NO751579L - - Google Patents

Info

Publication number
NO751579L
NO751579L NO751579A NO751579A NO751579L NO 751579 L NO751579 L NO 751579L NO 751579 A NO751579 A NO 751579A NO 751579 A NO751579 A NO 751579A NO 751579 L NO751579 L NO 751579L
Authority
NO
Norway
Prior art keywords
values
temperature
formula
hours
parameters
Prior art date
Application number
NO751579A
Other languages
Norwegian (no)
Inventor
A Lagrange
J Nicolas
Original Assignee
Thomson Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Csf filed Critical Thomson Csf
Publication of NO751579L publication Critical patent/NO751579L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)

Description

FERRITTMATERIALERFERRITE MATERIALS

Foreliggende oppfinnelse vedrorer et material av den art somThe present invention relates to a material of the kind which

er angitt i krav l's ingress.is stated in claim l's preamble.

Foreliggende oppfinnelse vedrorer litiumbaserte ferrimagne-tiske materialer for mikrobolgeanvendelser, særlig for bånd X (8,2-12,4 GHz) anvendelser av forskjellig art og spesielt anvendelser i ikke resiproserende anordninger såsom faseskiftere, sirkulatorer og isolatorer. The present invention relates to lithium-based ferrimagnetic materials for microwave applications, in particular for band X (8.2-12.4 GHz) applications of various kinds and in particular applications in non-reciprocating devices such as phase shifters, circulators and insulators.

Ved driftsfrekvenser over 6 GHz utviser de kjente materialer minst en vensentlig ulempe, eksempelvis kan nevnes: for tilfelle av ferritter med granatstruktur (garnet structure) : utilstrekkelig mettningsmagnetisme, At operating frequencies above 6 GHz, the known materials exhibit at least one significant disadvantage, for example: in the case of ferrites with a garnet structure: insufficient saturation magnetism,

for; tilfelle av nikkelbaserte. ferritter med spinel1struktur: for store magnetiske og elektriske iiap, for; case of nickel-based. ferrites with spinel1 structure: for large magnetic and electric iiap,

for manganbaserte og magnesiumbaserte ferritter med spinell-struktur: for stor variasjon i de magnetiske egenskaper med temperatur, i forbindelse med et relativt lavt kurirpunkt, for manganese-based and magnesium-based ferrites with a spinel structure: too large a variation in the magnetic properties with temperature, in connection with a relatively low courier point,

for litiumbaserte og aluminiumbaserte ferritter med spinell-struktur: for store dielektriske tap. for lithium-based and aluminum-based ferrites with spinel structure: too large dielectric losses.

Foreliggende oppfinnelse gjor det mulig å unngå disse forskel-lige ulemper. The present invention makes it possible to avoid these various disadvantages.

Disse materialer kan erholdes ved en av de kjente fremgangs-måter for fremstilling av polykrystallinske ferritter, eksempelvis omfattende de folgende trinn: a) blande med destillert vann eller alkoholoksyder eller salter med hoy renhet (renhet overstigende 99,9%), idet de These materials can be obtained by one of the known methods for the production of polycrystalline ferrites, for example comprising the following steps: a) mixing with distilled water or alcohol oxides or salts with high purity (purity exceeding 99.9%), as they

valgte mengder av oksydene eller saltene svarer til den valgte I sammensetning, under hensyntagen til elementtap eller anrikningj selected amounts of the oxides or salts correspond to the selected I composition, taking into account element loss or enrichmentj

i de etterfolgende trinn,in the following steps,

Ib) forknuse blandingen i 2 4 timer i et stålkar inneholdende stålkuler, c) ovnstorke blandingen og deretter glode denne i en ovn ved ca. 800°C, d) en andre knusning, i et vandig eller alkoholisk miljo, av det erholdte produkt, under betingelser tilsvarende de i den Ib) crush the mixture for 2-4 hours in a steel vessel containing steel balls, c) oven-dry the mixture and then anneal it in an oven at approx. 800°C, d) a second crushing, in an aqueous or alcoholic environment, of the product obtained, under conditions corresponding to those in the

