NO783625L - SOLID FUEL ROCKET DRIVE - Google Patents

SOLID FUEL ROCKET DRIVE

Info

Publication number
NO783625L
NO783625L NO783625A NO783625A NO783625L NO 783625 L NO783625 L NO 783625L NO 783625 A NO783625 A NO 783625A NO 783625 A NO783625 A NO 783625A NO 783625 L NO783625 L NO 783625L
Authority
NO
Norway
Prior art keywords
combustion chamber
fuel
solid fuel
solid
wall
Prior art date
Application number
NO783625A
Other languages
Norwegian (no)
Inventor
Ruediger Strecker
Bernhard Schmid
Original Assignee
Bayern Chemie Gmbh Flugchemie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayern Chemie Gmbh Flugchemie filed Critical Bayern Chemie Gmbh Flugchemie
Publication of NO783625L publication Critical patent/NO783625L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/34Casings; Combustion chambers; Liners thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/24Charging rocket engines with solid propellants; Methods or apparatus specially adapted for working solid propellant charges

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

Faststoff-rakettdrivverk og fremgangsmåte for fremstilling derav. Solid rocket propellant and method for manufacturing the same.

Foreliggende oppfinnelse angår et faststoff-rakettdrivverk og en fremgangsmåte for fremstilling av dette. The present invention relates to a solid-state rocket propulsion system and a method for its production.

Ved kammerveggbunnede faststoff-rakettdrivverk av konvensjonell type befinner det seg mellom den indre br.enn-kammervegg og det faste rakettdrivstoff en isolering og/eller et inhiberingssjikt.. Disse materialer oppfyller to oppgaver: de må på den ene side beskytte brennkammeret fra de varme forbrenningsgasser mot slutten av avbrenningen og/eller på den annen side virke som bindeledd med gode klebeegenskaper ved kammerveggbunnede faste drivstoffer. SjikttykkeIsen for disse materialer ligger vanligvis.mellom 1 og 5 nim. Innføring av disse materialer skjer alt etter anvendt teknologi enten ved støping eller slynging ved samtidig utherding av isoleringen In the case of conventional-type solid rocket propellants with a chamber wall bottom, there is an insulation and/or an inhibition layer between the inner combustion chamber wall and the solid rocket propellant. These materials fulfill two tasks: on the one hand, they must protect the combustion chamber from the hot combustion gases towards the end of the combustion and/or on the other hand act as a link with good adhesive properties in the case of chamber wall bottomed solid fuels. The layer thickness of the ice for these materials is usually between 1 and 5 nm. The introduction of these materials takes place depending on the technology used either by casting or slinging with simultaneous curing of the insulation

■eller ved innpressing med etterfølgende utherding. Begge teknologier er dog meget tids- og omkostnings-intensive, og reduserer i tillegg til dette det rom som står til disposisjon for drivstoffet. Dette betyr dermed en eventuelt betydelig ytelsesforringelse for rakettmotoren. ■or by pressing in with subsequent curing. However, both technologies are very time- and cost-intensive, and in addition reduce the space available for the fuel. This therefore means a potentially significant performance degradation for the rocket engine.

Oppgaven for foreliggende oppfinnelse er å tilby et faststoff-rakettdrivverk under langtgående utelukkelse av de nevnte isolerings- henholdsvis inhiberingsmaterialer. Løsningen av denne oppgave- oppnås ved et fast drivstoff som støpes rett inn i et brennkammer som ikke er isolert i den sylindriske del. The task of the present invention is to offer a solid-state rocket propellant while largely excluding the aforementioned insulation and inhibition materials. The solution to this task is achieved by a solid fuel that is poured directly into a combustion chamber that is not insulated in the cylindrical part.

Fremgangsmåten for fremstilling av rakettdrivverket består deri at innerveggen av brennkammeret utstyres med et en-henholdsvis to-komponentklebemiddel i en sjikttykkelse av 10 - 100^um og at det faste drivstoff deretter, støpes inn i brennkammeret. The procedure for manufacturing the rocket engine consists in equipping the inner wall of the combustion chamber with a one- or two-component adhesive in a layer thickness of 10 - 100 µm and then pouring the solid fuel into the combustion chamber.

Etter en spesiell utførelsesform av■oppfinnelsenAccording to a particular embodiment of the invention

o o

anvendes de.t brennkammere med veggtykkelser fra 0,6 - 1,5 mm, fortrinnsvis 0,8 - 1,2 mm. combustion chambers with wall thicknesses from 0.6 - 1.5 mm, preferably 0.8 - 1.2 mm, are used.

