NO753284L - - Google Patents

Info

Publication number
NO753284L
NO753284L NO753284A NO753284A NO753284L NO 753284 L NO753284 L NO 753284L NO 753284 A NO753284 A NO 753284A NO 753284 A NO753284 A NO 753284A NO 753284 L NO753284 L NO 753284L
Authority
NO
Norway
Prior art keywords
reaction
tube
reaction space
gases
starting material
Prior art date
Application number
NO753284A
Other languages
Norwegian (no)
Inventor
G Vogel
A Hinz
W Martin
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO753284L publication Critical patent/NO753284L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/14Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fertilizers (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Compounds Of Iron (AREA)

Description

Fremgangsmåte og innretning tilProcedure and arrangement for

fremstilling av basisk jern-(III)-sulfat. preparation of basic iron (III) sulfate.

Oppfinnelsen vedrører en fremgangsmåte og en innretning til kontinuerlig fremstilling av basisk jern-(III)-sul-fat (FeOHSO^) ved oppvarmning av jern-(II)-sulfat (FeSO^. 7 H20) med oksygenholdige varme gasser ved temperaturer mellom 46 og 480°C, i et reaksjonsrom under tilbakeføring av en del av reaksjonsproduktet i dette reaksjonsrom. The invention relates to a method and a device for the continuous production of basic iron (III) sulphate (FeOHSO^) by heating iron (II) sulphate (FeSO^. 7 H2O) with oxygen-containing hot gases at temperatures between 46 and 480°C, in a reaction chamber while returning part of the reaction product in this reaction chamber.

Ifølge US-patent nr. 2.905-533 er det kjent å fremstille FeOHSO^ved avvanning og oksydering av FeS0[|. 7 H20 ved en temperatur over 46°C. Derved blir en blanding som inneholder 40.til 70 vekt# FeSO^. 7 H20 og 30 til 60 vekt% allerede fremstillet FeOHSO^joppvarmet kontinuerlig i et oppvarmet dreierør i nærvær av luftoksygen. Innen den hellende dreierørsovn er det anordnet innbygninger hvorover oppvarmningsgodset heves og faller ned kaskadelignende. Temperaturen i dreierøret bør ved inntaksenden utgjøre mer enn 64°C og ved den nedre ende,:ved materialuttaket mer enn 300°Cjimidlertid bør temperaturen ikke overstige 480°C. According to US patent no. 2,905-533, it is known to prepare FeOHSO^ by dewatering and oxidizing FeSO[|. 7 H20 at a temperature above 46°C. Thereby, a mixture containing 40 to 70 wt# of FeSO^ is obtained. 7 H 2 O and 30 to 60% by weight of already prepared FeOHSO^ are heated continuously in a heated rotating tube in the presence of atmospheric oxygen. Within the inclined rotary tube furnace, built-ins are arranged over which the heating material is raised and falls down in a cascade-like manner. The temperature in the turning tube should be more than 64°C at the intake end and more than 300°C at the lower end, at the material outlet, meanwhile the temperature should not exceed 480°C.

Uheldig ved denne kjente arbeidsmåte er at en høy mengde returgods må føres i kretsløp, hvilket uheldig påvirker romtidsutbyttet samt energibalansen ved denne fremgangsmåte og ikke muliggjør en økonomisk fremstilling av basisk jern-(III)-sulfat. The unfortunate thing about this known method of working is that a high amount of return material must be cycled, which adversely affects the space-time yield as well as the energy balance in this method and does not enable an economical production of basic iron (III) sulphate.

Overraskende ble det nå funnet at man kan unngåSurprisingly, it was now found that one can avoid

disse ulemper når man bare tilbakefører så meget av reaksjonsproduktet i reaksjonsrommet at 20 til 25% av utgangsmaterialet består av tilbakeført reaksjonsprodukt. these disadvantages when only so much of the reaction product is returned to the reaction space that 20 to 25% of the starting material consists of returned reaction product.

Nedsettelsen av returgodsmengden er spesielt mulig når oppvarmningsgodset beveges gjennom en langstrakt, rundt sin lengdeakse roterende og ved hjelp av flere i lengderetningen forløpende, fra hverandre•adskilte kammere oppdelt reaksjonsrom. The reduction of the amount of returnable material is particularly possible when the heating material is moved through an elongated, rotating around its longitudinal axis and with the help of several longitudinally running, separated chambers, divided reaction space.