forste knuseoperasjon, men i et tidsrom overstigende 12-2 4 timer, eksempelvis 36-48 timer, first crushing operation, but in a period exceeding 12-24 hours, for example 36-48 hours,

e) torke og sikte det erholdte pulver,e) drying and sifting the obtained powder,

f) forme, enten ved pressing i en stålform, hvilket nodvendig-gjor innarbeidelse av et bindemiddel (som senere kan fjernes ved oppvarmning til 600°C) eller ved såkalt "isostatisk" pressning i en gummiform, g) sintre i en oksygenatmosfære ved en temperatur i området 950-llOO°C i et tidsrom på 6-16 timer. f) forming, either by pressing in a steel mold, which necessitates the incorporation of a binder (which can later be removed by heating to 600°C) or by so-called "isostatic" pressing in a rubber mold, g) sintering in an oxygen atmosphere at a temperature in the range 950-1100°C for a period of 6-16 hours.

Resultatene som oppnås ved foreliggende oppfinnelse er bestemt ved å underkaste prover av de fremstilte materialer målinger av de konvensjonelt mest betydningsfulle egenskaper, av disse karakteristiske parametre er de folgende av spesiell betydning: mettningsmagnetismen 4itm ( en verdi på minst 200 gauss er nodvendig for å gjore materialet egnet for de påtenkte anvendelser),AH, som gir bredden av den giromagnetiske resonanslinje i forhold til den minst mulige nodvendige verdi (i praksis vil en verdi på 500 orsted ikke by på alvorlige problemer med hensyn til justering av det permanente magnetiske fe~lt som materialet utsettes for i de påtenkte anvendelser) , Z^H^, som gir bredden av den kjernemagnetiske resonanslinje The results obtained by the present invention are determined by subjecting samples of the manufactured materials to measurements of the conventionally most significant properties, of these characteristic parameters the following are of particular importance: the saturation magnetism 4itm (a value of at least 200 gauss is necessary to make the material suitable for the intended applications),AH, which gives the width of the gyromagnetic resonance line in relation to the smallest possible necessary value (in practice, a value of 500 orsted will not present serious problems with regard to the adjustment of the permanent magnetic field which the material is subjected to in the intended applications) , Z^H^, which gives the width of the nuclear magnetic resonance line

(spin wave resonance line), (denne parameter er knyttet til de magnetiske tap på en slik måte at jo mindre denne parameter er dessto mindre er de magnetiske tap, en verdi på noen få orsted tilsvarer meget lave magnetiske tap), tan 6 eller tan-_4 gens til tapsvinkelen (hvor en verdi i storrelseorden 10 svarer til meget små dielektriske tap). Materialet ifolge oppfinnelsen er særpreget ved det som er angitt i krav 1 karak-teriserende del. (spin wave resonance line) -_4 gens to the loss angle (where a value of the order of magnitude 10 corresponds to very small dielectric losses). The material according to the invention is characterized by what is stated in claim 1 characterizing part.

Eksempel IExample I

'Et materiale tilsvarende det av formel II, . hvor: 'A material corresponding to that of formula II, . where:

ble fremstilt ved en konvensjonell fremgangsmåte ved en glodetemperatur på 800°C og en sintringstemperatur på 1050°C i 6 timer. was produced by a conventional method at a glow temperature of 800°C and a sintering temperature of 1050°C for 6 hours.

De karakteristiske egenskaper målt ved 9 GHz var som folger 4ttms = 23 40 gauss The characteristic properties measured at 9 GHz were as follows 4ttms = 23 40 gauss

AH = 458 orsted..AH = 458 orsted..

AHK= 2.5 orstedAHK= 2.5 Orsted

tan 6 = 1.9.10<-4>tan 6 = 1.9.10<-4>

Kurirtemperaturen var ca. 500°C og den reelle del av den relative dielektrisitetskonstant var av storrelseorden 17. The courier temperature was approx. 500°C and the real part of the relative dielectric constant was of the order of magnitude 17.

