NO781914L - PROCEDURE FOR THE PREPARATION OF AMIDINES - Google Patents

PROCEDURE FOR THE PREPARATION OF AMIDINES

Info

Publication number
NO781914L
NO781914L NO781914A NO781914A NO781914L NO 781914 L NO781914 L NO 781914L NO 781914 A NO781914 A NO 781914A NO 781914 A NO781914 A NO 781914A NO 781914 L NO781914 L NO 781914L
Authority
NO
Norway
Prior art keywords
lower alkyl
aryl
methyl
hydrogen
compound
Prior art date
Application number
NO781914A
Other languages
Norwegian (no)
Inventor
Graham John Durant
Rodney Christopher Young
Zev Tashma
Original Assignee
Smith Kline French Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith Kline French Lab filed Critical Smith Kline French Lab
Publication of NO781914L publication Critical patent/NO781914L/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

" Fremgangsmåte for fremstilling av amidiner" "Procedure for the Preparation of Amidines"

Denne oppfinnelse angår en fremgangsmåte for fremstilling av amidinforbindelser inneholdende fosfonsyreester-grupper. This invention relates to a method for producing amidine compounds containing phosphonic acid ester groups.

Mange fysiologisk aktive stoffer utøver sine biologiske virkninger ved innvirkning på spesielle punkter som er kjent som reseptorer. Histamin er et slikt stoff og har en rekke biologiske virkninger. De av histamins biologiske virkninger som hemmes av midler som vanligvis kalles "antihistaminer", som mepyramin, difenhydramin og klorfeniramin er typiske eksempler på, formidles gjennom histamin H^-reseptorer. Andre av histamins biologiske virkninger hemmes imidlertid ikke av "antihistaminer", og virkninger av denne type som hemmes av burimamid, formidles gjennom reseptorer som er betegnet histamin l^-reseptorer som ikke blokkeres av mepyramin, men blokkeres av burimamid. Forbindelser som blokkerer histamin I^-reseptorer, betegnes Many physiologically active substances exert their biological effects by impacting on special points known as receptors. Histamine is one such substance and has a number of biological effects. Those of histamine's biological actions that are inhibited by agents commonly called "antihistamines," of which mepyramine, diphenhydramine, and chlorpheniramine are typical examples, are mediated through histamine H₂ receptors. However, other biological effects of histamine are not inhibited by "antihistamines", and effects of this type that are inhibited by burimamide are mediated through receptors termed histamine 1^ receptors which are not blocked by mepyramine, but are blocked by burimamide. Compounds that block histamine I^ receptors are designated

som histamin F^-antagonister.as histamine F^ antagonists.

Blokkering av histamin H^-reseptorer er nyttig forBlocking of histamine H^-receptors is useful for

å hemme de biologiske virkninger av histamin som ikke hemmes av "antihistaminer". Histamin f^-antagonister er derfor f.eks. nyttige som inhibitorer for mavesyresekresjon, som anti-inflammatoriske midler og som midler som vil virke på hjerte-kar-systemet, f.eks. som inhibitorer overfor virkningene av histamin på blodtrykket. to inhibit the biological effects of histamine that are not inhibited by "antihistamines". Histamine f^-antagonists are therefore e.g. useful as inhibitors of gastric acid secretion, as anti-inflammatory agents and as agents that will act on the cardiovascular system, e.g. as inhibitors of the effects of histamine on blood pressure.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for fremstilling av en amidinfosfonat-forbindelse med struktur 1 The present invention provides a method for the production of an amidine phosphonate compound with structure 1

Struktur 1 Structure 1

hvor where

Het er en 5- eller 6-leddet, fullstendig umettet heterocyklisk gruppe som inneholder minst ett nitrogenatom og eventuelt er substituert med lavere alkyl, trifluormetyl, hydroksymetyl, halogen, hydroksy eller lavere alkoksy; Het is a 5- or 6-membered, fully unsaturated heterocyclic group containing at least one nitrogen atom and optionally substituted with lower alkyl, trifluoromethyl, hydroxymethyl, halogen, hydroxy or lower alkoxy;

Z er svovel eller metylen; Z is sulfur or methylene;

n er 2 eller 3; n is 2 or 3;

R<1>er hydrogen, lavere alkyl eller Het-CH2Z(CH2)R<1>is hydrogen, lower alkyl or Het-CH2Z(CH2)

p er 0 eller 1; p is 0 or 1;

2 2

R er hydrogen eller lavere alkyl; R is hydrogen or lower alkyl;

12 12

eller R og R danner sammen en (CH2)2- eller (CH2)^~ gruppe; or R and R together form a (CH2)2- or (CH2)^~ group;

R 3 er lavere alkyl, aryl eller aryl(lavere alkyl); ogR 3 is lower alkyl, aryl or aryl(lower alkyl); and

R 4 er hydrogen når p er 0, og hydrogen, lavere alkyl, aryl eller aryl(lavere alkyl) når p er 1, R 4 is hydrogen when p is 0, and hydrogen, lower alkyl, aryl or aryl(lower alkyl) when p is 1,

og fremgangsmåten karakteriseres ved at en primær aminoforbindelse R<1>NH2eller Het-CH2Z(CH2)nNH omsettes med den komplementære forbindelse med henholdsvis struktur 2 eller 3 and the method is characterized by a primary amino compound R<1>NH2 or Het-CH2Z(CH2)nNH being reacted with the complementary compound with structure 2 or 3 respectively

hvor A er lavere alkyl, aryl eller aryl(lavere alkyl), og where A is lower alkyl, aryl or aryl(lower alkyl), and

12 3 4 12 3 4

Het, Z, n, R , R , R og R er som angitt for struktur 1; forutsatt at når p er 0, er R 4 hydrogen; og når R 4 i produktet er lavere alkyl, aryl eller aryldavere alkyl), og det ønskes en forbindelse hvor R^ er hydrogen, hydrolyseres produktet selektivt. Het, Z, n, R , R , R and R are as indicated for structure 1; provided that when p is 0, R 4 is hydrogen; and when R 4 in the product is lower alkyl, aryl or aryl-lower alkyl), and a compound where R 4 is hydrogen is desired, the product is selectively hydrolysed.

De ovenfor beskrevne forbindelser hvor R 4er hydrogen, som er fosfonsyre-monoestere, er de første fos for-forbindelser som er funnet å være histamin H2~antagonister, og de øvrige The above-described compounds where R 4 is hydrogen, which are phosphonic acid monoesters, are the first phospho compounds that have been found to be histamine H2 antagonists, and the other

forbindelser, nem% lig de hvor p er 1 og R 4 er lavere alkyl,compounds, especially those where p is 1 and R 4 is lower alkyl,

aryl eller aryl(lavere alkyl), som er fosfornsyre-diestere,aryl or aryl(lower alkyl), which are phosphoric acid diesters,

er nyttige som mellomprodukter for omdannelse ved hydrolyse til histamin ^-antagonistene hvor p er 1 og R 4 er hydrogen. Struktur 1 er representativ for de tautomere former are useful as intermediates for conversion by hydrolysis to the histamine ^-antagonists where p is 1 and R 4 is hydrogen. Structure 1 is representative of the tautomeric forms

som forbindelsene kan eksistere i. Forbindelsene hvor R 4er hydrogen (mono-estrene), har både basisk og sur karakter, og kan fremstilles i form av sine syreaddisjonssalter og sine salter med baser så som natriumhydroksyd såvel som i form av zwitterion. Forbindelsene hvor R 4ikke er hydrogen (di-estrene) har basisk karakter og kan fremstilles i form av sine syreaddisjonssalter. in which the compounds can exist. The compounds where R 4 is hydrogen (the mono-esters) have both basic and acidic character, and can be produced in the form of their acid addition salts and their salts with bases such as sodium hydroxide as well as in the form of the zwitterion. The compounds where R 4 is not hydrogen (the diesters) have a basic character and can be prepared in the form of their acid addition salts.

Med betegnelsene "lavere alkyl" og "lavere alkoksy" skal her forstås en alkyl- eller alkoksygruppe med fra 1 til 4 . karbonatomer, som kan være lineær eller forgrenet. En arylgruppe er fortrinnsvis fenyl. The terms "lower alkyl" and "lower alkoxy" shall here be understood to mean an alkyl or alkoxy group with from 1 to 4 . carbon atoms, which can be linear or branched. An aryl group is preferably phenyl.

Eksempler på heterocykliske grupper betegnet med HetExamples of heterocyclic groups denoted by Het

er imidazol, pyridin, tiazol, isotiazol, oksazol, isoksazol, triazol og tiadiazol. Fortrinnsvis er gruppen Het bundet til CE^ Z ved hjelp av et karbonatom i den heterocykliske gruppe i nabostilling til et nitrogenatom. Fortrinnsvis er den heterocykliske gruppe Het en imidazolgruppe, og spesielt er Het- are imidazole, pyridine, thiazole, isothiazole, oxazole, isoxazole, triazole and thiadiazole. Preferably, the group Het is bound to CE^Z by means of a carbon atom in the heterocyclic group adjacent to a nitrogen atom. Preferably, the heterocyclic group Het is an imidazole group, and in particular Het-

2- eller 4-imidazolyl som eventuelt er substituert med lavere alkyl (særlig metyl), hydroksymetyl eller halogen (særlig klor eller brom). Spesielt verdifulle er forbindelser hvor Het-er en 5-metyl-4-imidazolyl- eller 2-tiazolyl-gruppe. Andre egnede grupper er 2-pyridyl eventuelt substituert med lavere alkyl (særlig metyl), halogen (særlig klor eller brom), hydroksy eller lavere alkoksy (særlig metoksy) , 3-isotiazoly.l eventuelt substituert med klor eller brom, 3-(1,2,5)-tiadiazolyl eventuelt substituert med klor eller brom, og 2-(1,3,4-tiadiazolyl). 2- or 4-imidazolyl which is optionally substituted with lower alkyl (especially methyl), hydroxymethyl or halogen (especially chlorine or bromine). Particularly valuable are compounds where Het is a 5-methyl-4-imidazolyl or 2-thiazolyl group. Other suitable groups are 2-pyridyl optionally substituted with lower alkyl (especially methyl), halogen (especially chlorine or bromine), hydroxy or lower alkoxy (especially methoxy), 3-isothiazolyl optionally substituted with chlorine or bromine, 3-(1 ,2,5)-thiadiazolyl optionally substituted with chlorine or bromine, and 2-(1,3,4-thiadiazolyl).

