabile tilstander og kan ved pålegning av vekselstrømsimpulser med forskjellige frekvenser kobles fra én tilstand til en annen. For å bi-beholde de to tilstander kreves ingen opprettholdelses-spenning. Som eksperimentene viser holder de to tilstander seg uten pålagt spenning uforandret stabile gjennom flere uker. The display cell thus has two truly stable states and can be switched from one state to another by applying alternating current pulses of different frequencies. In order to maintain the two states, no maintenance voltage is required. As the experiments show, the two states remain unchanged and stable for several weeks without applied voltage.

I forsøksceller ble omkoblingsoperasjonene utført ved hjelp av rettvinkelsignaler på 60 Volt RMS. Til en 10 um tykk celle med kolesterisk fylling med en ganghøyde P på P=0,38 um førte det til koblingstider fra ca. 250 ms til kobling i tilstanden med platenormal heliks-akse og på ca. 50 ms til tilbakekoblingsproséssen. Ved mindre spenninger var koblingstidene lengre, og teksturforandringene fant neppe mer sted under visse terskelverdier. Ved pålegning av lavfrekvenser finner, ved ca. dobbelt spenning, dvs. ved 120 V, den kolesterisk nematiske faseovergang sted. Imidlertid befinner man seg da allerede i området med høy gjennornslags-f are. Ved å variere spenningen og modifisere to-frekvensbland-ingene, skulle også forbedringer av koblingstidene kunne oppnås. In experimental cells, the switching operations were carried out using right-angle signals of 60 Volt RMS. For a 10 um thick cell with cholesteric filling with a step height P of P=0.38 um, it led to switching times from approx. 250 ms for connection in the state with plate-normal helix axis and in approx. 50 ms for the switchback process. At lower voltages, the switching times were longer, and the texture changes hardly took place below certain threshold values. When imposing low frequencies, at approx. double voltage, ie at 120 V, the cholesteric nematic phase transition place. However, you are then already in the area with a high risk of rebirth. By varying the voltage and modifying the two-frequency mixes, improvements in the switching times should also be achieved.

Den nødvendige optiske kontrast for en visning består i at flytende-krystallen i teksturen med plateparallell heliks-akse er temmelig godt lysgjennomtrengelig og dermed platen på baksiden synlig som ser mørk ut p.g.a. sin absorberende egenskap. I tilstanden med platenormal heliks-akse finner da den nevnte frekvensselektive refleksjon av lyset sted. Dette fører til at av hvitt lys spres bare bestemte deler tilbake og flytende-krystallen ses derfor sterkt farget. De enkelte farger avhenger av den kolesteriske flytende-krystal-lens ganghøyde. Da ganghøyden ved de fleste kolesteriske flytende-krystaller er temperaturavhengige, endrer fargen seg lett med skiftende temperatur. Det er imidlertid kjent for fagmannen hvordan, dette kan kompenseres ved tilsvarende blandingsforhold av bestanddelene. The necessary optical contrast for a display consists in the fact that the liquid crystal in the texture with a plate-parallel helix axis is fairly well permeable to light and thus the plate on the back is visible, which looks dark due to its absorbent property. In the state with plate-normal helix axis, the mentioned frequency-selective reflection of the light then takes place. This means that only certain parts of the white light are scattered back and the liquid crystal is therefore seen as strongly coloured. The individual colors depend on the height of the cholesteric liquid crystal lens. As the walking height of most cholesteric liquid crystals is temperature dependent, the color changes easily with changing temperature. However, it is known to the person skilled in the art how this can be compensated for by corresponding mixing ratios of the components.

På figurene 4 og 5 er anvendelsen av den nye effekt vist i en matrisseviser. I utsnittet som er vist på fig. 4 av en matrisseviser skal f.eks. flaten Z2/S2 bringes i tilstand med-plateparallell heliks-akse, og flaten Z2/S4 i tilstand .med platenormal heliks-akse. Alle andre elementer skal bi-beholdes uforandret i sin tilstand. Figures 4 and 5 show the application of the new effect in a matrix display. In the section shown in fig. 4 of a matrix indicator must e.g. the surface Z2/S2 is brought into a state with a plate-parallel helix axis, and the surface Z2/S4 into a state with a plate-normal helix axis. All other elements must be retained unchanged in their condition.

Informasjonen som skal vises kan innleses linjevis. Derunder følger høy- og lavfrekvensspenninger skiftevis. På den valgte linje Z2 ligger for hver frekvens stadig en spenning på to amplitudeenheter, mens de øvrige linjer forblir uten spenning. The information to be displayed can be entered line by line. Underneath, high- and low-frequency voltages follow alternately. On the selected line Z2, for each frequency, there is always a voltage of two amplitude units, while the other lines remain without voltage.