Eksempel 2Example 2

Et materiale tilsvarende det av formel III, hvor: hvor x hadde verdiene 0-0.25, ble fremstil ved en konvensjonell fremgangsmåte ved en glodétemperatur på 800°C og en sintretemperatur på 1025°C i 6 timer. De karakteristiske egenskapene målt ved 9 GHz var som folger: Kurirtemperaturen varierte fra 500°C for en nullverdi for x og til 364°c for x =0.25. Den reelle del av den relative dielektrisitetskonstant var av storrelseorden 17. A material corresponding to that of formula III, where: where x had the values 0-0.25, was produced by a conventional method at a glow temperature of 800°C and a sintering temperature of 1025°C for 6 hours. The characteristic properties measured at 9 GHz were as follows: The courier temperature varied from 500°C for a zero value of x to 364°c for x =0.25. The real part of the relative dielectric constant was of the order of magnitude 17.

Eksempel 3Example 3

Et materiale tilsvarende det av formel II, hvor:A material corresponding to that of formula II, wherein:

hvor x hadde verdier i området 0,1-0,4, ble fremstilt på konvensjonell måte ved en glodetemperatur på 800°C og en sintretemperatur på 1000°C i 6 timer. where x had values in the range 0.1-0.4, was produced in a conventional manner at a glow temperature of 800°C and a sintering temperature of 1000°C for 6 hours.

De karakteristiske egenskapene målt ved 9 GHz var som folger: The characteristic properties measured at 9 GHz were as follows:

Kurirtemperaturen varierte fra 462 °c for x = 0,1 til 310°C for x =0,4. Den reelle del av dielektrisitetskonstanten var av storrelsesorden 17. The courier temperature varied from 462 °C for x = 0.1 to 310 °C for x =0.4. The real part of the dielectric constant was of order 17.

I I I I

Eksempel 4Example 4

I Materialet tilsvarende det av formel II, hvor: i I The material corresponding to that of formula II, where: i

ble fremstilt på konvensjonell måte med en glodetemperatur på 800°C og en sintretemperatur på 1000°C i 6 timer. was produced in a conventional manner with a glow temperature of 800°C and a sintering temperature of 1000°C for 6 hours.

De karakteristiske egenskaper målt ved 9 GHz var. som folger: The characteristic properties measured at 9 GHz were. as follows:

4TTM= 2 747 gauss4TTM= 2,747 gauss

AH = 506 orstedAH = 506 Orsted

tanS 4.2.IO<-4>tanS 4.2.IO<-4>

Kurirtemperaturen var 570°C og den reelle del av dielektrisitetskonstanten var av storrelsesorden 17. The curing temperature was 570°C and the real part of the dielectric constant was of the order of magnitude 17.

I de ovenfor angitte 4 eksempler utviste materialene meget lave magnetiske og dielektriske tap i X båndet. In the above 4 examples, the materials exhibited very low magnetic and dielectric losses in the X band.

En mulig forklaring av de gode erholdte resultater er angitt i det fSigende, på basis av de forskjellige bestanddelers betydning. A possible explanation for the good results obtained is indicated below, on the basis of the importance of the various components.

Vismutoksyd spiller en vesentlig rolle på samme måte som man-ganioner. På den annen side er vismut et fortettende tilset-ningsmiddel som fremmer sintring og nedsetter porositeten av det erholdte produkt, vismut er ikke inkorpurert i ferrittens krystallgitter. på den annen side spiller mangan en funda-mental rolle med hensyn til å nedsette de dielektriske tap. Manganionene i flerverdig tilstand danner en del av krystall-gitteret. Bismuth oxide plays an essential role in the same way as manganese ions. On the other hand, bismuth is a densifying additive that promotes sintering and reduces the porosity of the product obtained, bismuth is not incorporated into the ferrite's crystal lattice. on the other hand, manganese plays a fundamental role in reducing the dielectric losses. The manganese ions in the multivalent state form part of the crystal lattice.

Titan i form av et toverdig ion spiller en dobbeltrolle.Titanium in the form of a divalent ion plays a dual role.

Det fremmer sintring og ytterligere utviser en tendens til å nedsette mettningsmagnetismen. It promotes sintering and further exhibits a tendency to decrease the saturation magnetism.