De for omsetningen nødvendige reaksjonsbetingelser oppnår man best ved at man oppvarmer reaksjonsrommet elektrisk og over reaksjonsgodset fører varm luft. Fortrinnsvis holder man temperaturen i reaksjonsrommet ved maksimalt 420°C og over reaksjonsgodset fører man varm luft som har en temperatur på 250 til 300°C. * The reaction conditions necessary for the conversion are best achieved by heating the reaction room electrically and blowing hot air over the reaction material. Preferably, the temperature in the reaction room is kept at a maximum of 420°C and hot air with a temperature of 250 to 300°C is passed over the reaction material. *

For at det skal være sikret en optimal kontakt mellom de varme gasser og utgangsmaterialet bør kamrene i reaksjonsrommet hver gang fylles inntil maksimalt 30% av kammervolumet med utgangsmaterialet. In order to ensure optimal contact between the hot gases and the starting material, the chambers in the reaction room should each time be filled to a maximum of 30% of the chamber volume with the starting material.

En ytterligere gjenstand for foreliggende oppfin-nelse er en innretning til gjennomføring av fremgangsmåten ifølge oppfinnelsen slik den er vist på tegningen.. A further object of the present invention is a device for carrying out the method according to the invention as shown in the drawing.

Denne innretning består av et dreierør 1, som er utstyrt med tilførseler for utgangsmaterial 2 og de varme gasser 8 samt et uttak for sluttprodukt 10, idet det i dreierøret langs midtaksen er anbragt radialt til dreierørsveggen forløpende vegger 4, som oppdeler dreierøret 1 i flere, fortrinnsvis 3 eller 4, fra hverandre adskilte lengdekammere 5. This device consists of a turning pipe 1, which is equipped with supplies for starting material 2 and the hot gases 8 as well as an outlet for the final product 10, with walls 4 running radially to the turning pipe wall arranged in the turning pipe along the center axis, which divide the turning pipe 1 into several, preferably 3 or 4, separated longitudinal chambers 5.

For regulering av utgangsmaterialets fyllhøyde i kamrene 5 er det ved frontsiden av dreierøret 1 anbragt en med skyvere 7 utstyrt ringblende 6, idet skyveren 7 er anordnet diametralt motsatt hverandre. Oppvarmningen av dreierøret 1 foregår fortrinnsvis over en rundt dreierøret 1 anbragt elektrooppvarmning 3- Foran frontsiden av dreierøret 1 bør foran ringblenden 6 tilførselen for de varme gasser .8 være anordnet således at gassene kan strømme gjennom hullene av ringblenden 6 jevnt i samtlige lengdekammere 5 av dreierøret 1. For regulation of the filling height of the starting material in the chambers 5, an annular diaphragm 6 equipped with pushers 7 is arranged at the front side of the rotary tube 1, the pushers 7 being arranged diametrically opposite each other. The heating of the turning tube 1 preferably takes place via an electric heater arranged around the turning tube 1 3- In front of the front side of the turning tube 1, in front of the annular diaphragm 6, the supply for the hot gases .8 should be arranged so that the gases can flow through the holes of the annular diaphragm 6 evenly in all longitudinal chambers 5 of the rotating tube 1.

Videre har det vist seg som meget hensiktsmessigFurthermore, it has proven to be very appropriate

å omgi frontsiden med uttaksende av dreierørsovnen med et hus 14 som i høyde av hullene for ringblenden 6 har gasstilførsels-ledning 8, oventil et gassuttredelsesrør 11 og nedentil stussene for uttak av sluttproduktet 10. to surround the front side with the outlet end of the rotary tube furnace with a housing 14 which, at the height of the holes for the annular diaphragm 6, has a gas supply line 8, above a gas outlet pipe 11 and below the connections for withdrawal of the final product 10.

Dessuten lønner det seg å forbinde tilførselen for utgangsmaterialet 2, som fortrinnsvis er utformet i form av en rysterenne med en forrådsbeholder for utgangsmaterialet 9 og til materialinntakssiden av dreierøret 1 å tilslutte en syklon-utskiller 13, som nedentil er forbundet med en samlebeholder 15 og oventil over en ledning 13 med en ikke vist - innretning In addition, it pays to connect the supply for the starting material 2, which is preferably designed in the form of a shaker chute with a storage container for the starting material 9 and to the material intake side of the rotary tube 1 to connect a cyclone separator 13, which is connected below to a collection container 15 and above over a wire 13 with a device not shown

"til frasugning av gasser."for extraction of gases.