På spaltene ligger alltid en amplitudeenhet. Tor elementene, som skal forbli uforandret, dvs. altså i spaltene Sl og S3 er de i fase med linjespenningen. Når tilstanden til et element skal defineres på nytt, dvs. altså i spaltene S2 og S4, er spenningen i motfase til tilsvarende linjespenning. På elementene som skal omkobles ligger altså tre spenningsenheter,' mens på alle øvrige ligger en enhet. Tidene gjennom hvilke en frekvens ligger på, er' bestemt ved at tinder tre spenningsenheter inntreffer en entydig defini-sjon av tilstanden, mens under en enhet i skifte av høy- og lavfrekvens, forblir begge tilstandsmuligheter uendret. Disse tiderTNF ,TThF avhenger av'material- og cellepara-meterne og må optimeres for hvert enkelt tilfelle. There is always an amplitude unit on the slots. Tor the elements, which must remain unchanged, i.e. in the slots Sl and S3 they are in phase with the line voltage. When the state of an element is to be redefined, i.e. in slots S2 and S4, the voltage is in opposite phase to the corresponding line voltage. There are therefore three voltage units on the elements to be switched, while one unit is on all the others. The times during which a frequency remains on are determined by the fact that when three voltage units occur, a clear definition of the state occurs, while during one unit in the change of high and low frequency, both state possibilities remain unchanged. These timesTNF, TThF depend on the material and cell parameters and must be optimized for each individual case.

Claims (7)

1. Flytende-krystallcelle med en kolesterisk flytende-krystall mellom to bærerplater utstyrt med styringselektroder, karakterisert ved at flytende-krystallen eksisterer i to optisk forskjellige stabile.teksturer og har en dielektrisk anisotropi, som ved frekvenser under en ter-skelverdi er positiv, hvorved flytende-krystallen ved pålegning av en vekselstrøm med en slik lav frekvens inntar en av de to stabile teksturer, ved frekvenser over terskelverdien er negativ, hvorved flytende-krystallen ved pålegning av en vekselspenning med en høyere frekvens inntar den andre stabile tekstur.1. Liquid crystal cell with a cholesteric liquid crystal between two carrier plates equipped with control electrodes, characterized in that the liquid crystal exists in two optically different stable textures and has a dielectric anisotropy, which at frequencies below a threshold value is positive, whereby the liquid crystal upon application of an alternating current with such a low frequency assumes one of the two stable textures, at frequencies above the threshold value is negative, whereby the liquid crystal upon application of an alternating voltage with a higher frequency assumes the other stable texture. 2. Flytende-krystallcelle ifølge krav 1, karakterisert ved at bærerplaten som befinner seg på innfalls-siden av lyset på sin overflate som vender mot den flytende krystallen har en beskaffenhet som orienterer flytende-krys-tallmolekylene homogent.2. Liquid crystal cell according to claim 1, characterized in that the carrier plate located on the incident side of the light on its surface facing the liquid crystal has a property that orients the liquid crystal molecules homogeneously. 3. Flytende-krystallcelle ifølge kravl, karakterisert ved at bærerplaten som befinner seg på lysets innfallsside på sin overflate som vender mot flytende-krystallen har en beskaffenhet som orienterer flytende-krystall-molekylene homøotropt.3. Liquid crystal cell according to krawl, characterized in that the carrier plate located on the incident side of the light on its surface facing the liquid crystal has a property that orients the liquid crystal molecules homeotropically. 4. Flytende-krystallcelle ifølge ett av de foregående krav, karakterisert ved at flytende-krystallen i en av de to stabile teksturer har en heliks-akse som ligger parallelt med bærerplatene og i den andre stabile tekstur en heliksakse som står loddrett på bærerplatene.4. Liquid crystal cell according to one of the preceding claims, characterized in that the liquid crystal in one of the two stable textures has a helix axis that lies parallel to the carrier plates and in the other stable texture a helix axis that is perpendicular to the carrier plates. 5. Flytende-krystallcelle ifølge krav 1-4, karakterisert ved at styringselektrodene på en bærerplate er oppdelt i linjeledere og på den andre bærerplaten i spalteledere og på denne måten danner en matrisseviser.5. Liquid crystal cell according to claims 1-4, characterized in that the control electrodes on one carrier plate are divided into line conductors and on the other carrier plate into slot conductors and in this way form a matrix detector. 6. Flytende-krystallcelle ifølge krav 5, karakterisert ved at linje- og spaltelederne skiftevis til-føres et lavfrekvens og et høyfrekvens signal.6. Liquid crystal cell according to claim 5, characterized in that the line and slot conductors are alternately supplied with a low frequency and a high frequency signal. 7. Flytende-krystallcelle ifølge krav 6, karakterisert ved at for innlesning av en linje på linje-lederen som det tas sikte på ligger et signal med en bestemt amplitude og på alle andre linjeledere ikke noe signal, mens samtidig alle spalteledere tilføres et signal hvis amplitude er halvparten så stor som linjesignalets og for kryssnings-punktene som skal omkobles i motfase med linjesignalet, og for alle andre kryssningspunkter i fase med linjesignalet.7. Liquid crystal cell according to claim 6, characterized in that for the reading of a line, a signal with a specific amplitude is present on the line conductor that is aimed at and on all other line conductors no signal, while at the same time all slot conductors are supplied with a signal if amplitude is half as large as that of the line signal and for the crossing points to be switched in phase with the line signal, and for all other crossing points in phase with the line signal.
NO841709A 1983-04-29 1984-04-27 ANISOTROPICAL VASKECELLE NO841709L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH231983 1983-04-29