De faste drivstoffer ifølge oppfinnelsen består'i det vesentlige av oksydatorer, en metalltilsetning og polymerer som etter utherding oppviser gummiaktige egenskaper. Oksydatorene er generelt ammonium-, henholdsvis alkalisalter av salpeter-, henholdsvis perklor-syre. Spesielle eksempler på disse er ammoniumperklorat og ammbniumnitrat, kaliumperklorat, natriumnitrat, osv. The solid fuels according to the invention essentially consist of oxidizers, a metal additive and polymers which, after curing, exhibit rubbery properties. The oxidizers are generally ammonium, respectively alkali salts of nitric acid, respectively perchloric acid. Special examples of these are ammonium perchlorate and ammonium nitrate, potassium perchlorate, sodium nitrate, etc.

Foretrukne polymerer er te-lomere polybutadiener eller kopolymerer av butadien og akrylnitril med funksjonelle grupper. De funksjonelle grupper kan enten være sluttgruppe.r eller være fordelt statistisk langs kjeden. Typiske eksempler er karboksylavsluttede polybutadiener ("Butarez CTL", Preferred polymers are telomer polybutadienes or copolymers of butadiene and acrylonitrile with functional groups. The functional groups can either be final groups or be distributed statistically along the chain. Typical examples are carboxyl-terminated polybutadienes ("Butarez CTL",

"Telagen CT", "Hycas", "HC 4^4"), hydroksylavsluttede polybutadiener ("Butarez HT", "PBd R 45", "Telagen HT"), kopolymerer av butadien og akrylsyre ("PBAA"), samt terpolymerer av butadien, akrylsyre og akrylnitril ("PBAN"). "Telagen CT", "Hycas", "HC 4^4"), hydroxyl-terminated polybutadienes ("Butarez HT", "PBd R 45", "Telagen HT"), copolymers of butadiene and acrylic acid ("PBAA"), as well as terpolymers of butadiene, acrylic acid and acrylonitrile ("PBAN").

Består den funksjone lie'gruppe av en karboksyl-gruppe, kan disse polymerer herdes med de forskjellige aziridi-ner, epoksyder eller aminer. Polymerer med hydroksylgrupper herdes, med aromatiske eller alifatiske di- eller polyisocyana-ter. Alt etter reaktivitet av det anvendte isocyanat, må det tilsettes herdeakselleratorer henholdsvis herdeinhibitorer. If the functional group consists of a carboxyl group, these polymers can be cured with the various aziridines, epoxides or amines. Polymers with hydroxyl groups are cured, with aromatic or aliphatic di- or polyisocyanates. Depending on the reactivity of the isocyanate used, curing accelerators or curing inhibitors must be added.

Bindemiddelsystemet kan naturligvis også modifise-res ved komponenter som ikke er direkte med i herdeprosessen. Til disse hører fremfor alt de forskjellige.alifatiske og aromatiske hydrokarboner og estere som utøver myknerfunksjoner, andre prosesshjelpemidler, samt antioksydasjonsmidler,- osv. The binder system can of course also be modified by components that are not directly involved in the curing process. These include, above all, the various aliphatic and aromatic hydrocarbons and esters that exercise softening functions, other processing aids, as well as antioxidants, etc.

I tillegg til bindemiddel og oksydatorer kan det til drivstoffet, for å høyne ytelsen, tilsettes metaller i pulveri-sert form. Egnede metaller er aluminium, bor, magnesium, beryllium, osv. I drivstoffsammensetningen kan metallet erstatte en del av oksydatorene. Vanligvis anvendes mellom 0 og 30 % metall, fortrinnsvis mellom 10 og 20 %. In addition to binders and oxidisers, metals in powdered form can be added to the fuel to increase performance. Suitable metals are aluminium, boron, magnesium, beryllium, etc. In the fuel composition, the metal can replace part of the oxidizers. Usually between 0 and 30% metal is used, preferably between 10 and 20%.

Drivstoffsammensetningen har vanligvis følgende rammereseptur: The fuel composition usually has the following general formula:

Bindemiddelsystemet består av polymerer, herder og The binder system consists of polymers, hardeners and

.mykner..softens.

For å sikre en god vedhefting mellom drivstoff og brennkammer, anvendes det vedheftingsformidlere som naturligvis må være tilpasset drivstoffet. Således anvender man ved binde-middelsystemer med karboksylgrupper fortrinnsvis slike vedheftingsformidlere som inneholder aziridin- eller epoksy-grupper, slik som f.eks. "MAPO", "HX 760", "HX868", "Epikote l62", "Epon 828", osv., mens man-ved hydroksylholdige binde-middelsystemer fortrinnsvis anvender isocyanatholdige vedheftingsformidlere, slik som f.eks. "Desmodur R", In order to ensure good adhesion between fuel and combustion chamber, adhesion promoters are used, which of course must be adapted to the fuel. Thus, with binder systems with carboxyl groups, adhesion promoters containing aziridine or epoxy groups are preferably used, such as e.g. "MAPO", "HX 760", "HX868", "Epikote 162", "Epon 828", etc., while in the case of hydroxyl-containing binder systems, isocyanate-containing adhesion promoters are preferably used, such as e.g. "Desmodur R",

"Desmodur L" eller tyntflytende tokomponentklebemidler bestående av en hydroksylholdig polymer og et polyisocyanat. Disse materialer føres inn i brennkammeret'kort før innstøping av drivstoffet ved sprøyting eller påstrykning i sjikttykkelser på opp til ca. 100 ^um. "Desmodur L" or thin two-component adhesives consisting of a hydroxyl-containing polymer and a polyisocyanate. These materials are fed into the combustion chamber shortly before the fuel is poured in by spraying or brushing on in layer thicknesses of up to approx. 100 µm.

