NO347360B1 - Cell-binding agent maytansinoid conjugate of formula trastuzumab-SMCC-DM1 or trastuzumab-SIABDM1, method for producing these and an in vitro method for directing maytansinoids to a selected cell population or to eliminate cells, as well as application. - Google Patents

Cell-binding agent maytansinoid conjugate of formula trastuzumab-SMCC-DM1 or trastuzumab-SIABDM1, method for producing these and an in vitro method for directing maytansinoids to a selected cell population or to eliminate cells, as well as application. Download PDF

Info

Publication number
NO347360B1
NO347360B1 NO20150450A NO20150450A NO347360B1 NO 347360 B1 NO347360 B1 NO 347360B1 NO 20150450 A NO20150450 A NO 20150450A NO 20150450 A NO20150450 A NO 20150450A NO 347360 B1 NO347360 B1 NO 347360B1
Authority
NO
Norway
Prior art keywords
maytansinoid
binding agent
conjugate
cell
cell binding
Prior art date
Application number
NO20150450A
Other languages
Norwegian (no)
Other versions
NO20150450L (en
Inventor
Ravi V J Chari
Rita Steeves
Walter A Blättler
Wayne Widdison
Original Assignee
Immunogen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immunogen Inc filed Critical Immunogen Inc
Priority claimed from PCT/US2004/030917 external-priority patent/WO2005037992A2/en
Publication of NO20150450L publication Critical patent/NO20150450L/en
Publication of NO347360B1 publication Critical patent/NO347360B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Communicable Diseases (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Pain & Pain Management (AREA)
  • Transplantation (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)

Description

Oppfinnelsens område Field of the invention

Den foreliggende oppfinnelse vedrører cellebindingsmiddel-maytansinoidkonjugater med formelen trastuzumab-N-succinimidyl-4-(maleimidometyl)sykloheksankarboksylat (SMCC)-N<2>'-deacetyl-N<2>'-(3-merkapto-1-oksopropyl)-maytansin (DM1) eller trastuzumab-N-succinimidyl-4-(iodoacetyl)-aminobenzoat (SIAB)-DM1, sammensetninger omfattende disse og dets anvendelse ved behandling av tumorer. The present invention relates to cell binding agent-maytansinoid conjugates of the formula trastuzumab-N-succinimidyl-4-(maleimidomethyl)cyclohexanecarboxylate (SMCC)-N<2>'-deacetyl-N<2>'-(3-mercapto-1-oxopropyl)-maytansine (DM1) or trastuzumab-N-succinimidyl-4-(iodoacetyl)-aminobenzoate (SIAB)-DM1, compositions comprising these and its use in the treatment of tumors.

Oppfinnelsen angår også fremgangsmåter for fremstilling cellebindingsmiddelmaytansinoid-konjugatene. The invention also relates to methods for producing the cell binding agent maytansinoid conjugates.

Oppfinnelsen angår videre in vitro fremgangsmåter for å styre maytansinoider til en valgt cellepopulasjon eller for å eliminere celler. The invention further relates to in vitro methods for administering maytansinoids to a selected cell population or for eliminating cells.

Bakgrunn for oppfinnelsen Background for the invention

Maytansinoider er svært cytotoksiske legemidler. Maytansin ble først isolert av Kupchan et al., fra den østafrikanske busken Maytenus serrata og ble vist å være 100 til 1000 ganger mer cytotoksisk enn konvensjonelle kreftkjemoterapeutiske midler slik som metotreksat, daunorubicin og vinkristin (US patentskrift 3 896 111). Etter dette ble det oppdaget at enkelte mikrober også produserer maytansinoider, slik som maytansinol og C-3-estere av maytansinol (US patentskrift 4 151 042). Syntetiske C-3-estere av maytansinol og analoger av maytansinol har også blitt rapportert [Kupchan et al., 21 J. Med. Chem. 31-37 (1978); Higashide et al. 270 Nature 721-722 (1977); Kawai et al., 32 Chem. Pharm. Bull. 3441-3451 (1984)]. Eksempler på analoger av maytansinol fra hvilke C-3-estere har blitt fremstilt inkluderer maytansinol med modifiseringer på den aromatiske ringen (for eksempel deklor) eller på C-9, C-14 (for eksempel hydroksylert metylgruppe), C-15, C-18, C-20 og C-4,5. Maytansinoids are highly cytotoxic drugs. Maytansin was first isolated by Kupchan et al., from the East African shrub Maytenus serrata and was shown to be 100 to 1000 times more cytotoxic than conventional cancer chemotherapeutic agents such as methotrexate, daunorubicin and vincristine (US Patent 3,896,111). After this, it was discovered that some microbes also produce maytansinoids, such as maytansinol and C-3 esters of maytansinol (US patent 4,151,042). Synthetic C-3 esters of maytansinol and analogs of maytansinol have also been reported [Kupchan et al., 21 J. Med. Chem. 31-37 (1978); Higashide et al. 270 Nature 721-722 (1977); Kawai et al., 32 Chem. Pharm. Bull. 3441-3451 (1984)]. Examples of analogues of maytansinol from which C-3 esters have been prepared include maytansinol with modifications on the aromatic ring (e.g. dechloro) or at C-9, C-14 (e.g. hydroxylated methyl group), C-15, C- 18, C-20 and C-4,5.