Når R"*" er Het-C^Z ( CU^) -, kan denne være lik eller forskjellig fra Het-CH„Z(CH„) angitt i struktur 1. ;2 2 n ^ ;Fortrinnsvis er Z svovel og n er 2. Når p er 1, er;2 1 ;R fortrinnsvis hydrogen. Når R er lavere alkyl, er den fortrinnsvis metyl. Når R 1 og R 2sammen danner en (CE^^""eller (CH2) ^-gruppe, danner de fortrinnsvis en (CH2)2~9ruPPe/som sammen med de tilstøtende nitrogenatomer og karbonatomer mellom dem danner en imidazolinring. Særlig egnede forbindelser er de ;3 ;hvor R er.metyl, etyl, fenyl og benzyl.;Eksempler på fosfonsyrer som er særlig egnet som utgangssyrer for mono- og di-estrene med struktur 1, er: A. N'-metyl-N"-[2-((5-metyl-4-imidazolyl)metyltio)etyl]-amidinofosfonsyre, ;B. N'-metyl-N"-[2-(2-tiazolylmetyltio)etyl]amidinofosfonsyre,;C. N'-metyl-N"-[2-((5-mety1-4-imidazoly1)metyltio)etyl]-guanidinofosfonsyre, og D. N,N'-etylen-N"-[2-((5-mety1-4-imidazoly1)metyltio)etyl]-guanidino-N-fosfonsyre. ;Spesielle eksempler på mellomprodukt-diestere fremstilt ved fremgangsmåten ifølge oppfinnelsen, er dibenzyl- og benzylestrene av fosfonsyren C. Spesielle eksempler på monoestrehe fremstilt ved en fremgangsmåte ifølge oppfinnelsen, som er H2~antagonister, er metyl- og etylestrene av fosfonsyren A, etylesteren av fosfonsyren B, etyl- og benzylestrene av fosfonsyren C og benzylesteren av fosfonsyren D. ;I henhold til det ovenstående fremstilles forbindelser hvor p er 0, ved omsetning av den passende primære aminoforbindelse med en fosfonsyre-monoester med struktur 4 eller 5. ; Disse utgangsmaterialer kan erholdes ved at et organisk jodid AI, særlig metyljodid/omsettes med en passende mellomprodukt 1 f orbindelse 3 hen4 holdsvis Het-CH~2 Z(CH2 „) nNHCSPO(OR3)(OR4) eller R NHCSPO(OR (OR ), ved at svovelatomet alkyleres og gruppen R 4fjernes. Mellomprodukter av denne type kan selv fremstilles ved omsetning av en forbindelse R 30PX9 hvor X er klor, med en ekvivalent av en alkohol R 4OH i nærvær av et tertiært amin for å danne en forbindelse XP(OR 3 )(OR 4), fulgt av hydrolyse med vann til en forbindelse HP0(0R 3 )(OR 4), og omsetning av denne med et isotiocyanat Het-CH2Z (CH2) nNCS eller rVs, f.eks. under anvendelse av natrium-metoksyd i metanol. Fortrinnsvis er A metyl, og fortrinnsvis er X klor. ;Amidin-fosfonat-forbindelsene med struktur 1 hvor;p er 1, kan fremstilles ved en fremgangsmåte ved hvilken ;enhetene i strukturen betegnet med Het-CH^Z(CH_) NH-, R1N=, 2 3 4 n =CNR - og -PO(OR )(OR ) (betegnet som henholdsvis enheter la, lb, 2 og 3) bringes sammen i den riktige rekkefølge under anvendelse av reaksjonskomponenter med følgende struktur: ; ; 3 4 ;hvor X er halogen, og hver av R og R er lavere alkyl, aryl eller aryl(lavere alkyl), eventuelt med omdannelse av gruppen R 4 til hydrogen i sluttproduktet. Fortrinnsvis er A metyl, og fortrinnsvis er X klor. ;Enhet la eller lb reaksjonskomponentene kan kobles med enhet 2 reaksjonskomponenten ved kjente metoder for å gi henholdsvis enhetskombinasjonene la2 og lb2 med henholdsvis strukturene 6 og 7. ; Alternativt kan enhet 2 reaksjonskomponenten hvor R 2 er hydrogen, kobles med enhet 3 reaksjonskomponenten ved kjente metoder for å danne enhetkombinasjonen 23 med struktur 8 ; I neste trinn kan enhetkombinasjorien la2 eller lb.2 kobles med henholdsvis enhet lb eller la reaksjonskomponenten, for å danne enhetkombinasjonen lab2 med struktur 9 som derefter kobles med enhet 3 reaksjonskomponenten for å danne enhetkombinasjonen lab23, som representerer et amidin-fosfonat med struktur 1 hvor gruppen R<4>kan omdannes til hydrogen ved hydrolyse. ;Alternativt kan enhetkombinasjonene la2 og lb2 kobles sammen med enhet 3 reaksjonskomponenten, eller enhetkombinasjonen 23 kan kobles med enhet la eller lb reaksjonskomponenten for å ;gi henholdsvis enhetkombinasjonene la23 og lb23, og disse kan kobles videre med henholdsvis enhet lb og la reaksjonskomponentene, før eller efter omdannelse av gruppen R til hydrogen. ;Den hydrolytiske utskiftning av den organiske gruppe R<4>fra enhet 3 reaksjonskomponenten med hydrogen som utføres på et hvilket som helst trinn efter kobling av nevnte reaksjonskomponent. Når R selv er Het-CP^Z(CH2) -, er enhet la og lb reaksjonskomponentene like, og to ekvivalenter av aminet kan kobles med enhet 2 reaksjonskomponenten for å erstatte to grupper AS suksessivt og danne enhetkombinasjonen lab2 i ett kombinert trinn. ;Hvorvidt koblingsreaksjonene utføres med innføring av fos fonatgruppen ved hjelp av enhet 3 reaksjonskomponenten før eller efter et av eller begge aminradikalene ved hjelp av enhet la og lb reaksjonskomponentene, er uten betydning for sluttresultatet som i alle tilfeller blir det samme, slik at de forskjellige mulige rekkefølger er kjemisk ekvivalente. ;Enhet 2 reaksjonskomponenten har åpenbare kjemiske ekvivalenter som isteden kan anvendes, ved at gruppene SA kan erstattes med lavere alkoksy-, aryloksy- eller metylsulfinylgrupper. Anvendelse av åpenbare kjemiske ekvivalenter må ansees å falle inn under de definisjoner som her er gitt. ;En fremgangsmåte for fremstilling av en forbindelse med struktur 1 hvor p er 1, omfatter fortrinnsvis det innledende trinn at en forbindelse med struktur 6 eller 7 omsettes med en ;3 4 3 4 forbindelse XPO(OR )(OR ) hvor X er halogen og hver av R og R er lavere alkyl, aryl eller aryl(lavere alkyl). Oppfinnelsen tilveiebringer også en fremgangsmåte for fremstilling av en forbindelse med struktur 1 hvor p er 1, ved hvilken enheter av strukturene i forbindelsen betegnet med Het-CH-Z (CH~) ~NH-, R^N=, sCNR - og -PO(OR )(OR ) bringes sammen i den riktige rekkefølge under anvendelse av forbindelser med strukturen Het-CH-Z(CH9) NH~, R NH2, (AS)2C=NR og XPO(OR )(OR ) hvor X er halogen og R er lavere alkyl, aryl eller aryi(lavere alkyl), som reaksjonskomponenter. ;1 2 ;Når i forbindelsen med struktur 1 R og R. sammen danner en (CH2)2~eller (CH2)^"gruppe, er det ingen tilsvarende separate enheter med struktur lb og 2>men disse tas sammen som en enkel enhet R 1 N=CNR 2- som oppnås ved hjelp av reaksjonskomponenten R 1 NHC(SA)=NR 2, og som omsettes med enhet 3 reaksjonskomponenten beskrevet ovenfor og derefter med enhet la reaksjonskomponenten; eller forbindelsen med struktur 1 kan dannes ved hjelp av den åpenbare kjemiske ekvivalent som omfatter anvendelse av.reaksjonskomponentene i motsatt rekkefølge, og igjen kan gruppen R 4 omdannes til hydrogen på et hvilket som helst tidspunkt efter kobling av enhet 3 reaksjonskomponenten. ;3 4 ;I en reaksjonskomponent med strukturen XPO(OR (OR ),;er X fortrinnsvis klor. En slik reaksjonskomponent kan fremstilles ved omsetning av 3 et fosfory4lhalo<g>enidPOX_ med en ekvivalent mengde av en alkohol R OH e-ler R OH i nærvær av en ekvivalent mengde av en passende base så som et tertiært amin, f.eks. trietylamin eller pyridin; den annen forestrende gruppe innføres i produktet ved utskiftning av et annet halogenatom på samme måte; eller hvis R 3 og R 4 er like, kan to ekvivalenter av alkohol og base anvendes for å innføre begge forestrende grupper i ett trinn. Enhet la, lb og 2 reaksjonskomponentene kan fremstilles ved kjente metoder. ;Koblingsreaksjoner som omfatter anvendelse av forbindelser hvor gruppen SA utskiftes med en amino- (eller imino-) gruppe eller hvor enhet 3 reaksjonskomponenten anvendes, kan utføres ved kjente metoder. Istedenfor enhet 3 reaksjonskomponenten kan man anvende en forbindelse med den samme struktur, bortsett fra at X er hydrogen, og omsette denne i et to-fase-system omfattende vandig natriumhydroksyd og karbontetraklorid med den passende forbindelse inneholdende den strukturelle enhet 2; et anion hvor X erstattes med en negativ ladning dannes først, og dette reagerer med karbontetraklorid for å danne klorforbindelsen som er enhet 3 reaksjonskomponenten. ;4 ;Omdannelse av gruppen R fra lavere alkyl, aryl eller aryl(lavere alkyl) til hydrogen kan foretas ved omdannelse under betingelser som ikke påvirker andre tilstedeværende grupper. Når omdannelsen foretas på en forbindelse i hvilken alle de strukturelle enheter er tilstede, kan utskiftningen oppnås ved hydrolyse med en vandig syre, f.eks. saltsyre eller bromhydrogen-4 3 ;syre. Selektiv hydrolyse for å utskifte R , men ikke R samtidig, er lett fordi fjernelse av den annen estergruppe er meget. ;3 4 ;vanskelig. Gruppene R og R velges slik at den ønskede gruppe blir tilbake. En benzylgruppe avspaltes lettere med bromhydrogensyre enn hva tilfellet er med en fenyl- eller etyl-gruppe, slik ;3 4 ;at forbindelser hvor R er fenyl eller etyl og R er hydrogen,;kan oppnås ved omsetning av bromhydrogensyre med benzyl-fenyl-esteren eller benzy1-etyl-esteren. Monoetylesteren kan erholdes ved omsetning av dietylesteren med natriumjodid i vandig aceton. Monofenylesteren kan erholdes fra difenylesteren ved omsetning med natriumhydroksyd under betingelser som er tilstrekkelig milde til å unngå spaltning av resten av molekylet. Når.omdannelsen foretas på en forbindelse som inneholder en SA-gruppe (f.eks. lavere alkyltio), kan den utføres ved behandling med vandig pyridiniumklorid eller ammoniumjodid. ;Forbindelsene med struktur 1 som er farmakologisk aktive, er de hvor R 4 er hydrogen. De aktive forbindelser blokkerer histamin H^-reseptorer; dvs. de hemmer de biologiske virkninger av histamin som ikke hemmes av burimamid. F.eks. hemmer de histamin-stimulert sekresjon av mavesyre fra lumen-perfuserte maver fra rotter bedøvet med uretan, i doser på fra 0,5 til 256 mikromol pr. kg intravenøst. Deres aktivitet som histamin H2~antagonister vises også ved deres evne til å hemme andre av histamins virkninger som ikke formidles ved hjelp av histamin H^-reseptorer. F.eks. hemmer de virkningene av histamin på et isolert marsvin-forkammer og en isolert rotte-livmor. De hemmer den basale ut-skillelse av mavesyre og også den som stimuleres av pentagastrin eller av mat. Ved en vanlig undersøkelse, så som måling av blodtrykk på en bedøvet katt, i doser på fra 0,5 til 256 mikromol'pr. kg intravenøst, hemmer de histamins karutvidende virkning. Forbindelsenes styrke illustreres ved en effektiv dose som frem bringer 50% hemning av mavesyresekresjon hos en bedøvet rotte og frembringer 50% hemning av histamin-fremkalt tachykardi i ;-4 ;det isolerte marsvin-forkammer (mindre enn 10 molar).;De farmakologisk aktive forbindelser med struktur 