I Det toverdige sinkion utviser forskjellige effekter, avhengig av hvorvidt det innfores i de forhold som er angitt i formlene II eller III. Det opptar forskjellige foretrukne steder (ok-tahedral eller tetrahedral). For tilfelle formel II vil sink-ionet bibeholde magnetiseringskonstanten til tross for okningen av titanforholdet. I tilfelle av formel III hvor titanforholdet er uavhengig av sinkforholdet vil det oke metningsmag-netismen samtidig med at det reduserer bredden av den giromagnetiske resonanslinje. I The divalent zinc ion exhibits different effects, depending on whether it is introduced in the conditions indicated in formulas II or III. It occupies different preferred sites (octahedral or tetrahedral). For the case of formula II, the zinc ion will retain the magnetization constant despite the increase in the titanium ratio. In the case of formula III where the titanium ratio is independent of the zinc ratio, it will increase the saturation magnetism at the same time as it reduces the width of the gyromagnetic resonance line.

Ved anvendelse av materialene i henhold til foreliggende oppfinnelse ved fremstilling av sirkulatorer, faseskiftere, isolatorer etc. vil det oppnås meget lave magnetiske og dielektriske tap. F.eks. i en X-båndsirkulator ble målt et innfor-ingstap ikke overstigende 0,1 desibel. When using the materials according to the present invention in the manufacture of circulators, phase shifters, insulators etc., very low magnetic and dielectric losses will be achieved. E.g. in an X-band circulator, an insertion loss not exceeding 0.1 decibels was measured.

Oppfinnelsen er like anvendbar i den tilsvarende anordningThe invention is equally applicable in the corresponding device

som opererer ved frekvenser overstigende X-båndets frekvenser. which operate at frequencies exceeding the X-band frequencies.

Claims (4)

1. Ferrimagnetiskmaterialene, karakterisert ved at det er en polykrystallinsk ferritt med spinell-struktur, hvis sammensetning kan uttrykkes ved en av de f 61-gende tre formler:1. The ferrimagnetic materials, characterized in that it is a polycrystalline ferrite with a spinel structure, whose composition can be expressed by one of the following three formulas: (I )L i2 0 ; 5(1 - E) Fe2 03 ; Bi2 03 ; p Mn 02 (II) Li2 0 (1 + y) ; 2x ZnO ; 5(1 -£) Fe2 03 (1 _-0.6y - 0.4x) ; Ti02 (4y + 2x) ; <x Bi2 03 j (3Mn02(III) Li20 (1 + y _ x) ; 4x ZnO ; 5(1 -£)Fe2 03 (l - 0.6y-0.2x); 4y Ti02 ; a- Bi203 ; (3 Mn02 I hvor (I )L i2 0 ; 5(1 - E) Fe2 03 ; Bi2 03 ; on Mn 02 (II) Li 2 0 (1 + y) ; 2x ZnO; 5(1 -£) Fe2 03 (1 _-0.6y - 0.4x) ; Ti02 (4y + 2x) ; <x Bi2 03 j (3Mn02(III) Li20 (1 + y _ x) ; 4x ZnO ; 5(1 -£)Fe2 03 (l - 0.6y-0.2x); 4y TiO 2 ; a-Bi2O3; (3 Mn02 I where 2. Materialet ifolge krav 1, karakterisert ved at det tilfredsstiller formel (i), hvori parametrene har de folgende verdier: 2. The material according to claim 1, characterized in that it satisfies formula (i), in which the parameters have the following values: 3. Materialet ifolge krav 1, karakterisert ved at det tilfredsstiller formelen (I I) hvori parametrene oc, (3 og £ har de folgende verdier: 3. The material according to claim 1, characterized in that it satisfies the formula (I I) in which the parameters oc, (3 and £ have the following values: og hvor x har verdier i området 0,1-^ 0,4 og y har verdier i området 0,20-0,25. and where x has values in the range 0.1-^ 0.4 and y has values in the range 0.20-0.25. 4. Materialet ifolge krav 1, karakterisert ved at det tilfredsstiller formel (III), hvori parametrene oc, (3 og £ har de folgende verdier: 4. The material according to claim 1, characterized in that it satisfies formula (III), in which the parameters oc, (3 and £ have the following values: og x har verdier i området 0-0,25 og y har verdier 0,20-0,25.and x has values in the range 0-0.25 and y has values 0.20-0.25.
NO751579A 1974-05-03 1975-05-02 NO751579L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7415376A FR2269506B1 (en) 1974-05-03 1974-05-03