De naturlig forekommende og syntetiske C-3-estere kan bli klassifisert i to grupper: The naturally occurring and synthetic C-3 esters can be classified into two groups:

(a) C-3-estere med enkle karboksylsyrer (US patentskrift 4 248 870, 4 265 814, (a) C-3 esters with single carboxylic acids (US Patents 4,248,870, 4,265,814,

4 308 268, 4 308 269, 4 309 428, 4 322 348 og 4 331 598), og 4 308 268, 4 308 269, 4 309 428, 4 322 348 and 4 331 598), and

(b) C-3-estere med derivater av N-metyl-L-alanin (US patentskrift 4 137 230 og (b) C-3 esters with derivatives of N-methyl-L-alanine (US Patent 4,137,230 and

4 260 608; og Kawai et al., 32 Chem. Pharm. Bull. 3441-3451 (1984)). 4,260,608; and Kawai et al., 32 Chem. Pharm. Bull. 3441-3451 (1984)).

Estere i gruppe (b) ble funnet å være mye mer cytotoksiske enn estere i gruppe (a). Esters in group (b) were found to be much more cytotoxic than esters in group (a).

Maytansin er en mitotisk inhibitor. Behandling av L1210-celler in vivo med maytansin har blitt rapportert å føre til at 67 % av disse cellene akkumulerer ved mitose. Ubehandlede kontrollceller ble rapportert å vise en mitotisk indeks som strakk seg fra mellom 3,2 til 5,8 % (Sieber et al., 43 Bibl.Haematol. 495-500 (1976)). Eksperimenter med egg fra sjøpinnsvin og egg fra muslinger tyder på at maytansin inhiberer mitose ved å interferere med dannelsen av mikrotubuli via inhiberingen av polymeriseringen av mikrotubuliproteinet tubulin (Remilliard et al., 189 Science 1002-1005(1975)). Maytansine is a mitotic inhibitor. Treatment of L1210 cells in vivo with maytansine has been reported to cause 67% of these cells to accumulate in mitosis. Untreated control cells were reported to show a mitotic index ranging from between 3.2 to 5.8% (Sieber et al., 43 Bibl.Haematol. 495-500 (1976)). Experiments with eggs from sea urchins and eggs from clams suggest that maytansine inhibits mitosis by interfering with the formation of microtubules via the inhibition of the polymerization of the microtubule protein tubulin (Remilliard et al., 189 Science 1002-1005(1975)).

In vitro har murine P388-, L1210- og LY5178-leukemisuspensjoner blitt funnet å være inhibert av maytansin ved doser på 10<-3 >til 10<-1 >µg/ml, der P388-linjen er mest sensitiv. Maytansin er også blitt vist å være en aktiv inhibitor av in vitro-vekst av humane nasofaryngeale karsinomceller, og den humane akuttlymfoblastiske leukemilinjen C.E.M. ble rapportert inhibert av konsentrasjoner så lave som 10<-7 >µg/ml (Wolpert-DeFillippes et al., 24 Biochem. Pharmacol. 1735-1738 (1975)). In vitro, murine P388, L1210 and LY5178 leukemia suspensions have been found to be inhibited by maytansine at doses of 10<-3 > to 10<-1 >µg/ml, with the P388 line being most sensitive. Maytansine has also been shown to be an active inhibitor of in vitro growth of human nasopharyngeal carcinoma cells, and the human acute lymphoblastic leukemia line C.E.M. was reported to be inhibited by concentrations as low as 10<-7 >µg/ml (Wolpert-DeFillippes et al., 24 Biochem. Pharmacol. 1735-1738 (1975)).