1;hvor R 4 er hydrogen, kan anvendes til fremstilling av farmasøytiske preparater inneholdende et farmasøytisk bæremiddel og forbindelsen som kan være i zwitterion-form eller i form av et addisjonssalt med en farmasøytisk godtagbar syre eller et salt med en farmasøytisk godtagbar base. Slike syreaddisjonssalter omfatter saltene med saltsyre, bromhydrogensyre, jodhydrogensyre, svovelsyre og maleinsyre, og kan hensiktsmessig fremstilles fra de tilsvarende zwitterioniske forbindelser ved standardmetoder, f.eks. ved behandling av disse med en syre i en lavere alkanol eller ved anvendelse av ionebytterharpikser for å danne det ønskede salt enten direkte eller fra et annet addisjonssalt. Salter med baser, f.eks. natrium- eller kaliumsaltene, kan fremstilles på vanlig måte ved nøytralisering av den zwitterioniske form. ;Det anvendte farmasøytiske bæremiddel kan være et fast stoff eller en væske. Eksempler på faste bæremidler er laktose, terra alba, sukrose, talk, gelatin, agar, pektin, akasiegummi, magnesiumstearat og stearinsyre. Eksempler på flytende bæremidler er sirup, jordnøttolje, olivenolje og vann. ;• Hvis et fast bæremiddel anvendes, kan preparatet være;i form av en tablett, kapsel, pastill eller drops. Mengden av fast bæremiddel i en enhetsdoseform er vanligvis fra ca. 25 til ca. 300 mg. Hvis et flytende bæremiddel anvendes, kan preparatet være i form av en sirup, emulsjon, myk gelatinkapsel, en steril, injiserbar væske som inneholdes i f.eks. en ampulle, eller en vandig eller ikke-vandig flytende suspensjon. De farmasøytiske preparater fremstilles ved vanlige metoder som omfatter slike operasjoner som blanding, granulering og komprimering, eller oppløsning av bestanddelene eftersom det passer for det ønskede preparat. Den aktive bestanddel er tilstede i preparatene i en mengde som er effektiv til å blokkere histamin H2~reseptorer. Fortrinnsvis inneholder hver enhetsdose den aktive bestanddel i en mengde på fra ca. 50 til ca. 250 mg. ;Oppfinnelsen skal illustreres ved de følgende eksempler hvor temperaturene er i °C. ;Eksempel 1;Diety1-N-metyltiokarbamoylfosfonat, fremstilt i henhold til K.A. Petrov og A.A. Neimysheva, Zhur. Obsch. Khimii, 1959, ;29, 1819, ble renset ved kromatografi på en silikagelkolonne (elueringsmiddel 20% etylacetat i lettbensin) for å gi gule krystaller, sm.p. 50-52°. Dette fosfonat (2,11 g, 0,01 mol) ;ble oppiøst i metyljodid (10 ml), og oppløsningen ble oppvarmet under tilbakeløpskjøling i 2 timer og derefter holdt ved omgivelsestemperatur i ytterligere 2 4 timer. N,S-dimety1-tio-imidoylfosfonsyre-monoetylester utkrystalliserte og ble omkrystallisert fra acetonitril, sm.p. 142-147° (spaltn.). ;Den ovennevnte ester (3,94 g, 0,02 mol) og 2-[(5-metyl-4-imidazolyl)metyltio]etylamin (3,42 g, 0,02 mol) ble oppløst hver for seg i porsjoner på 2 5 ml acetonitril, og oppløsningene ble blandet. Et tykt, oljeaktig lag ble dannet, og efter 30 minutter ble det fraskilt, fortynnet med metanol (4 ml) og ekstrahert gjentatte ganger med kokende aceton. Acetonfraksjonene ble samlet og fikk stå ved omgivelsestemperatur i 18 timer, hvorefter produktet N-mety1-N'-[2-((5-mety1-4-imidazolyl)metyltio)-etyl]-amidinofosfonsyre-monoetylester utkrystalliserte, ;sm.p. 185-187°C ;(C11H21N4°3PS krever: c 41'2'H 6'6'N 17,5%;funnet: C 40,7, H 6,6, N 17,1%).;Eksempel 2;Dimetyl-N-metyltiokarbamoylfosfonat fremstilt ved fremgangsmåten anvendt for dietylesteren (se eksempel 1) (1,8 g) ble oppløst i metyljodid (10 ml), og oppløsningen ble oppvarmet under tilbakeløpskjøling i 3 timer og holdt ved omgivelsestemperatur i 3 dager under vannfrie betingelser. N,S-dimetyltio-imidoylfosfonsyre-monornetylester utkrystalliserte, og dette mellomprodukt (1,56 g) og 2-[(5-mety1-4-imidazolyl)metyltio]-etylamin (1,36 g) i acetonitril (50 ml), ved henstand ved omgivelsestemperatur i 16 timer, ga N-mety1-N1-[((4-mety1-5-imidazolyl)metyltio)etyl]amidinofosfonsyre-monometylester, ;som ble omkrystallisert fra metanol-aceton, sm.p. 170-171°C (C10H19N4°3SP krever: c 39'2'H 6'3' N 18,3% ;funnet: C 39,5, H 6,5, N 18,5%).;Eksempel 3;Omsetning av diklorfenoksyfosfin med en ekvivalent mengde benzylalkphol i nærvær av en ekvivalent mengde trietylamin, og hydrolyse av produktet med vann gir benzylfenylfosfitt. Omsetning av dette med metylisotiocyanat gir benzyl-fenyl-N-metyl-tiokarbamoyl-fosfonat. Når dette anvendes istedenfor den tilsvarende dietylforbindelse ved fremgangsmåten ifølge eksempel 1, får man monofenylesteren av N-metyl-N'-[2-((5-mety1-4-imidazolyl)-metyltio)etyl]amidinofosfonsyre. ;E ksempel 4;Omsetning av dibenzylfosfitt med metylisotiocyanat;gir dibenzy1-R-metyltiokarbamoylfosfonat. Anvendelse av denne forbindelse istedenfor den tilsvarende dietylforbindelse ved fremgangsmåten ifølge eksempel 1 gir monobenzylesteren av N-metyl-N'-[2-((5-mety1-4-imidazolyl)metyltio)etyl]amidino-fosfonsyre. ;Eksempel 5;N,S-dimetyltioimidoylfosfonsyre-monoetylester (0>59 g) ble satt til en oppløsning av 2-(2-tiazolylmetyltio)etylamin-dihydrobromid (1,0 g) i metanol (10 ml) inneholdende trietylamin (0,61 g) og ble holdt ved omgivelsestemperatur i 24 timer. Reaksjonsblandingen ble konsentrert ved inndampning, og aceton ;ble tilsatt for å utfelle trietylaminsaltet som ble fjernet ved filtrering. Filtratet ble konsentrert og renset på en silikagelkolonne med eluering først med aceton-metanol (9:1) for å fjerne forurensninger, fulgt av aceton-metanol (1:1) for å oppnå N-metyl-N'-[2-(2-tiazolylmetyltio)etyl]amidinofosfonsyre-monoetylester , som ble omkrystallisert fra metanol-etylacetat, sm.p. 156-158°C. ;(C10H18N3°3PS2 ktever: c 37,1, H 5,4, N 12,9% ;funnet: C 37,1, H 5,6, N 13,0%).;Eksempler 6 til 15;Når det istedenfor 2-[(5-mety1-4-imidazolyl)metyltio]-etylamin ved fremgangsmåten ifølge eksempel 5 anvendes ekvivalente mengder av hvert av de følgende aminer: ;Eksempel;6. 2-[(4-imidazoly1)metyltio]etylamin;7. 2-[(5-brom-4-imidazoly1)metyltio]etylamin;8. 2—[(3-klor-2-pyridyl)metyltio]etylamin;9. 2-[(3-metoksy-2-pyridy1)metyltio]etylamin;10. 2-[(3-isotiazolyl)metyltio]etylamin;11. 2-[(2-oksazolyl)metyltio]etylamin;12. 2-[(3-1,2,4-triazolyl)metyltio]etylamin;13. 2-[(2-1,3,4-tiadiazolyl)metyltio]etylamin;14. 2-[(5-mety1-4-imidazolyl)metyltio]propylamin;15. 4-(4-imidazoly1)butylamin;får man monoetylestrene av de tilsvarende N-mety1-amidino-fosfonsyrer. ;Eksempel 16;(a) N, S-dimety1-isotiouroniumjodid (23,2 g, 0,1 mol) ble oppløst i vann (40 ml), isavkjølt og kraftig omrørt med en oppløsning av dibenzylfosfitt (26,2 g, 0,1 mol) i karbontetraklorid (100 ml). Natriumhydroksyd (8 g, 0,2 mol) oppløst i vann (25 ml) ble tilsatt i løpet av 30 minutter. Efter at tilsetningen var fullstendig, ble kjølebadet fjernet, og omrøringen ble fortsatt i ytterligere 2 timer. Den organiske fase ble fraskilt, vasket suksessivt med fortynnet svovelsyre, natrium-bikarbonatoppløsning og vann og tørret over natriumsulfat. Efter fjernelse av det organiske oppløsningsmiddel ble residuet kromatografert på en silikagelkolonne, idet eluering ble foretatt med etylacetat-lettbensin 40-60° (1:2), for å gi N,S-dimetyl-N<1->(dibenzylfosfono)isotiourinstoff, sm.p. 55°. (b) Til en omrørt blanding av isotiourinstoffet (3,65 g, 0,01 mol), 2-[(4-metyl-5-imidazolyl)metyltio]etylamin (1,71 g, 0,01 mol) og 2 g molekylsikt 4A i 50 ml tørr 2-propanol (2,32 g, 0,01 mol) ble satt sølvoksyd i flere porsjoner i løpet av 30 minutter. Efter 3 timer ble reaksjonsblandingen filtrert og ;inndampet. Det tykke residuum ble kromatografert på en silikagelkolonne, idet eluering ble foretatt med aceton inneholdende 10% metanol, for å gi N<1->metyl-N"-[2-((5-mety1-4-imidazoly1)-metyltio)etyl]guanidinofosfonsyre-dibenzylester, ;(C„oH-^Nc0_PS krever: C 56,8, H 6,0, N 14,4%;funnet: C 56,1, H 6,3, N 14,3%).;Eksempel 17;Guanidinet erholdt ved fremgangsmåten ifølge eksempel 16 (1,47 g, 0,003 mol) ble oppløst i aceton (20 mo), og 48%ig vandig hydrogenbromid (1,1 ml, 0,0064 mol) ble tilsatt. Metanol (2 ml) ble tilsatt for å hindre separering av fasene, og opp-løsningen ble holdt i 18 timer, hvorefter N'-metyl-N"-[2-((5-mety1-4-imidazoly1)metyltio)etyl]guanidino-fosfonsyre-monobenzylester-hydrobromid hadde utkrystallisert, sm.p. 146-147°, ;(C,,H_.Nc0_PS.HBr krever: C 40,2, H 5,3, N 14,6, Br 16,7%;lb z4 D j;funnet: C 40,0, H 5,3, N 14,9, Br 17,0%). ;Eksempel 18;(a) Under omrøring og isavkjøling ble en blanding av redestillert benzylalkohol (10,8 g, 0,1 mol) og trietylamin (10,1 g, 0,1 mol) satt dråpevis i 30 minutter til en oppløsning av etyldiklorfosfat (C2H5OPOCl2) (16,3 g, 0,1 mol) i tetrahydro-furan (100 ml). Efter ytterligere 2 timers omrøring ved omgivelsestemperatur ble oppløsningen filtrert, og nesten alt tetrahydrofuranet ble fjernet ved redusert trykk ved 25° for å ;gi benzyletylklorfosfat som en olje. Denne ble fortynnet med kloroform (80 ml) og avkjølt i et isbad, en kald oppløsning av N,S-dimetylisotiouroniumjodid (23,2 g, 0,1 mol) i vann (25 ml) ble tilsatt, og under kraftig omrøring ble en oppløsning av natriumhydroksyd (8 g, 0,2 mol) i vann (15 ml) tilsatt dråpevis ;i løpet av 30 minutter. Efter at tilsetningen var fullstendig, ble kjølebadet fjernet, og kraftig omrøring ble fortsatt i ytterligeré 2 timer. Den organiske fase ble derefter fraskilt og behandlet på samme måte som i eksempel (16a) for å gi N,S-dimety 1-N'- (benzyletylf osf ono) isotiourinstof-f som en olje. (b) Omsetning av dette isotiourinstoff med 2-[(5-mety1-4-imidazoly 1) metyltio] etylamin under anvendelse av fremgangsmåten ifølge eksempel 16(b) ga N'-metyl-N"-[2-((5-mety1-4-imidazolyl)-metyltio)etylguanidinofosfonsyre-benzyl-etylester. ;Eksempel 19;Guanidinet fra eksempel 18 ble hydrolysért med 48%ig vandig hydrogenbromid under anvendelse av fremgangsmåten ifølge eksempel 17, for å gi ved omkrystallisering fra etanol/eter, N'-metyl-N"-[2-((5-mety1-4-imidazolyl)metyltio)etylguanidino-fosfonsyre-monoetylester-hydrobromid, sm.p. 170-172°C (spaltn.). ;(<C>ll<H>22<N>5°3<PS>'HBrkrever c 31'7/H 5>e>N 16,8, Br 19,2% ;funnet C 31,5, H 5,6, . N 16,4, Br 19,2%). ;Eksempel 20 .;Anvendelse av fenyldiklorfosfat istedenfor etyldiklorfosfat ved fremgangsmåten ifølge eksempel 18 gir N'-metyl-N"-[2-((5-mety1-4-imidazolyl)metyltio)etylguanidinofosfonsyre-difenylester. ;Eksempel 21;Når difenylesteren erholdt ved fremgangsmåten i eksempel 20 underkastes fremgangsmåten ifølge eksempel 19, får man N'-metyl-N"-[2-((5-mety1-4-imidazoly1)metyltio)etyl]guanidinofosfonsyre-mono f eny le s te r-hy dr ob r om i d. ;Ek sempler 22 til 31;Når det istedenfor 2-[(4-metyl-5-imidazolyl)metyltio]-etylamin ved fremgangsmåten ifølge eksempel 16(b) anvendes ekvivalente mengder av hvert av de følgende aminer: ;Eksempel;22. 