Av tegningene viser figur 1 et lengdesnitt gjennom innretningen ifølge oppfinnelsen. Figur 2 viser et tverrsnitt 'D-E og figur 3 et tverrsnitt B-C gjennom dreierøret 1. Figur 4 viser oppriss A av ringblenden med lukkede og åpnede skyvere 7- Of the drawings, Figure 1 shows a longitudinal section through the device according to the invention. Figure 2 shows a cross-section 'D-E and figure 3 a cross-section B-C through the rotary tube 1. Figure 4 shows elevation A of the annular diaphragm with closed and opened pushers 7-

Eksempel' 1.Example' 1.

En blanding, bestående av 100 kg FeS0[, . 7 H20A mixture, consisting of 100 kg of FeS0[, . 7 H 2 O

og 20 kg FeOHSO^'.innføres over en rysterenne med en hastighet på ca. 60 kg/time i et elektrisk oppvarmbart dreierør og opp-varmes her til ca. 360°C. Dreierøret var 4 meter langt, hadde en diameter,på- 0,5 m og roterte med 8 omdreininger/minutt. and 20 kg FeOHSO^'. are introduced over a shaker chute at a speed of approx. 60 kg/hour in an electrically heated rotary tube and is heated here to approx. 360°C. The rotating tube was 4 meters long, had a diameter of 0.5 m and rotated at 8 revolutions/minute.

Ved hjelp av vegger, som forløp langs midtaksen av røret radialt .til rørveggen, ble røret oppdelt i tre like store lengdekammere. Uttaksende av dreierøret var lukket med en ring-blendev gjennom hvis midte det ble innblåst til ca. 280°C oppvarmet luft inn i dreierøret. By means of walls, which ran along the central axis of the pipe radially to the pipe wall, the pipe was divided into three equal longitudinal chambers. The projecting end of the turning tube was closed with a ring diaphragm through the middle of which it was blown in to approx. 280°C heated air into the turning tube.

Ved hjelp av skyveren ble fyllhøyden av reaksjons-blandingen i kammerne regulert således at den maksimalt utgjorde 30% 'av kammervolumet. With the aid of the pusher, the filling height of the reaction mixture in the chambers was regulated so that it constituted a maximum of 30% of the chamber volume.

Innbygningen av kammersystemet i dreierøret be-virket en fremragende gjennomvirvling av utgangsmaterialet og en.meget intens kontakt mellom luften og utgangsmaterialet. Luftmengden utgjorde ca. 10 m^/time. The incorporation of the chamber system in the rotary tube resulted in excellent swirling of the starting material and a very intense contact between the air and the starting material. The amount of air was approx. 10 m^/hour.

Etter en-starttid på ca. 2 timer får man et produkt av følgende - sammensetning: After a start-up time of approx. 2 hours you get a product of the following composition:

Fe<2+>= 3 vekt%; Fe<3+>=30 vekt*; S04<2>~=60,0vekt SK.Fe<2+>= 3 wt%; Fe<3+>=30 wt*; S04<2>~=60.0 weight SK.

J.ernets oksydasj onsgrad utgjorde således 90% (til The J.ernet's degree of oxidation thus amounted to 90% (to

sammenligning FeOHSO^<:>teoretisk Fe1 ^ + 3 3% i SO^ 2 - 57%). comparison FeOHSO^<:>theoretical Fe1 ^ + 3 3% in SO^ 2 - 57%).

Glødetapet ved 1000°C utgjorde 50 vekt%. En 1-vekt^-ig vandig oppløsning viste en pH-verdi på 2. The heat loss at 1000°C was 50% by weight. A 1 wt.g aqueous solution showed a pH value of 2.

Det vannuoppløselige residu utgjorde 11 vekt%The water-insoluble residue amounted to 11% by weight

og besto'som et røntgendiagram viste av ot-Fe^^(hematit). Eksempel 2. and consisted'as an X-ray diagram showed of ot-Fe^^(hematite). Example 2.

I samme innretning og på samme måte som omtalt i eksempel 1 ble det omsatt 100 kg FeSO^. 7,H20 sammen.med 11 kg FeOHSO^i som returgods. In the same device and in the same way as described in example 1, 100 kg of FeSO 3 were converted. 7,H20 together with 11 kg of FeOHSO^i as return goods.