Maytansin har også blitt vist å være aktivt in vivo. Tumorvekst i P388-lymphocytt-leukemisystemet ble vist å bli inhibert over et doseringsområde på 50 til 100 ganger, noe som tyder på en høy terapeutisk indeks, og vesentlig inhibitorisk aktivitet kunne også bli vist med L1210-museleukemisystemet, det humane Lewis lungekarsinomsystemet og det humane B-16-melanokarcinomsystemet (Kupchan, 33 Ped. Proc 2288-2295 (1974)). Maytansin has also been shown to be active in vivo. Tumor growth in the P388 lymphocyte leukemia system was shown to be inhibited over a 50- to 100-fold dose range, indicating a high therapeutic index, and significant inhibitory activity could also be demonstrated with the L1210 mouse leukemia system, the human Lewis lung carcinoma system, and the human The B-16 melanocarcinoma system (Kupchan, 33 Ped. Proc 2288-2295 (1974)).

Fordi maytansinoidene er svært cytotoksiske er det forventet at de kan bli benyttet i behandlingen av mange sykdommer, slik som kreft. Denne forventningen er fremdeles ikke realisert. Kliniske utprøvninger med maytansin var ikke fordelaktige på grunn av et antall bivirkninger (Issel et al., 5 Cancer Treat. Rev. 199-207 (1978)). Because the maytansinoids are highly cytotoxic, it is expected that they can be used in the treatment of many diseases, such as cancer. This expectation has still not been realized. Clinical trials with maytansine were not beneficial due to a number of side effects (Issel et al., 5 Cancer Treat. Rev. 199-207 (1978)).

Skadelige effekter på sentralnervesystemet og gastrointestinalsymptomer var ansvarlige for at noen pasienter motsatte seg ytterligere terapi (Issel på 204), og det så ut til at maytansin var assosiert med perifer nevropati som kan være kumulativ (Issel på 207). Adverse effects on the central nervous system and gastrointestinal symptoms were responsible for some patients resisting further therapy (Issel at 204), and maytansine appeared to be associated with peripheral neuropathy that could be cumulative (Issel at 207).

I henhold til dette ble målsøkingsteknikker for selektivt å levere legemidler til målcellen benyttet. Både kløyvbare og ikke-kløyvbare linkere har blitt undersøkt for flere legemidler, men i de fleste tilfeller, inkludert tilfellet med maytansinoidet, har in vitrocytotoksisitetstester avslørt at antistoff-legemiddelkonjugater sjelden oppnår det samme cytotoksiske potensial som de frie ukonjugerte legemidlene. Slik har det generelt blitt akseptert at for at målrettet levering av maytansinoider skal være effektivt så må bindingen mellom maytansinoid og cellebindingsmidlet være kløyvbar. Accordingly, targeting techniques to selectively deliver drugs to the target cell were used. Both cleavable and non-cleavable linkers have been investigated for several drugs, but in most cases, including the case of the maytansinoid, in vitro cytotoxicity tests have revealed that antibody-drug conjugates rarely achieve the same cytotoxic potential as the free unconjugated drugs. Thus, it has generally been accepted that for targeted delivery of maytansinoids to be effective, the bond between maytansinoid and the cell binding agent must be cleavable.

På feltet for immuntoksiner ble videre konjugater som inneholder linkere med disulfidbruer mellom monoklonale antistoffer og katalytisk aktive proteintoksiner vist å være mer cytotoksiske enn konjugater som inneholder andre linkere. Se Lambert et al., J. Biol. Chem. 12035-12041 (1985); Lambert et al., in Immunotoxins 175-209 (A. In the field of immunotoxins, conjugates containing linkers with disulfide bridges between monoclonal antibodies and catalytically active protein toxins were shown to be more cytotoxic than conjugates containing other linkers. See Lambert et al., J. Biol. Chem. 12035-12041 (1985); Lambert et al., in Immunotoxins 175-209 (A.