2-[(4-imidazolyl)metyltio]etylamin;23. 2-[(5-brom-4-imidazolyl)metyltio]etylamin;24. 2-[(3-klor-2-pyridyl)metyltio]etylamin;25. 2-[(3-metoksy-2-pyridyl)metyltio]etylamin;26. 2-[(2-tiazolyl)metyltio]etylamin;27. 2-[(3-isotiazolyl)metyltio]etylamin;28. 2-[(2-oksazolyl)metyltio]etylamin;29. 2-[(2-1,3,4-tiadiazoly1)metyltio]etylamin;30. 2-[ (3-1,2,4-triazolyl)metyltio]etylamin;31. 4-(4-imidazolyl)butylamin;får man dibenzylestrene av de tilsvarende guanidinofosfonsyrer. ;Eksempel 32 til 41;Når dibenzylestrene ifølge eksemplene 22 til 31 underkastes hydrolyse med 48%ig vandig hydrogenbromid ved fremgangsmåten ifølge eksempel 17, får man hydrobromidsaltet av monobenzylesteren av henholdsvis de følgende forbindelser: ;Eksempel;32. N<1->metyl-N"-[2-((4-imidazolyl)metyltio)ety1]guanidinofosfonsyre 33. N<1->metyl-N"-[2-((5-brom-4-imidazoly1)metyltio)etyl]-. guanidinofosfonsyre 34. N'-metyl-N"-[2-((3-klor-2-pyridy1)metyltio)etyl)guanidinofosfonsyre 35. N'-metyl-N"-[2-((3-metoksy-2-pyridyl)metyltio)etyl]-, guanidinofosfonsyre 36. N'-metyl-N"-[2-((2-tiazolyl)metyltio)etyl]guanidinofosfonsyre 37. N<1->metyl-N"-[2-((3-isotiazolyl)metyltio)etyl]guanidinofosfonsyre 38. N'-metyl-N"-[2-((2-oksazoly1)metyltio)etyl]guanidinofosfonsyre 39. N'-metyl-N"-[2-((2-1,3,4-tiadiazolyl)metyltio)etyl]-guanidinofosfonsyre 40. N' -metyl-N"-.[2 - ( (3-1, 2 , 4-triazolyl) metyltio) etyl] giianidino-fosfonsyre 41. N1-metyl-N"-[4-(4-imidazolyl)butyl]guanidinofosfonsyre. ;E ksempel 42;Når S-metylisotiouroniumjodid anvendes i ekvivalent mengde istedenfor N tS-dimetylisotiouroniumjodid ved fremgangsmåten ifølge eksempel 16, får man som sluttprodukt N1 -[2-((5-mety1-4-imidazolyl) metyltio)etylguanidinofosfonsyre-dibenzylester. ;Eksempel 43;Når diestéren erholdt ved fremgangsmåten ifølge eksempel 42 underkastes en hydrolyse lik den som er beskrevet i eksempel 17, får man N1 -[2-((5-mety1-4-imidazoly1)metyltio)etylguanidino-fosfonsyre-monobenzylester. ;Eksempel 4 4;Når S-metyl-N-[2-((5-mety1-4-imidazolyl)metyltio)etyl]-isotiouroniumjodid kobles med benzyletylklorfosfat under anvendelse av fremgangsmåten ifølge eksempel 18(a) får man S-metyl-N-[ 2-((5-mety1-4-imidazolyl)metyltio)etyl]-N'-(benzyletylfosfono)-isotiourinstoff. Omsetning av dette med 2-[(5-mety1-4-imidazolyl)-metyltio]etylamin ved fremgangsmåten ifølge eksempel 18 (b) gir N',N"-bis-[2-((5-mety1-4-imidazolyl)metyltio)etyl]guanidinofosfonsyre-benzyletylester. ;Eksempel 45;Når diesteren erholdt ved fremgangsmåten ifølge;eksempel 44 Underkastes en hydrolyse lik den som er beskrevet i eksempel 17, får man N<1>,N"-bis^[2-((5-mety1-4-imidazolyl)metyltio)-etyl]guanidinofosfonsyre-monoetylester. ;E ksempel 46;Når N,N<1->S-trimetylisotiouroniumjodid kobles med benzy1-etylklorfosfat under anvendelse av fremgangsmåten ifølge eksempel 18(a)>får man N,N'-S-trimety1-N<1->(benzyletylfosfono)-isotiourinstoff. Omsetning av dette med 2-[(5-mety1-4-imidazolyl)-metyltio]etylamin ved fremgangsmåten ifølge eksempel 18(b) gir N,N'-dimety1-N"-[2-((5-mety1-4-imidazolyl)metyltio)etyl]-guanidinofosfonsyre-benzyletylester. ;Eksempel 47;Når di-esteren erholdt ved fremgangsmåten ifølge;eksempel 46 underkastes en hydrolyse lik den som er beskrevet i eksempel 17, får man N,N'-dimety1-N"-[2-((5-metyl-4-imidazolyl)-metyltio)etyl]guanidinofosfonsyre-monoetylester. ;Eksempel 4 8;(a) Omsetning av 2-metyltioimidazolin med dibenzy1-fosfitt ved fremgangsmåten ifølge eksempel 16(a) gir, som en oljeaktig væske, N,N'-etylen-N-(dibenzylfosfono)-S-metylisotio-urinstoff. Isotiourinstoffet (3,76 g) ble oppløst i aceton (20 ml), og til oppløsningen ble satt ammoniumjodid (2,17 g) oppløst i metanol. (8 ml) . Efter 16 timer ved omgivelsestemperatur ble N,N'-etylen-S-metylisotiourinstoff-N-fosfonsyre-monobenzylester utskilt som en hygroskopisk olje ved kromatografi på en silikagel- ;kolonne under anvendelse av metanol/aceton (1:1) som elueringsmiddel, (b) Isotiourinstoff-fosfonsyreesteren (1,43 g) og 2-[5-mety1-4-imidazolyl)metyltio]etylamin (0,86 g) ble oppløst suksessivt i propanol (10 ml). Efter henstand ved omgivelsestemperatur i 16 timer ble produktet isolert og renset ved kromatografi på en silikagelkolonne under anvendelse av metanol/ aceton (1:4) som elueringsmiddel, for å gi N,N<1->etylen-N"-[2-((5-mety1-4-imidazolyl)metyltio)etyl]guanidinofosfonsyre-monobenzylester, ;(C1 , -/ ,H 2„ .4 .Nb _0j ,PS-1/2 H i„.0 krever: C<*>48,8, H 6,0, N 16,8% When R"*" is Het-C^Z (CU^) -, this may be equal to or different from Het-CH„Z(CH„) indicated in structure 1. ;2 2 n ^ ;Preferably Z is sulfur and n is 2. When p is 1, ; 2 1 ; R is preferably hydrogen. When R is lower alkyl, it is preferably methyl. When R 1 and R 2 together form a (CE^^"" or (CH2)^ group, they preferably form a (CH2)2~9ruPPe/ which together with the adjacent nitrogen atoms and carbon atoms between them form an imidazoline ring. Particularly suitable compounds are those ;3 ;where R is.methyl, ethyl, phenyl and benzyl. ;Examples of phosphonic acids which are particularly suitable as starting acids for the mono- and di-esters with structure 1, are: A. N'-methyl-N"- [2-((5-methyl-4-imidazolyl)methylthio)ethyl]-amidinophosphonic acid, ;B. N'-methyl-N"-[2-(2-thiazolylmethylthio)ethyl]amidinophosphonic acid,;C. N'-methyl -N"-[2-((5-methyl-4-imidazoly1)methylthio)ethyl]-guanidinophosphonic acid, and D. N,N'-ethylene-N"-[2-((5-methyl-4-imidazoly1) methylthio)ethyl]-guanidino-N-phosphonic acid. ;Special examples of intermediate diesters produced by the method according to the invention are the dibenzyl and benzyl esters of the phosphonic acid C. Special examples of monoesters produced by a method according to the invention, which are H2-antagonists, are the methyl and ethyl esters of the phosphonic acid A, the ethyl ester of phos the phosphonic acid B, the ethyl and benzyl esters of the phosphonic acid C and the benzyl ester of the phosphonic acid D. According to the above, compounds where p is 0 are prepared by reacting the appropriate primary amino compound with a phosphonic acid monoester of structure 4 or 5. ; These starting materials can be obtained by reacting an organic iodide AI, especially methyl iodide, with a suitable intermediate 1 for compound 3 or 4 respectively Het-CH~2 Z(CH2 „) nNHCSPO(OR3)(OR4) or R NHCSPO(OR (OR ) , by alkylating the sulfur atom and removing the group R 4. Intermediates of this type can themselves be prepared by reacting a compound R 30PX9 where X is chlorine, with an equivalent of an alcohol R 4OH in the presence of a tertiary amine to form a compound XP( OR 3 )(OR 4 ), followed by hydrolysis with water to a compound HPO(OR 3 )(OR 4 ), and reaction of this with an isothiocyanate Het-CH2Z (CH2) nNCS or rVs, e.g. using sodium methoxide in methanol. Preferably A is methyl, and preferably X is chlorine. The amidine phosphonate compounds of structure 1 where p is 1 can be prepared by a process in which the units of the structure are denoted by Het-CH^Z (CH_) NH-, R1N=, 2 3 4 n =CNR - and -PO(OR )(OR ) (designated as units la, lb, 2 and 3 respectively) are brought together in d a correct sequence using reaction components with the following structure: ; ; 3 4 ;where X is halogen, and each of R and R is lower alkyl, aryl or aryl (lower alkyl), optionally with conversion of the group R 4 to hydrogen in the final product. Preferably A is methyl, and preferably X is chlorine. ;The unit la or lb reaction components can be coupled with the unit 2 reaction component by known methods to give the unit combinations la2 and lb2 with structures 6 and 7 respectively. ; Alternatively, the unit 2 reaction component where R 2 is hydrogen can be connected with the unit 3 reaction component by known methods to form the unit combination 23 with structure 8; In the next step, the unit combination la2 or lb.2 can be coupled with the unit lb or la reaction component, respectively, to form the unit combination lab2 of structure 9 which is then coupled with the unit 3 reaction component to form the unit combination lab23, which represents an amidine phosphonate of structure 1 where the group R<4> can be converted to hydrogen by hydrolysis. ;Alternatively, the unit combinations la2 and lb2 can be coupled with the unit 3 reaction component, or the unit combination 23 can be coupled with the unit la or lb reaction component to give the unit combinations la23 and lb23, respectively, and these can be further coupled with the unit lb and la reaction components, respectively, before or after conversion of the group R to hydrogen. ;The hydrolytic replacement of the organic group R<4> from the unit 3 reaction component with hydrogen which is carried out at any step after coupling of said reaction component. When R itself is Het-CP^Z(CH2) -, the unit la and lb reaction components are equal, and two equivalents of the amine can be coupled with the unit 2 reaction component to replace two groups AS successively and form the unit combination lab2 in one combined step. Whether the coupling reactions are carried out with the introduction of the phosphonate group using the unit 3 reaction component before or after one or both of the amine radicals using the unit la and lb reaction components is irrelevant to the final result, which is the same in all cases, so that the different possible orders are chemically equivalent. ;Unit 2 the reaction component has obvious chemical equivalents that can be used instead, in that the groups SA can be replaced with lower alkoxy, aryloxy or methylsulfinyl groups. Application of obvious chemical equivalents must be considered to fall under the definitions given here. ;A method for producing a compound with structure 1 where p is 1 preferably comprises the initial step that a compound with structure 6 or 7 is reacted with a ;3 4 3 4 compound XPO(OR )(OR ) where X is halogen and each of R and R is lower alkyl, aryl or aryl(lower alkyl). The invention also provides a method for the preparation of a compound of structure 1 where