Oppfinnelsen har spesielt vist seg gunstig ved rørinnerbrenne,re, "Tube-and-rod"-konfigurasjoner, vognhjul-konfigurasjoner, flatstjerne-konfigurasjoner og dualstj.erne-konfigurasjoner. Selv for ekstreme stjerneinnerkonfigurasjoner hvorved forsenkningene i drivstoffet allerede under avbrenningen når brennkammeret, er anvendelsen av oppfinnelsen mulig, fremfor alt ved anvendelse av tykkveggede brennkammere. The invention has particularly proved beneficial in tube internal combustion, "Tube-and-rod" configurations, trolley-wheel configurations, flat-star configurations and dual-star configurations. Even for extreme internal star configurations whereby the depressions in the fuel already reach the combustion chamber during combustion, the application of the invention is possible, above all when using thick-walled combustion chambers.

Fig. 1 viser et rakettdrivverk ifølge oppfinnelsen Fig. 1 shows a rocket propulsion system according to the invention

med en brennkammerveggtykkelse på 1,2 mm.with a combustion chamber wall thickness of 1.2 mm.

Komposit-drivstoffet I støpes inn i brennkammeret og forklebes i den sylindriske del av brennkammeret direkte med innerveggen. The composite fuel I is cast into the combustion chamber and pre-glued in the cylindrical part of the combustion chamber directly to the inner wall.

Den dobbelte isolasjonskappe II forhindrer en løsrivning av drivstoffet fra bunnen av brennkammeret og beskytter denne mot de varme forbrenningsgasser. The double insulation jacket II prevents the fuel from being detached from the bottom of the combustion chamber and protects it from the hot combustion gases.

Isoleringen III som i foreliggende eksempel (rør-innerbrenner) er påført på det på dysesiden konisk utformede drivstoff, utelukker en uønsket avbrenning på brennkammerveggen. The insulation III which in the present example (tube-internal burner) is applied to the conically designed fuel on the nozzle side, excludes an unwanted burning on the combustion chamber wall.

Snittet A-B viser en innerkonfigurasjon av drivstoff satsen. Section A-B shows an internal configuration of the fuel tank.

De spesielle fordeler ved oppfinnelsen beror på maksimal utnyttelse av brenn.kammerinnerrommet med■drivstoff, hvorved det i forhold til vanlige drivverk kan oppnås en ytter-ligere ytelsesstigning, og på en vesentlig mer rasjonell fremstillingmåte på grunn av at man unngår en overveiende del av isolasjonen. The special advantages of the invention are based on maximum utilization of the combustion chamber interior with fuel, whereby a further increase in performance can be achieved compared to conventional drive units, and on a significantly more rational manufacturing method due to the fact that a substantial part of the insulation is avoided .

Claims (4)

1. Faststoff-rakettdrivverk, karakterisert ved et drivstoff som er støpt direkte inn i det i den sylindriske del ikke isolerte brennkammer. 1. Solid rocket propulsion, characterized by a fuel that is cast directly into the combustion chamber, which is not insulated in the cylindrical part. 2. Fremgangsmåte for fremstilling av et rakettdrivverk ifølge krav 1, karakterisert ved at innerveggen av brennkammeret utstyres med et en- henholdsvis to-komponentklebemiddel i en sjikttykkelse mellom 10 og 100 yum, og at det i brennkammerhodet innføres en i og for seg kjent isolasjonskappe, fortrinnsvis ved innpressing, hvoretter det faste drivstoff støpes inn i brennkammeret. 2. Method for manufacturing a rocket propulsion unit according to claim 1, characterized in that the inner wall of the combustion chamber is equipped with a one- or two-component adhesive in a layer thickness between 10 and 100 yum, and that a known insulation jacket is introduced into the combustion chamber head, preferably by pressing in, after which the solid fuel is poured into the combustion chamber. 3- Fremgangsmåte ifølge krav 1, karakterisert ved at det faste drivstoff innføres slik at det bindes til kammerveggen. 3- Method according to claim 1, characterized in that the solid fuel is introduced so that it binds to the chamber wall. 4. Fremgangsmåte ifølge kravene 2 og 3, karakterisert ved at det anvendes brennkammere med vegg--tykkelsér fra 0,6 til 1,5 mm, fortrinnsvis 0,8 til 1,2 mm.4. Method according to claims 2 and 3, characterized in that combustion chambers are used with a wall thickness of from 0.6 to 1.5 mm, preferably 0.8 to 1.2 mm.
NO783625A 1977-10-27 1978-10-26 SOLID FUEL ROCKET DRIVE NO783625L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2748200 1977-10-27