Frankel, ed. 1988) og Ghetie et al., 48 Cancer Res. 2610-2517 (1988). Dette ble tilskrevet den høye intracellulære konsentrasjonen av glutation som bidrar til den effektive kløyvingen av disulfidbindingen mellom et antistoffmolekyl og et toksin. Nylig ble et konjugat av maytansinoider bundet til anti-Her2-brystkreftantistoffet TA.1 via den ikke-kløyvbare linkeren SMCC vist å være 200 ganger mindre potent enn et konjugat av maytansinoider bundet til TA.1 via en linker som hadde en kløyvbar disulfidbinding (Chari et al., 52 Cancer Res. 127-133 (1992)). Frankel, ed. 1988) and Ghetie et al., 48 Cancer Res. 2610-2517 (1988). This was attributed to the high intracellular concentration of glutathione which contributes to the efficient cleavage of the disulfide bond between an antibody molecule and a toxin. Recently, a conjugate of maytansinoids linked to the anti-Her2 breast cancer antibody TA.1 via the non-cleavable linker SMCC was shown to be 200-fold less potent than a conjugate of maytansinoids linked to TA.1 via a linker that had a cleavable disulfide bond (Chari et al., 52 Cancer Res. 127-133 (1992)).

Slik har cytotoksiske konjugater bundet via disulfidinneholdende kløyvbare linkere blitt søkt etter. Shen et al. beskriver konverteringen av metotreksat til merkaptoetyl-amidderivat etterfulgt av konjugering med poly-D-lysin via disulfidbinding (260 J. Biol. Chem. 10905-10908 (1985)). Fremstilling av et konjugat av det trisulfidinneholdende toksiske legemidlet kalicheamycin med et antistoff ble også beskrevet (Menendez et al., Fourth International Conference on Monoclonal Antibody Immunoconjugates for Cancer, San Diego, Abstract 81 (1989)). Thus, cytotoxic conjugates bound via disulfide-containing cleavable linkers have been searched for. Shen et al. describes the conversion of methotrexate to mercaptoethyl amide derivative followed by conjugation with poly-D-lysine via disulfide bond (260 J. Biol. Chem. 10905-10908 (1985)). Preparation of a conjugate of the trisulfide-containing toxic drug calicheamycin with an antibody was also described (Menendez et al., Fourth International Conference on Monoclonal Antibody Immunoconjugates for Cancer, San Diego, Abstract 81 (1989)).

US patentskrift 5 208 020 og 5 416 064, tilkjennegis cytotoksiske konjugater som omfatter cellebindingsmidler bundet til spesifikke maytansinoider via kløyvbare linkere, slik som linkere inneholdende disulfidgrupper, linkere inneholdende syrelabile grupper, linkere inneholdende fotolabile grupper, linkere inneholdende peptidaselabile grupper og linkere inneholdende esteraselabile grupper. US patents 5,208,020 and 5,416,064 disclose cytotoxic conjugates comprising cell binding agents bound to specific maytansinoids via cleavable linkers, such as linkers containing disulfide groups, linkers containing acid-labile groups, linkers containing photolabile groups, linkers containing peptidaselabile groups and linkers containing esteraselabile groups.

US patentskrift 6 333 410 B1, tilkjennegir en prosess for fremstilling og rensing av tiolinneholdende maytansinoider for binding til cellebindingsmidler, og US patentskrift 6 441 163 B1, tilkjennegir en ett-trinns fremgangsmåte for fremstilling av cytotoksiske konjugater av maytansinoider og cellebindingsmidler, der linkeren er en disulfidinneholdende kløyvbar linker. US Patent 6,333,410 B1 discloses a process for the preparation and purification of thioline-containing maytansinoids for binding to cell binding agents, and US Patent 6,441,163 B1 discloses a one-step process for the preparation of cytotoxic conjugates of maytansinoids and cell binding agents, wherein the linker is a disulfide-containing cleavable linker.