p is 1, in which units of the structures in the compound are denoted by Het-CH-Z (CH~) ~NH-, R^N=, sCNR - and -PO (OR )(OR ) are brought together in the correct order using compounds of the structure Het-CH-Z(CH9) NH~, R NH2, (AS)2C=NR and XPO(OR )(OR ) where X is halogen and R is lower alkyl, aryl or ary(lower alkyl), as reaction components. ;1 2 ;When in the compound with structure 1 R and R. together form a (CH2)2~ or (CH2)^" group, there are no corresponding separate units of structure lb and 2>, but these are taken together as a single unit R 1 N=CNR 2- which is obtained by means of the reaction component R 1 NHC(SA)=NR 2 and which is reacted with unit 3 reaction component described above and then with unit 1a reaction component; or the compound of structure 1 can be formed by means of the obvious chemical equivalent which includes the use of the reaction components in the opposite order, and again the group R 4 can be converted to hydrogen at any time after the coupling of unit 3 the reaction component. ;3 4 ;In a reaction component with the structure XPO(OR (OR ) X is preferably chlorine. Such a reactant can be prepared by reacting 3 a phosphorylhalo<g>enidePOX_ with an equivalent amount of an alcohol R OH e-er R OH in the presence of an equivalent amount of a suitable base such as a tertiary amine, eg triethylamine or pyridine; the second esterifying group is introduced into the product by replacing another halogen atom in the same way; or if R 3 and R 4 are equal, two equivalents of alcohol and base may be used to introduce both esterifying groups in one step. Unit la, lb and 2 The reaction components can be prepared by known methods. Coupling reactions involving the use of compounds where the group SA is replaced by an amino (or imino) group or where the unit 3 reaction component is used can be carried out by known methods. Instead of the unit 3 reaction component, one can use a compound with the same structure, except that X is hydrogen, and react this in a two-phase system comprising aqueous sodium hydroxide and carbon tetrachloride with the appropriate compound containing structural unit 2; an anion where X is replaced by a negative charge is formed first, and this reacts with carbon tetrachloride to form the chlorine compound which is the unit 3 reaction component. ;4 ;Conversion of the group R from lower alkyl, aryl or aryl (lower alkyl) to hydrogen can be carried out by conversion under conditions which do not affect other groups present. When the conversion is carried out on a compound in which all the structural units are present, the replacement can be achieved by hydrolysis with an aqueous acid, e.g. hydrochloric acid or hydrobromic acid-4 3 ; acid. Selective hydrolysis to replace R , but not R at the same time, is easy because the removal of the other ester group is very. ;3 4 ;difficult. The groups R and R are selected so that the desired group remains. A benzyl group is split off more easily with hydrobromic acid than is the case with a phenyl or ethyl group, so that compounds where R is phenyl or ethyl and R is hydrogen can be obtained by reacting hydrobromic acid with the benzyl phenyl ester or the benzyl-1-ethyl ester. The monoethyl ester can be obtained by reacting the diethyl ester with sodium iodide in aqueous acetone. The monophenyl ester can be obtained from the diphenyl ester by reaction with sodium hydroxide under conditions which are sufficiently mild to avoid cleavage of the rest of the molecule. When the conversion is carried out on a compound containing an SA group (eg lower alkylthio), it can be carried out by treatment with aqueous pyridinium chloride or ammonium iodide. ;The compounds of structure 1 which are pharmacologically active are those where R 4 is hydrogen. The active compounds block histamine H^ receptors; ie they inhibit the biological effects of histamine that are not inhibited by burimamide. E.g. they inhibit histamine-stimulated secretion of gastric acid from lumen-perfused stomachs from rats anesthetized with urethane, at doses of from 0.5 to 256 micromol per kg intravenously. Their activity as histamine H2 antagonists is also shown by their ability to inhibit other of histamine's effects that are not mediated by means of histamine H2 receptors. E.g. inhibit the effects of histamine on an isolated guinea pig atria and an isolated rat uterus. They inhibit the basal secretion of gastric acid and also that which is stimulated by pentagastrin or by food. In a normal examination, such as measuring blood pressure on an anesthetized cat, in doses of from 0.5 to 256 micromol'pr. kg intravenously, they inhibit histamine's vasodilating effect. The potency of the compounds is illustrated by an effective dose that produces 50% inhibition of gastric acid secretion in an anesthetized rat and produces 50% inhibition of histamine-induced tachycardia in ;-4 ;the isolated guinea pig atrium (less than 10 molar). The pharmacologically active compounds with structure 1, where R 4 is hydrogen, can be used for the preparation of pharmaceutical preparations containing a pharmaceutical carrier and the compound which can be in zwitterionic form or in the form of an addition salt with a pharmaceutically acceptable acid or a salt with a pharmaceutically acceptable base. Such acid addition salts include the salts with hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and maleic acid, and can conveniently be prepared from the corresponding zwitterionic compounds by standard methods, e.g. by treating these with an acid in a lower alkanol or by using ion exchange resins to form the desired salt either directly or from another addition salt. Salts with bases, e.g. the sodium or potassium salts, can be prepared in the usual way by neutralization of the zwitterionic form. The pharmaceutical carrier used can be a solid or a liquid. Examples of solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, gum acacia, magnesium stearate and stearic acid. Examples of liquid carriers are syrup, peanut oil, olive oil and water. ; If a solid carrier is used, the preparation can be in the form of a tablet, capsule, lozenge or drops. The amount of solid carrier in a unit dosage form is usually from approx. 25 to approx. 300 mg. If a liquid carrier is used, the preparation can be in the form of a syrup, emulsion, soft gelatin capsule, a sterile, injectable liquid contained in e.g. an ampoule, or an aqueous or non-aqueous liquid suspension. The pharmaceutical preparations are prepared by usual methods which include such operations as mixing, granulation and compression, or dissolution of the constituents as appropriate for the desired preparation. The active ingredient is present in the preparations in an amount that is effective at blocking histamine H2-receptors. Preferably, each unit dose contains the active ingredient in an amount of from approx. 50 to approx. 250 mg. The invention shall be illustrated by the following examples where the temperatures are in °C. ;Example 1;Diety1-N-methylthiocarbamoylphosphonate, prepared according to K.A. Petrov and A.A. Neimysheva, Zhur. Obsc. Khimii, 1959, ;29, 1819, was purified by chromatography on a silica gel column (eluent 20% ethyl acetate in light petrol) to give yellow crystals, m.p. 50-52°. This phosphonate (2.11 g, 0.01 mol) was dissolved in methyl iodide (10 mL) and the solution was heated under reflux for 2 h and then kept at ambient temperature for an additional 24 h. N,S-Dimethyl-thio-imidoylphosphonic acid monoethyl ester crystallized out and was recrystallized from acetonitrile, m.p. 142-147° (dec.). ;The above ester (3.94 g, 0.02 mol) and 2-[(5-methyl-4-imidazolyl)methylthio]ethylamine (3.42 g, 0.02 mol) were dissolved separately in portions of 25 ml of acetonitrile, and the solutions were mixed. A thick oily layer formed and after 30 minutes was separated, diluted with methanol (4 mL) and extracted repeatedly with boiling acetone. The acetone fractions were collected and allowed to stand at ambient temperature for 18 hours, after which the product N-methyl-N'-[2-((5-methyl-4-imidazolyl)methylthio)-ethyl]-amidinophosphonic acid monoethyl ester crystallized, m.p. 185-187°C ;(C11H21N4°3PS required: c 41'2'H 6'6'N 17.5%; found: C 40.7, H 6.6, N 17.1%). ;Example 2;Dimethyl-N-methylthiocarbamoylphosphonate prepared by the method used for the diethyl ester (see Example 1) (1.8 g) was dissolved in methyl iodide (10 ml), and the solution was heated under reflux for 3 hours and kept at ambient temperature for 3 days under water-free conditions. N,S-dimethylthio-imidoylphosphonic acid monorethyl ester crystallized, and this intermediate (1.56 g) and 2-[(5-methyl-4-imidazolyl)methylthio]-ethylamine (1.36 g) in acetonitrile (50 ml), on standing at ambient temperature for 16 hours, gave N-methyl-N1-[((4-methyl-5-imidazolyl)methylthio)ethyl]amidinophosphonic acid monomethyl ester, which was recrystallized from methanol-acetone, m.p. 170-171°C (C10H19N4°3SP required: c 39'2'H 6'3' N 18.3%; found: C 39.5, H 6.5, N 18.5%). ;Example 3;Reaction of dichlorophenoxyphosphine with an equivalent amount of benzylalkhol in the presence of an equivalent amount of triethylamine, and hydrolysis of the product with water gives benzylphenylphosphite. Reaction of this with methyl isothiocyanate gives benzyl-phenyl-N-methyl-thiocarbamoyl-phosphonate. When this is used instead of the corresponding diethyl compound in the method according to example 1, the monophenyl ester of N-methyl-N'-[2-((5-methyl-4-imidazolyl)-methylthio)ethyl]amidinophosphonic acid is obtained. ;E xample 4;Reaction of dibenzyl phosphite with methyl isothiocyanate;gives dibenzyl 1-R-methylthiocarbamoylphosphonate. Use of this compound instead of the corresponding diethyl compound in the method according to example 1 gives the monobenzyl ester of N-methyl-N'-[2-((5-methyl-4-imidazolyl)methylthio)ethyl]amidino-phosphonic acid. ;Example 5;N,S-dimethylthioimidoylphosphonic acid monoethyl ester (0>59 g) was added to a solution of 2-(2-thiazolylmethylthio)ethylamine dihydrobromide (1.0 g) in methanol (10 ml) containing triethylamine (0, 61 g) and was kept at ambient temperature for 24 hours. The reaction mixture was concentrated by evaporation and acetone was added to precipitate the triethylamine salt which was removed by filtration. The filtrate was concentrated and purified on a silica gel column eluting first with acetone-methanol (9:1) to remove impurities, followed by acetone-methanol (1:1) to obtain N-methyl-N'-[2-(2 -thiazolylmethylthio)ethyl]amidinophosphonic acid monoethyl ester, which was recrystallized from methanol-ethyl acetate, m.p. 156-158°C. ;(C10H18N3°3PS2 ktever: c 37.1, H 5.4, N 12.9% ;found: C 37.1, H 5.6, N 13.0%). ;Examples 6 to 15;When instead of 2-[(5-methyl-4-imidazolyl)methylthio]-ethylamine in the method according to example 5, equivalent amounts of each of the following amines are used: ;Example;6. 