Publications (1)

Publication Number Publication Date
NO751579L true NO751579L (en) 1975-11-04

Family

ID=9138433

Family Applications (1)

Application Number Title Priority Date Filing Date
NO751579A NO751579L (en) 1974-05-03 1975-05-02

Country Status (7)

Country Link
DE (1) DE2519245A1 (en)
DK (1) DK192475A (en)
FR (1) FR2269506B1 (en)
GB (1) GB1504336A (en)
IT (1) IT1035594B (en)
NO (1) NO751579L (en)
SE (1) SE7505145L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374275A1 (en) 1976-12-14 1978-07-13 Thomson Csf SOFT LITHIUM-TITANIUM-ZINC FERRITE
FR2425135A1 (en) * 1978-05-02 1979-11-30 Thomson Csf SOFT LITHIUM-TITANIUM-ZINC FERRITE AND MAGNETIC DEFLECTOR USING SUCH FERRITE
IT1237829B (en) * 1989-11-24 1993-06-18 Selenia Ind Elettroniche LITHIUM TITANIUM ZINC FERRITE FOR MICROWAVE APPLICATIONS.
JP5013505B2 (en) * 2006-03-31 2012-08-29 国立大学法人 東京大学 Magnetic material

Also Published As

Publication number Publication date
DE2519245A1 (en) 1975-11-13
FR2269506A1 (en) 1975-11-28
IT1035594B (en) 1979-10-20
GB1504336A (en) 1978-03-22
FR2269506B1 (en) 1977-06-24
SE7505145L (en) 1975-11-04
DK192475A (en) 1975-11-04

Similar Documents

Publication Publication Date Title
Klygach et al. Measurement of permittivity and permeability of barium hexaferrite
US10230146B2 (en) Rare earth reduced garnet systems and related microwave applications
CN109563640B (en) Temperature insensitive dielectric constant garnet
Deng et al. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+
CN109836149B (en) Garnet ferrite material with low magnetic moment, small loss and high temperature stability
Aggarwal et al. Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies
CN109437879B (en) Spinel Li-series ferrite material for lock-type phase shifter from x waveband to millimeter wave waveband
CN111205078A (en) Bi1-xNdxFeO3Preparation method of rare earth ferrite magnetic wave-absorbing material
CN108892502B (en) Vanadium-nickel co-doped barium ferrite wave-absorbing powder material and preparation method thereof
Nesa et al. Structural and magnetic properties of Cr 3+ doped Mg ferrites
NO751579L (en)
Yar et al. Structural, dielectric, and magnetic properties of nickel rich manganese substituted Li2Ni6MnxCo2-xO10 nanomaterial synthesized via sol-gel method
Jing et al. Praseodymium dysprosium co-doped M-type strontium ferrite: Intentionally manufacturing heterophase growth to improve microwave absorption performance
Gupta et al. Evidence of electron exchange between Fe2+ and Fe3+ ions on tetrahedral and octahedral sites in Fe2MoO4
Kuo et al. Structure and magnetic properties of Mn and Al doped magnesium ferrite
CN103332933B (en) Preparation method of LaAgMnO3/Ni2Z composite wave-absorbing material
Li Effect of Mn3+ doping on the loss of Li0. 37Zn0. 26Ti0. 12Fe2. 37O4 ferrite
CN113511687A (en) Wave-absorbing material and preparation method thereof
CN113845359A (en) Low-loss LiZnTiMn gyromagnetic ferrite material and preparation method thereof
CN112194481A (en) Nickel-zinc ferrite material and preparation method thereof
JP2958800B2 (en) Microwave / millimeter wave magnetic composition
Ramesh et al. Effect of sintering temperature on the magnetodielectric performance of nickel ferrite
Sadiq et al. Synthesis and characterization of rare earth elements substituted X-type hexagonal ferrites
Fakher et al. Effects of sintering temperature on structural, infrared, magnetic and electrical properties of Cd0. 5Zn0. 5FeCrO4 ferrites prepared by sol–gel route
US5055214A (en) Magnetic material for microwave and millimeter wave frequencies