Her utgjorde: Produksjon 85 kg/time, lufttempe-raturen 210°C, reaksjonsgodsets temperatur i ovnen 370°C. Here it amounted to: Production 85 kg/hour, the air temperature 210°C, the reaction material temperature in the oven 370°C.

Det ble dannet et sluttprodukt som inneholdt 3»6 vekt* Fe<2+>, 29,1 vekti Fe3 + og 60,2 vekt/»S0^<2>~.A final product was formed which contained 3.6 wt* Fe<2+>, 29.1 wt.i Fe3 + and 60.2 wt./»SO^<2>~.

Jernets oksydasjonsgrad utgjorde således 89*.The iron's degree of oxidation thus amounted to 89*.

I begge tilfeller ble det, selv etter lange drifts-tider ikke fastslått noen materialanbakning i dreierørsovnen. In both cases, even after long operating times, no material sticking was found in the rotary kiln.

Claims (1)

1. Fremgangsmåte til kontinuerlig fremstilling av basisk jern-(Ill)-sulfat (FeOHSO^) ved oppvarmning av jern-(Il)-sulfat (FeSOjj . 7 H2 0) med oksygenholdige varme gasser ved temperaturer mellom 46 og 480°C i et reaksjonsrom, under til-bakeføring av en del av reaksjonsproduktet i dette reaksjonsrom, karakterisert ved at det tilbakeføres så meget av reaksjonsproduktet i reaksjonsrommet at 10 til 25* av utgangsmaterialet består av tilbakeført reaksjonsprodukt,;2. Fremgangsmåte ifølge krav 1, karakterisert ved at oppvarmningsgodset beveger gjennom et lang strakt, rundt sin lengdeakse roterende og ved hjelp av flere i lengderetning forløpende, fra hverandre adskilte kammere oppdelt reaksjonsrom.;3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at man oppvarmer reaksjonsrommet elektrisk og over reaksjonsgodset fører varm luft.;4. Fremgangsmåte ifølge et av kravene 1 til 3, karakterisert ved at man holder temperaturen i reaksjonsrommet ved maksimalt 420°C.;5. Fremgangsmåte ifølge krav 3, karakteri-ser, t ,v e d at den varme luft har en temperatur på 250 til 300°C.;6. Fremgangsmåte ifølge et av kravene 1 til 5, karakterisert ved at kammerne i reaksjonsrommet hver gang fylles inntil maksimalt 30* av kammervolumet med utgangsmaterialet. ■7- Innretning til kontinuerlig fremstilling av basisk jern-(III)-sulfat ved oppvarmning av jern-(II)-sulfat med oksygenholdige gasser i et dreierør (1), som er utstyrt med tilførsler for utgangsmaterial (2) og gassene (8) samt et uttak for sluttproduktet (10), karakterisert ved at det i dreierøret (1) langs midtaksen er anbragt radialt til dreierørsveggen f or løpende, vegger . (4 )•, som oppdeler dreierøret (1) i flere lengdekammere (5).1. Process for the continuous production of basic iron (Ill)-sulphate (FeOHSO^) by heating iron (Il)-sulphate (FeSOjj . 7 H2 0) with oxygen-containing hot gases at temperatures between 46 and 480°C in a reaction space, during return of part of the reaction product in this reaction space, characterized in that so much of the reaction product is returned in the reaction space that 10 to 25* of the starting material consists of returned reaction product,;2. Method according to claim 1, characterized in that the heating material moves through a long stretched, rotating around its longitudinal axis and with the help of several longitudinally extending, separate chambers divided reaction space.;3. Method according to claim 1 or 2, characterized in that the reaction space is heated electrically and hot air is passed over the reaction material.;4. Method according to one of claims 1 to 3, characterized in that the temperature is maintained in the reaction room at a maximum of 420°C.;5. Method according to claim 3, characterized, 2, in that the hot air has a temperature of 250 to 300°C.; 6. Method according to one of claims 1 to 5, characterized in that the chambers in the reaction space are each time filled up to a maximum of 30* of the chamber volume with the starting material. ■7- Device for the continuous production of basic iron (III) sulfate by heating iron (II) sulfate with oxygen-containing gases in a rotating tube (1), which is equipped with supplies for starting material (2) and the gases (8 ) as well as an outlet for the final product (10), characterized in that it is arranged in the turning tube (1) along the central axis radially to the turning tube wall for continuous walls. (4 )•, which divides the turning tube (1) into several longitudinal chambers (5). 8. Innretning ifølge krav 7, karakterisert ved at uttaksenden av dreierøret (1) er lukket med en ringblende (6) som er utstyrt med to diametralt motsatt anordnede skyvere (7)•8. Device according to claim 7, characterized in that the outlet end of the rotary tube (1) is closed with an annular diaphragm (6) which is equipped with two diametrically opposed pushers (7)• 9. Innretning ifølge krav 7. eller 8, karakterisert ved at dreierøret (1) er utrystet med en elektrooppvarmning (3).9. Device according to claim 7 or 8, characterized in that the rotating tube (1) is equipped with an electric heater (3). 10. Innretning ifølge et av kravene 7 til 9, karakterisert ved at gasstilførselen (8) er anordnet således foran ringblenden (6) at gassene strømmer gjennom hullet av ringblenden (6) jevnt inn i samtlige lengdekammere (5) av dreierøret (I).10. Device according to one of claims 7 to 9, characterized in that the gas supply (8) is arranged in such a way in front of the annular orifice (6) that the gases flow through the hole of the annular orifice (6) evenly into all longitudinal chambers (5) of the rotary tube (I).
NO753284A 1974-09-28 1975-09-26 NO753284L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19742446544 DE2446544A1 (en) 1974-09-28 1974-09-28 METHOD AND DEVICE FOR THE PRODUCTION OF BASIC IRON (III) SULPHATE