Vider beskriver US patentskrift 5 208 020 antistoff-maytansinoidkonjugater med ikke-kløyvbare linkere, der linkeren omfatter maleimidogruppe. Likevel inneholder referansen ingen eksperimentelle data som viser at slike konjugater er effektive i å behandle sykdom. Furthermore, US patent document 5,208,020 describes antibody-maytansinoid conjugates with non-cleavable linkers, where the linker comprises a maleimido group. Nevertheless, the reference contains no experimental data showing that such conjugates are effective in treating disease.

Patentdokumentene EP 1354896 A1, WO 0124763 A2, WO 02098883 A1 og publikasjonen Chari Ravi V.J. et al.; "Immunoconjugates containing novel maytansinoids: promising anticancer drugs"; Cancer Research, vol. 52, nr. 1, 1992, s. 127-131, ISSN 0008-5472, beskriver cellebindingsmiddel-maytansinoid-konjugater, men beskriver ikke antistoffet trastazumab. The patent documents EP 1354896 A1, WO 0124763 A2, WO 02098883 A1 and the publication Chari Ravi V.J. et al.; "Immunoconjugates containing novel maytansinoids: promising anticancer drugs"; Cancer Research, vol. 52, No. 1, 1992, pp. 127-131, ISSN 0008-5472, describes cell binding agent-maytansinoid conjugates, but does not describe the antibody trastazumab.

Det har nå uventet blitt funnet at cytotoksiske konjugater av maytansinoider og cellebindingsmidler bundet via ikke-kløyvbare linkere er ekstremt potente, og i mange tilfeller har de uventede fortrinn i forhold til konjugater av maytansinoider og cellebindingsmidler av kløyvbare linkere. It has now unexpectedly been found that cytotoxic conjugates of maytansinoids and cell binding agents linked via non-cleavable linkers are extremely potent and in many cases have unexpected advantages over conjugates of maytansinoids and cell binding agents of cleavable linkers.

Oppsummering av oppfinnelsen Summary of the invention

Foreliggende oppfinnelse angår et cellebindingsmiddel-maytansinoidkonjugat, kjennetegnet ved følgende formler: The present invention relates to a cell binding agent-maytansinoid conjugate, characterized by the following formulas:

trastuzumab-N-succinimidyl-4-(maleimidometyl)sykloheksankarboksylat (SMCC)-N<2>'-deacetyl-N<2>'-(3-merkapto-1-oksopropyl)-maytansin (DM1) eller trastuzumab-N-succinimidyl-4-(iodoacetyl)-aminobenzoat (SIAB)-DM1. trastuzumab-N-succinimidyl-4-(maleimidomethyl)cyclohexanecarboxylate (SMCC)-N<2>'-deacetyl-N<2>'-(3-mercapto-1-oxopropyl)-maytansine (DM1) or trastuzumab-N-succinimidyl -4-(iodoacetyl)-aminobenzoate (SIAB)-DM1.

Oppfinnelsen angår også en sammensetning omfattende cellebindingsmiddelmaytansinoid-konjugatet ifølge oppfinnelsen og en bærer. The invention also relates to a composition comprising the cell binding agent maytansinoid conjugate according to the invention and a carrier.

Oppfinnelsen angår også en fremgangsmåte for fremstilling av cellebindingsmiddel-maytansinoid-konjugatet ifølge oppfinnelsen, hvor fremgangsmåten omfatter å: The invention also relates to a method for producing the cell binding agent-maytansinoid conjugate according to the invention, where the method comprises:

(a) tilveiebringe cellebindingsmidlet (a) providing the cell binding agent

(b) modifisere cellebindingsmidlet med et kryssbindingsmiddel og (b) modifying the cell binding agent with a cross-linking agent and

(c) konjugere det modifiserte cellebindingsmidlet med et maytansinoid eller et tiol-inneholdende maytansinoid for derved å tilveiebringe den ikke-kløyvbare linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiol-inneholdende maytansinoidet for å fremstille konjugatet. (c) conjugating the modified cell binding agent with a maytansinoid or a thiol-containing maytansinoid thereby providing the non-cleavable linker between the cell binding agent and the maytansinoid or the thiol-containing maytansinoid to produce the conjugate.