2-[(4-imidazoly1)methylthio]ethylamine; 7. 2-[(5-bromo-4-imidazoly1)methylthio]ethylamine; 8. 2-[(3-chloro-2-pyridyl)methylthio]ethylamine; 9. 2-[(3-Methoxy-2-pyridyl)methylthio]ethylamine; 10. 2-[(3-isothiazolyl)methylthio]ethylamine; 11. 2-[(2-oxazolyl)methylthio]ethylamine; 12. 2-[(3-1,2,4-triazolyl)methylthio]ethylamine; 13. 2-[(2-1,3,4-thiadiazolyl)methylthio]ethylamine; 14. 2-[(5-methyl-4-imidazolyl)methylthio]propylamine; 15. 4-(4-imidazoly1)butylamine; the monoethyl esters of the corresponding N-methylamidino-phosphonic acids are obtained. ;Example 16;(a) N,S-Dimethyl-isothiouronium iodide (23.2 g, 0.1 mol) was dissolved in water (40 mL), ice-cooled and vigorously stirred with a solution of dibenzyl phosphite (26.2 g, 0 .1 mol) in carbon tetrachloride (100 ml). Sodium hydroxide (8 g, 0.2 mol) dissolved in water (25 ml) was added over 30 minutes. After the addition was complete, the cooling bath was removed and stirring was continued for an additional 2 hours. The organic phase was separated, washed successively with dilute sulfuric acid, sodium bicarbonate solution and water and dried over sodium sulfate. After removal of the organic solvent, the residue was chromatographed on a silica gel column, elution being carried out with ethyl acetate-light petrol 40-60° (1:2), to give N,S-dimethyl-N<1->(dibenzylphosphono)isothiourea, sm.p. 55°. (b) To a stirred mixture of the isothiourea (3.65 g, 0.01 mol), 2-[(4-methyl-5-imidazolyl)methylthio]ethylamine (1.71 g, 0.01 mol) and 2 g molecular sieve 4A in 50 ml of dry 2-propanol (2.32 g, 0.01 mol) was added silver oxide in several portions during 30 minutes. After 3 hours, the reaction mixture was filtered and evaporated. The thick residue was chromatographed on a silica gel column, eluting with acetone containing 10% methanol, to give N<1->methyl-N"-[2-((5-methyl-4-imidazoly1)-methylthio)ethyl ]guanidinophosphonic acid dibenzyl ester, ;(C„oH-^Nc0_PS required: C 56.8, H 6.0, N 14.4%; found: C 56.1, H 6.3, N 14.3%). ;Example 17;The guanidine obtained by the method of Example 16 (1.47 g, 0.003 mol) was dissolved in acetone (20 mo), and 48% aqueous hydrogen bromide (1.1 ml, 0.0064 mol) was added. Methanol (2 ml) was added to prevent separation of the phases, and the solution was kept for 18 hours, after which N'-methyl-N"-[2-((5-methyl-4-imidazolyl)methylthio)ethyl]guanidino -phosphonic acid monobenzyl ester hydrobromide had crystallized out, m.p. 146-147°, ;(C,,H_. Nc0_PS.HBr required: C 40.2, H 5.3, N 14.6, Br 16.7%;lb z4 D j;found: C 40.0, H 5.3, N 14.9, Br 17.0%). ;Example 18;(a) While stirring and cooling with ice, a mixture of redistilled benzyl alcohol (10.8 g, 0.1 mol) and triethylamine (10.1 g, 0.1 mol) was added dropwise over 30 minutes to a solution of ethyl dichlorophosphate (C 2 H 5 OPOCl 2 ) (16.3 g, 0.1 mol) in tetrahydrofuran (100 mL). After stirring for an additional 2 hours at ambient temperature, the solution was filtered and almost all of the tetrahydrofuran was removed under reduced pressure at 25° to give benzylethylchlorophosphate as an oil. This was diluted with chloroform (80 mL) and cooled in an ice bath, a cold solution of N,S-dimethylisothiouronium iodide (23.2 g, 0.1 mol) in water (25 mL) was added and, with vigorous stirring, a solution of sodium hydroxide (8 g, 0.2 mol) in water (15 ml) added dropwise over 30 minutes. After the addition was complete, the cooling bath was removed and vigorous stirring was continued for an additional 2 hours. The organic phase was then separated and treated in the same manner as in Example (16a) to give N,S-dimethyl 1-N'-(benzylethylphosphono)isothiourea as an oil. (b) Reaction of this isothiourea with 2-[(5-methyl-4-imidazoly 1)methylthio]ethylamine using the procedure of Example 16(b) gave N'-methyl-N"-[2-((5- methyl 1-4-imidazolyl)-methylthio)ethylguanidinophosphonic acid benzyl ethyl ester.;Example 19;The guanidine from Example 18 was hydrolyzed with 48% aqueous hydrogen bromide using the procedure of Example 17 to give on recrystallization from ethanol/ether, N '-methyl-N"-[2-((5-methyl-4-imidazolyl)methylthio)ethylguanidinophosphonic acid monoethyl ester hydrobromide, m.p. 170-172°C (dec.). ;(<C>ll<H>22<N>5°3<PS>'HBrrequires c 31'7/H 5>e>N 16.8, Br 19.2% ;found C 31.5, H 5 .6, .N 16.4, Br 19.2%). ;Example 20 . ;Using phenyldichlorophosphate instead of ethyldichlorophosphate in the method according to example 18 gives N'-methyl-N"-[2-((5-methyl-4-imidazolyl)methylthio)ethylguanidinophosphonic acid diphenylester. ;Example 21;When the diphenylester is obtained by the method in example 20 is subjected to the procedure according to example 19, one obtains N'-methyl-N"-[2-((5-methyl-4-imidazol1)methylthio)ethyl]guanidinophosphonic acid monophenyl ester hydrobrom i d. ;Examples 22 to 31;When equivalent amounts of each of the following amines are used instead of 2-[(4-methyl-5-imidazolyl)methylthio]-ethylamine in the method according to example 16(b): ;Example;22 . 2-[(4-imidazolyl)methylthio]ethylamine; 23. 2-[(5-bromo-4-imidazolyl)methylthio]ethylamine; 24. 2-[(3-chloro-2-pyridyl)methylthio]ethylamine; 25. 2-[(3-methoxy-2-pyridyl)methylthio]ethylamine; 26. 2-[(2-thiazolyl)methylthio]ethylamine; 27. 2-[(3-isothiazolyl)methylthio]ethylamine; 28. 2-[(2-oxazolyl)methylthio]ethylamine; 29. 2-[(2-1,3,4-thiadiazolyl)methylthio]ethylamine; 30. 2-[(3-1,2,4-triazolyl)methylthio]ethylamine; 31. 4-(4-imidazolyl)butylamine; the dibenzyl esters of the corresponding guanidinophosphonic acids are obtained. ;Examples 32 to 41;When the dibenzyl esters according to examples 22 to 31 are subjected to hydrolysis with 48% aqueous hydrogen bromide by the method according to example 17, the hydrobromide salt of the monobenzyl ester of the following compounds is obtained, respectively: ;Example;32. N<1->methyl-N"-[2-((4-imidazolyl)methylthio)ethy1]guanidinophosphonic acid 33. N<1->methyl-N"-[2-((5-bromo-4-imidazoly1)methylthio )ethyl]-. guanidinophosphonic acid 34. N'-methyl-N"-[2-((3-chloro-2-pyridy1)methylthio)ethyl)guanidinophosphonic acid 35. N'-methyl-N"-[2-((3-methoxy-2- pyridyl)methylthio)ethyl]-, guanidinophosphonic acid 36. N'-methyl-N"-[2-((2-thiazolyl)methylthio)ethyl]guanidinophosphonic acid 37. N<1->methyl-N"-[2-( 3-isothiazolyl)methylthio)ethyl]guanidinophosphonic acid 38. N'-methyl-N"-[2-((2-oxazoly1)methylthio)ethyl]guanidinophosphonic acid 39. N'-methyl-N"-[2-((2- 1,3,4-thiadiazolyl)methylthio)ethyl]-guanidinophosphonic acid 40. N'-methyl-N"-.[2 - ((3-1,2,4-triazolyl)methylthio)ethyl]guanidinophosphonic acid 41. N1 -methyl-N"-[4-(4-imidazolyl)butyl]guanidinophosphonic acid. Example 42: When S-methylisothiouronium iodide is used in an equivalent amount instead of N tS-dimethylisothiouronium iodide in the method according to example 16, the end product N1 -[2-((5-methyl-4-imidazolyl)methylthio)ethylguanidinophosphonic acid dibenzyl ester is obtained. ;Example 43;When the diester obtained by the method according to example 42 is subjected to a hydrolysis similar to that described in example 17, N1 -[2-((5-methyl-4-imidazoly1)methylthio)ethylguanidinophosphonic acid monobenzyl ester is obtained. ;Example 4 4;When S-methyl-N-[2-((5-methyl-4-imidazolyl)methylthio)ethyl]-isothiouronium iodide is coupled with benzylethylchlorophosphate using the method according to example 18(a), one obtains S-methyl- N-[ 2-((5-methyl-4-imidazolyl)methylthio)ethyl]-N'-(benzylethylphosphono)isothiourea. Reaction of this with 2-[(5-methyl-4-imidazolyl)-methylthio]ethylamine by the method according to example 18 (b) gives N',N"-bis-[2-((5-methyl-4-imidazolyl) methylthio)ethyl]guanidinophosphonic acid benzyl ethyl ester. ;Example 45;When the diester obtained by the method according to;Example 44 is subjected to a hydrolysis similar to that described in example 17, N<1>,N"-bis^[2-(( 5-Methyl-4-imidazolyl)methylthio)ethyl]guanidinophosphonic acid monoethyl ester. Example 46: When N,N<1->S-trimethylisothiouronium iodide is coupled with benzylethylchlorophosphate using the method according to example 18(a)>, N,N'-S-trimethyl-N<1->(benzylethylphosphono )-isothiourea. Reaction of this with 2-[(5-methyl-4-imidazolyl)-methylthio]ethylamine by the method according to example 18(b) gives N,N'-dimethyl-N"-[2-((5-methyl-4- imidazolyl)methylthio)ethyl]-guanidinophosphonic acid benzylethyl ester. ;Example 47;When the diester obtained by the method according to;Example 46 is subjected to a hydrolysis similar to that described in example 17, one obtains N,N'-dimethyl-N"- [2-((5-Methyl-4-imidazolyl)-methylthio)ethyl]guanidinophosphonic acid monoethyl ester. ;Example 4 8;(a) Reaction of 2-methylthioimidazoline with dibenzyl phosphite by the method according to example 16(a) yields, as an oily liquid, N,N'-ethylene-N-(dibenzylphosphono)-S-methylisothiourea . The isothiourea (3.76 g) was dissolved in acetone (20 ml), and to the solution was added ammonium iodide (2.17 g) dissolved in methanol. (8 ml) . After 16 hours at ambient temperature, N,N'-ethylene-S-methylisothiourea-N-phosphonic acid monobenzyl ester was separated as a hygroscopic oil by chromatography on a silica gel column using methanol/acetone (1:1) as eluent, ( b) The isothiourea-phosphonic acid ester (1.43 g) and 2-[5-methyl-4-imidazolyl)methylthio]ethylamine (0.86 g) were dissolved successively in propanol (10 ml). After standing at ambient temperature for 16 hours, the product was isolated and purified by chromatography on a silica gel column using methanol/acetone (1:4) as eluent to give N,N<1->ethylene-N"-[2-( (5-Methyl-4-imidazolyl)methylthio)ethyl]guanidinophosphonic acid monobenzyl ester, ;(C1 , -/ ,H 2„ .4 .Nb _0j ,PS-1/2 H i„.0 requires: C<*>48 .8, H 6.0, N 16.8%