Publications (1)

Publication Number Publication Date
NO783625L true NO783625L (en) 1985-09-19

Family

ID=6022423

Family Applications (1)

Application Number Title Priority Date Filing Date
NO783625A NO783625L (en) 1977-10-27 1978-10-26 SOLID FUEL ROCKET DRIVE

Country Status (4)

Country Link
FR (1) FR2576361A1 (en)
GB (1) GB2162927B (en)
IT (1) IT1109121B (en)
NO (1) NO783625L (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1050086A (en) * 1900-01-01
NL90798C (en) * 1949-02-15 Brandt Soc Nouv Ets
GB850370A (en) * 1956-10-09 1960-10-05 Phillips Petroleum Co Improvements relating to the bonding of cured conjugated diene-vinylpyridine compositions
US2994359A (en) * 1956-02-20 1961-08-01 Phillips Petroleum Co Apparatus for and method of preparing bonded articles
GB918262A (en) * 1960-10-27 1963-02-13 Tiiiokol Chemical Corp Rocket engine
NL125606C (en) * 1962-11-09
US3224191A (en) * 1963-05-20 1965-12-21 Thiokol Chemical Corp Rocket motor construction
US3381614A (en) * 1965-10-01 1968-05-07 Ratz Heinz Acid pretreated polyethyleneglycol terephthalate sheet as insulation for solid rocket propellent charges
GB1448086A (en) * 1965-10-27 1976-09-02 Mini Of Technology Rocket motors and methods of their manufacture
US4103584A (en) * 1966-01-18 1978-08-01 Aerojet-General Corporation Staple orienting method and apparatus
GB1179415A (en) * 1966-06-10 1970-01-28 Imp Metal Ind Kynoch Ltd Improvements in or relating to the Casting of Rocket Motor Propellants
DE1926378B1 (en) * 1969-05-23 1970-12-03 Messerschmitt Boelkow Blohm Combustion chamber, especially for rocket engines
GB1309548A (en) * 1969-06-09 1973-03-14 Pains Wessex Ltd Pyrotechnic devices

Also Published As

Publication number Publication date
IT7869460A0 (en) 1978-10-26
FR2576361A1 (en) 1986-07-25
GB2162927A (en) 1986-02-12
GB2162927B (en) 1986-07-30
IT1109121B (en) 1985-12-16

Similar Documents

Publication Publication Date Title
US4131051A (en) Process for preparing a rocket motor
JP3231778B2 (en) Case filled with two-pulse rocket motor of solid propellant, ignition device and method of manufacturing the same
US20110023449A1 (en) Insensitive Rocket Motor
US4209351A (en) Ambient cured smokeless liner/inhibitor for propellants
US6179944B1 (en) Process for preparing composite warhead casings and product
NO783625L (en) SOLID FUEL ROCKET DRIVE
KR101839193B1 (en) Fixing device for bunch type prolellant and manufacturing method thereof
US20170057885A1 (en) Propellant load, with mechanically reinforced liner/propellant connection, and preparation thereof
US3947523A (en) Composition comprising epoxy resin, copolymer of butadiene and acrylic acid, curing agent and inorganic metal salt
US5474625A (en) Desensitized solid rocket propellant formulation
NO783624L (en) SOLID FUEL ROCKET DRIVE
CN112855385B (en) Charging structure suitable for low-temperature ignition
US3147710A (en) Ignition system for solid propellants
CN110759800A (en) High-energy high-mechanical-property electronic control solid propellant
NO161216B (en) ADHESIVE TO CONNECT SURFACES IN AMMUNITION CONTAINING EXPLOSIVE CHARGES.
US5022306A (en) Method of ejecting an interceptor missile from its silo
CN109467492B (en) Negative pressure intensity index propellant
US3779011A (en) Fuel unit for a hybrid hot-gas generator
Sparks et al. Fifty years of solid propellant technical achievements at Atlantic Research Corporation
US3023572A (en) Multiple thrust propellant charge
US2992595A (en) Use of acetylene-ethane mixture as propellant and explosive
Willemse et al. An Overview of the Development of the VEGA Solid Rocket Motor Igniters
NO884271L (en) CASTABLE EXPLOSION WITH AN ARTIFICIAL BINDER FOR WEAPON SYSTEMS.
JP2587084B2 (en) Solid propellant
Crosby et al. Design and development of a hot particle igniter