Publications (1)

Publication Number Publication Date
NO753284L true NO753284L (en) 1976-03-30

Family

ID=5927077

Family Applications (1)

Application Number Title Priority Date Filing Date
NO753284A NO753284L (en) 1974-09-28 1975-09-26

Country Status (9)

Country Link
BE (1) BE833815A (en)
DE (1) DE2446544A1 (en)
DK (1) DK431775A (en)
ES (1) ES440035A1 (en)
FR (1) FR2286108A1 (en)
GB (1) GB1469193A (en)
NL (1) NL7511255A (en)
NO (1) NO753284L (en)
SE (1) SE7510772L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117542997B (en) * 2024-01-04 2024-04-16 河南师范大学 Preparation method of carbon-coated basic ferric potassium sulfate ion battery anode material

Also Published As

Publication number Publication date
DE2446544A1 (en) 1976-04-15
ES440035A1 (en) 1977-02-16
BE833815A (en) 1976-03-25
FR2286108A1 (en) 1976-04-23
FR2286108B3 (en) 1978-05-12
SE7510772L (en) 1976-03-29
GB1469193A (en) 1977-03-30
NL7511255A (en) 1976-03-30
DK431775A (en) 1976-03-29

Similar Documents

Publication Publication Date Title
CN109569473A (en) A kind of device and method of liquid metal catalyzed hydrocarbon production hydrogen and carbon black
NO753284L (en)
CN109894067A (en) Collection temperature control with more blades and the device to stir as one
CN107899506A (en) A kind of classification dilution equipment of nanoscale thimerosal
CN110755866A (en) Chemical production is with circulating reation kettle of low energy consumption of high-efficient
CN107954723A (en) A kind of preparation method of α phase silicon nitride powders
CN108910916A (en) A kind of preparation method and its preparation system of ammonium acid fluoride
CN103201356B (en) Method for producing fuel from organic material and a gasification plant
US2204777A (en) Apparatus for the recovery of salts from aqueous solutions
US1718420A (en) Process of converting ammonium chloride into ammonia and hydrochloric acid
CN207079010U (en) A kind of novel graphite continuously purification device
CN206952172U (en) A kind of tungsten powder reducing furnace
US6337058B1 (en) Process for producing calcium sulfide
CN201834888U (en) Incomplete burner for gasifying, heating and feeding pulverized coal at atmospheric pressure
CN112552218B (en) Method for synthesizing accelerator ZDMC by continuous method
DK151215B (en) METHOD AND APPARATUS FOR PREPARING RED PHOSPHOR
CN113501500A (en) Synthesis process and synthesis furnace of high-purity hydrogen bromide
CA1266552A (en) Process for making phosphorus pentoxide of diminished reactivity
CN206434884U (en) Quaternary molecule distillation equipment
CN206828094U (en) A kind of device for preparing chlorine dioxide
US3907506A (en) Apparatus for the preparation of alkaline hyperoxide
US1023133A (en) Production of nitric acid.
CN208018168U (en) Vertical Sulfur evaporator
CN204485827U (en) A kind of biological scalding agent reaction unit
US2809880A (en) Production of magnesium oxide