funnet: C 48,4, H 5,9, N 15,8%).found: C 48.4, H 5.9, N 15.8%).

NMR: (100 MHz DMSO-dg) 6: 2,14 (s, CH3"imid) , 2-,65 (m, CH2CH2S) , NMR: (100 MHz DMSO-dg) 6 : 2.14 (s, CH3"imide) , 2-.65 (m, CH2CH2S) ,

3,40 (m, NCH2CH2N og NCH_2CH2S) , 3,71 (s, imid-CH2) , 4,79 (d, CH20P), 7,34 (s, benzylisk CH2), 7,48 (s, N=CH-N), 9,30 (bred, NH). Alle topper hadde riktige integrasjoner. 3.40 (m, NCH2CH2N and NCH_2CH2S) , 3.71 (s, imide-CH2) , 4.79 (d, CH2OP), 7.34 (s, benzylic CH2), 7.48 (s, N=CH -N), 9.30 (broad, NH). All tops had proper integrations.

Claims (12)

1. Fremgangsmåte for fremstilling av en amidin-fosfonat-forbindelse med struktur 1 1. Process for preparing an amidine-phosphonate compound of structure 1 hvor Het er en 5- eller 6-leddet, fullstendig umettet heterocyklisk gruppe som inneholder minst ett nitrogenatom og eventuelt er substituert med lavere alkyl, trifluormetyl, hydroksymetyl, halogen, hydroksy eller lavere alkoksy; Z er svovel eller metylen; n er 2 eller 3; R <1> er hydrogen, lavere alkyl eller Het-CH2Z(CH2) -; p er 0 eller 1; R 2er hydrogen eller lavere alkyl; 12 eller R og R sammen danner en (CH2)2~ eller (CH^^-gruppe; R 3er lavere alkyl, aryl eller aryl(lavere alkyl); og R 4 er hydrogen når p er 0, og hydrogen, lavere alkyl, aryl eller aryl(lavere alkyl) når p er 1, karakterisert ved at en primær aminoforbindelse R^I-I» eller Het-CH„Z (CH_) NH omsettes den komplementære for- z z z n z bindelse med henholdsvis struktur 2 eller 3 where Het is a 5- or 6-membered, fully unsaturated heterocyclic group containing at least one nitrogen atom and optionally substituted with lower alkyl, trifluoromethyl, hydroxymethyl, halogen, hydroxy or lower alkoxy; Z is sulfur or methylene; n is 2 or 3; R<1> is hydrogen, lower alkyl or Het-CH2Z(CH2) -; p is 0 or 1; R 2 is hydrogen or lower alkyl; 12 or R and R together form a (CH2)2~ or (CH^^ group; R 3 is lower alkyl, aryl or aryl(lower alkyl); and R 4 is hydrogen when p is 0, and hydrogen, lower alkyl, aryl or aryl(lower alkyl) when p is 1, characterized in that a primary amino compound R^I-I» or Het-CH„Z (CH_) NH is reacted the complementary for- z z z n z bond with structure 2 or 3 respectively hvor A er lavere alkyl, aryl eller aryl(lavere alkyl); forutsatt at nåo r p er 0, er R 4 hydrogen; og når R 4i produktet er lavere alkyl, aryl eller aryl(lavere alkyl) og det ønskes en forbindelse ' hvor R 4 er hydrogen, hydrolyseres produktet selektivt.where A is lower alkyl, aryl or aryl(lower alkyl); provided that when p is 0, R 4 is hydrogen; and when R 4 in the product is lower alkyl, aryl or aryl(lower alkyl) and a compound is desired ' where R 4 is hydrogen, the product is selectively hydrolysed. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det anvendes utgangsmaterialer hvor Het er en imidazol-, pyridin-, tiazol-, isotiazol-, oksazol-, isoksazol-, triazol- eller tiadiazol-gruppe og er blindet til C^Z gjennom et karbonatom i den heterocykliske gruppe i nabostilling til et nitrogenatom.2. Process as stated in claim 1, characterized in that starting materials are used where Het is an imidazole, pyridine, thiazole, isothiazole, oxazole, isoxazole, triazole or thiadiazole group and is blinded to C^Z through a carbon atom in the heterocyclic group adjacent to a nitrogen atom. 3. Fremgangsmåte som angitt i krav 2, karakterisert vedat det anvendes utgangsmaterialer hvor Het er 5-metyl-4-imidazolyl.3. Method as stated in claim 2, characterized in that starting materials are used where Het is 5-methyl-4-imidazolyl. 4. Fremgangsmåte som angitt i krav 2, karakterisert ved at det anvendes utgangsmaterialer hvor Het er 2-tiazolyl.4. Method as stated in claim 2, characterized in that starting materials are used where Het is 2-thiazolyl. 5. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at det anvendes utgangsmaterialer hvor Z er svovel og n er 2.5. Method as stated in one of the preceding claims, characterized in that starting materials are used where Z is sulfur and n is 2. 6. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at det anvendes utgangs-4 materialer hvor R er hydrogen.6. Method as specified in one of the preceding claims, characterized in that output 4 is used materials where R is hydrogen. 7. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at det anvendes utgangs-2 materialer hvor p er 1 og R er hydrogen.7. Method as stated in one of the preceding claims, characterized in that output 2 is used materials where p is 1 and R is hydrogen. 8. Fremgangsmåte som angitt i et av kravene 1 til 6, karakterisert ved at det anvendes utgangsmaterialer hvor p er 0.8. Method as stated in one of claims 1 to 6, characterized in that starting materials are used where p is 0. 9. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at det anvendes utgangsmaterialer hvor R1 er metyl.9. Method as stated in one of the preceding claims, characterized in that starting materials are used where R1 is methyl. 10. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at det anvendes utgangsmaterialer hvor R 3 er metyl, etyl, fenyl eller benzyl.10. Method as stated in one of the preceding claims, characterized in that starting materials are used where R 3 is methyl, ethyl, phenyl or benzyl. 11. Fremgangsmåte som angitt i et av de foregående krav for fremstilling av en forbindelse med struktur 1 hvor p er 1, karakterisert ved at den omfatter det innledende trinn at en forbindelse med struktur 6 eller 7 11. Method as stated in one of the preceding claims for producing a compound with structure 1 where p is 1, characterized in that it comprises the initial step that a compound with structure 6 or 7 omsettes med en forbindelse XPO(OR 3 )(OR 4), hvor X er halogen og 3 4 hver av R og R er lavere alkyl, aryl eller aryl(lavere alkyl).is reacted with a compound XPO(OR 3 )(OR 4), where X is halogen and 3 4 each of R and R is lower alkyl, aryl or aryl(lower alkyl). 12. Fremgangsmåte som angitt i et av de foregående krav for fremstilling av en forbindelse med en struktur 1 hvorp er 1, karakterisert ved at enhetene av forbindelsens struktur representert ved Het-CH- Z(CH ) NH-, R <1> N=, =CNR2- og 3 4 -PO(OR )(OR ) bringes sammen i riktig rekkefølge under anvendelse som reaksjonskomponenter, forbindelser med strukturen Het-CH2 Z(CH2 )n NH2 , R <1> WH2 , (AS)2C=NR2 og XPO(OR <3> )(OR <4> ) hvor X er halogen og hver av R3 og R4 er lavere alkyl, aryl eller aryl-(lavere alkyl).12. Method as stated in one of the preceding claims for the production of a compound with a structure 1 of which is 1, characterized in that the units of the compound's structure represented by Het-CH- Z(CH ) NH-, R <1> N= , =CNR2- and 3 4 -PO(OR )(OR ) are brought together in the correct order using as reaction components, compounds with the structure Het-CH2 Z(CH2 )n NH2 , R <1> WH2 , (AS)2C=NR2 and XPO(OR <3> )(OR<4> ) where X is halogen and each of R 3 and R 4 is lower alkyl, aryl or aryl-(lower alkyl).
NO781914A 1977-06-02 1978-06-01 PROCEDURE FOR THE PREPARATION OF AMIDINES NO781914L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2342377 1977-06-02
GB3911877 1977-09-20