Publications (1)

Publication Number Publication Date
NO841709L true NO841709L (en) 1984-10-30

Family

ID=4231029

Family Applications (1)

Application Number Title Priority Date Filing Date
NO841709A NO841709L (en) 1983-04-29 1984-04-27 ANISOTROPICAL VASKECELLE

Country Status (6)

Country Link
EP (1) EP0123981A3 (en)
JP (1) JPS59208531A (en)
KR (1) KR840008542A (en)
DD (1) DD228368A5 (en)
DK (1) DK213384A (en)
NO (1) NO841709L (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670020B2 (en) * 1984-04-03 1994-09-07 チッソ株式会社 Substituted pyridazines
JPS61193129A (en) * 1985-02-22 1986-08-27 Casio Comput Co Ltd Liquid crystal optical shutter
JP2767790B2 (en) * 1985-05-07 1998-06-18 セイコーエプソン株式会社 Driving method of liquid crystal electro-optical device
FR2596187B1 (en) * 1986-03-18 1988-05-13 Commissariat Energie Atomique METHOD FOR SEQUENTIALLY CONTROLLING A LIQUID CRYSTAL MATRIX DISPLAY HAVING DIFFERENT OPTICAL RESPONSES IN ALTERNATIVE AND CONTINUOUS FIELDS
JP2609586B2 (en) * 1986-03-28 1997-05-14 株式会社日立製作所 Liquid crystal display
JPH04134323A (en) * 1990-09-26 1992-05-08 Sharp Corp Optical writing type liquid crystal display element
US5661533A (en) * 1995-05-19 1997-08-26 Advanced Display Systems, Inc. Ultra fast response, multistable reflective cholesteric liquid crystal displays
GB2314423A (en) * 1996-06-21 1997-12-24 Sharp Kk Liquid crystal devices
US6034752A (en) * 1997-03-22 2000-03-07 Kent Displays Incorporated Display device reflecting visible and infrared radiation
JP6152399B2 (en) * 2015-04-01 2017-06-21 国立中央大学 High contrast bistable scattering type liquid crystal light valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703331A (en) * 1971-11-26 1972-11-21 Rca Corp Liquid crystal display element having storage
FR2230410A1 (en) * 1973-05-24 1974-12-20 Commissariat Energie Atomique Control of molecular orientation in liq. crystals - by applying electric field at varying frequencies
US4009934A (en) * 1974-01-11 1977-03-01 Eastman Kodak Company Electro-optic display devices and methods
GB2042202B (en) * 1979-01-24 1983-03-09 Secr Defence Operating a liquid crystal cell

Also Published As

Publication number Publication date
JPS59208531A (en) 1984-11-26
DK213384A (en) 1984-10-30
EP0123981A2 (en) 1984-11-07
KR840008542A (en) 1984-12-15
EP0123981A3 (en) 1986-12-03
DK213384D0 (en) 1984-04-27
DD228368A5 (en) 1985-10-09

Similar Documents

Publication Publication Date Title
KR100364468B1 (en) A highly multiplexable liquid crystal display device
US4032218A (en) Device for the production and modulation of monochromatic light
Lee et al. Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field
Nagaraj et al. Liquid crystal display modes in a nontilted bent-core biaxial smectic liquid crystal
KR0141984B1 (en) Smectic liquid crystal device using ferro-electric liquid crystal meterial
KR920004895B1 (en) Liquid crystal display
US4596446A (en) Liquid crystal devices with particular cholesteric pitch-cell thickness ratio
NO843312L (en) ELECTROOPTICAL CERAMIC DISPLAY AND PROCEDURE FOR AA MANUFACTURING THE SAME
JP2804908B2 (en) Smectic liquid crystal device
KR20010033545A (en) Bistable nematic liquid crystal device
NO841709L (en) ANISOTROPICAL VASKECELLE
KR100887497B1 (en) Fringe in-plane field switching liquid crystal display
US3854751A (en) Method for rapidly switching a display by sequential application of orthogonal electric fields to a liquid crystal material having optical properties of the nematic mesophase
KR970007426A (en) Ferroelectric Nematic Liquid Crystal Display
CN108227319A (en) A kind of display panel and display device
KR100258535B1 (en) Ferroelectric liquid crystal display device
JP3449829B2 (en) Liquid crystal display device
KR100543022B1 (en) Liquid crystal display
JPS6250735A (en) Liquid crystal display device
Owen et al. Electro-optic properties of an unusual guest-host liquid crystal mixture: a mauve anthraquinone dye in a ferroelectric organosiloxane
KR100350531B1 (en) Method for displaying gray level of ferro-electric lcd
WO2003052498A1 (en) Dual frequency nematic liquid crystal display
JPS5823013A (en) Multilayered liquid-crystal display device
JPH05142519A (en) Liquid crystal display device
KR820000239B1 (en) Liquid crystal display