Publications (1)

Publication Number Publication Date
NO781914L true NO781914L (en) 1978-12-05

Family

ID=26256502

Family Applications (1)

Application Number Title Priority Date Filing Date
NO781914A NO781914L (en) 1977-06-02 1978-06-01 PROCEDURE FOR THE PREPARATION OF AMIDINES

Country Status (12)

Country Link
JP (1) JPS543068A (en)
AT (1) AT369013B (en)
AU (1) AU514526B2 (en)
CA (1) CA1096384A (en)
DK (1) DK245078A (en)
FI (1) FI781714A (en)
HU (1) HU177898B (en)
IE (1) IE47275B1 (en)
IL (1) IL54832A (en)
IT (1) IT7824126A0 (en)
NO (1) NO781914L (en)
ZA (1) ZA783118B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE53068B1 (en) * 1981-06-15 1988-05-25 Merck & Co Inc Diamino isothiazole-1-oxides and -1,1-dioxides as gastic secretion inhibitors
AU2019423646A1 (en) 2019-01-23 2021-07-22 Kabushiki Kaisha Toshiba Power supply system and method for controlling power supply system

Also Published As

Publication number Publication date
ATA403078A (en) 1982-04-15
AU3674678A (en) 1979-12-06
AU514526B2 (en) 1981-02-12
IL54832A0 (en) 1978-08-31
IE781100L (en) 1978-12-02
FI781714A (en) 1978-12-03
ZA783118B (en) 1979-06-27
JPS543068A (en) 1979-01-11
IT7824126A0 (en) 1978-06-01
IL54832A (en) 1983-07-31
AT369013B (en) 1982-11-25
CA1096384A (en) 1981-02-24
IE47275B1 (en) 1984-02-08
DK245078A (en) 1978-12-03
HU177898B (en) 1982-01-28

Similar Documents

Publication Publication Date Title
EP0275821B1 (en) Substituted alkanediphosphonic acids
DK170342B1 (en) Analogous Process for Preparation of Methylenediphosphonic Acid Derivatives
US4990503A (en) Heterocyclic bisphosphonic acid derivatives
KR850001795B1 (en) Process for preparing 2,4-disubstituted thiazole derivatives
DE69415436T2 (en) PHOSPHONIC ACID THIS DERIVATIVES
DE69503904T2 (en) PHOSPHINE ACID DERIVATIVES WITH METAL OPEPTIDASE INHIBTORIC EFFECT
CZ281983B6 (en) Imidazole derivatives with side biphenylsulfonylurea or biphenylsulfonylurethane chain, process for preparing said derivatives and a pharmaceutical composition in which said derivatives are comprised
HU198033B (en) Process for production of n-benzhydril-diaz-cycloalkilalcane-anilides and medical preparatives containing these compounds as active substance
SK151698A3 (en) Benzazepinone-n-acetic acid derivatives having a phosphonic acid group, process for their preparation and medicaments containing these compounds
DD144057A5 (en) PROCESS FOR THE PREPARATION OF NITRO COMPOUNDS ACTING AS HISTAMINE H LOW 2-RECEPTOR ANTAGONISTS
DE69526331T2 (en) MONOMER DIOLES AND PHOSPHATE-LINKED OLIGOMERS THEREOF
NO781914L (en) PROCEDURE FOR THE PREPARATION OF AMIDINES
DE2604056A1 (en) THIOCARBAMIC ACID DERIVATIVES
EP0007326B1 (en) Amidines, their preparation and pharmaceutical compositions containing them.
NO762659L (en)
US4190664A (en) Amidino and guanidino phosphonates
US4282213A (en) Amidino and guanidino phosphonates
NO134421B (en)
EP0005985B1 (en) 3-nitro pyrrole compounds, processes for preparing them and pharmaceutical compositions containing them
NO781572L (en) PROCEDURE FOR THE PREPARATION OF BISAMIDINES
FI66862B (en) FRUIT PROTECTION FOR THERAPEUTIC THERAPEUTIC ANVAENDBARA 2- (PYRIDYL-2) -TETRAHYDROTIOFENDERIVAT
US5382671A (en) Process for the preparation of 2-chloro-5-alkylaminomethyl-pyridines
EP1012152B1 (en) Method for preparing oxazaphosphorin-2-amines
PL113033B1 (en) Process for manufacturing derivatives of 4/5/-mercapto-methyloimidazole
NO152214B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE N-CYANO-N`- (2 - ((4-METHYL-5-IMIDAZOLYL) -METHYLTIO) ETHYL-N &#34;-ALKNYLGUANIDINES