Oppfinnelsen angår også en fremgangsmåte for fremstilling av cellebindingsmiddel-maytansinoid-konjugatet ifølge oppfinnelsen, hvor fremgangsmåten omfatter å: The invention also relates to a method for producing the cell binding agent-maytansinoid conjugate according to the invention, where the method comprises:

(a) tilveiebringe maytansinoidet eller et tiol-inneholdende maytansinoid, (a) providing the maytansinoid or a thiol-containing maytansinoid;

(b) modifisere maytansinoidet eller det tiol-inneholdende maytansinoidet med et kryssbindingsmiddel for derved å danne en ikke-kløyvbar linker og (b) modifying the maytansinoid or thiol-containing maytansinoid with a cross-linking agent to thereby form a non-cleavable linker and

(c) konjugere det modifiserte maytansinoidet eller tiol-inneholdende maytansinoidet med cellebindingsmidlet for derved å tilveiebringe den ikke-kløyvbare linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiol-inneholdende maytansinoidet for å fremstille konjugatet. (c) conjugating the modified maytansinoid or thiol-containing maytansinoid with the cell-binding agent to thereby provide the non-cleavable linker between the cell-binding agent and the maytansinoid or the thiol-containing maytansinoid to produce the conjugate.

Oppfinnelsen angår også en in vitro fremgangsmåte for å styre maytansinoider til en valgt cellepopulasjon, kjennetegnet ved at fremgangsmåten omfatter å kontakte en cellepopulasjon eller et vev som er mistenkt for å inneholde den valgte cellepopulasjonen med et cellebindingsmiddel-maytansinoid-konjugat, der cellebindingdmiddeletmaytansinoid-konjugated har følgende formel: trastuzumab-SMCC-DM1 eller trastuzumab-SIAB. The invention also relates to an in vitro method for administering maytansinoids to a selected cell population, characterized in that the method comprises contacting a cell population or a tissue suspected of containing the selected cell population with a cell binding agent-maytansinoid conjugate, where the cell binding agent maytansinoid-conjugated has following formula: trastuzumab-SMCC-DM1 or trastuzumab-SIAB.

Oppfinnelsen angår også en in vitro fremgangsmåte for eliminering av celler, kjennetegnet ved at fremgangsmåten omfatter å kontakte cellene med et cellebindingsmiddel-maytansinoid-konjugat der cellebindingsmiddelet-maytansinoidkonjugated har følgende formel: trastuzumab-SMCC-DM1 eller trastuzumab-SIAB. The invention also relates to an in vitro method for eliminating cells, characterized in that the method comprises contacting the cells with a cell binding agent-maytansinoid conjugate where the cell binding agent-maytansinoid conjugate has the following formula: trastuzumab-SMCC-DM1 or trastuzumab-SIAB.

Oppfinnelsen angår også cellebindingsmiddel-maytansinoid-konjugatene med formelen trastuzumab-SMCC-DM1 eller trastuzumab-SIAB-DM1, der cellene er sykdomsrammede eller infiserte celler fra tumorer, for anvendelse i en fremgangsmåte for behandling av nevnte tumore, der fremgangsmåten omfatter å administrere til et individ med behov for behandling en effektiv mengde av nevnte konjugatet. The invention also relates to the cell binding agent-maytansinoid conjugates with the formula trastuzumab-SMCC-DM1 or trastuzumab-SIAB-DM1, where the cells are diseased or infected cells from tumors, for use in a method for treating said tumor, where the method comprises administering to a individual in need of treatment an effective amount of said conjugate.

Den foreliggende oppfinnelse og utførelsesformer derav er angitt i de etterfølgende patentkrav. The present invention and embodiments thereof are specified in the subsequent patent claims.

Kort beskrivelse av figurene Brief description of the figures

Figur 1 viser strukturen til SMCC. Figure 1 shows the structure of the SMCC.

Figur 2 viser strukturen til DM1. Figure 2 shows the structure of DM1.

Figur 3 viser grafiske resultater av en FACS-bindingsanalyse som sammenligner huC242 antistoff med antistoff-maytansinoidkonjugatet huC252-SMCC-DM1. Figure 3 shows graphical results of a FACS binding assay comparing huC242 antibody with the antibody-maytansinoid conjugate huC252-SMCC-DM1.

Figur 4 viser grafisk cytotoksisiteten til huC252-SMCC-DM1. Figure 4 graphically shows the cytotoxicity of huC252-SMCC-DM1.

Figur 5 viser størrelseseksklusjonskromatografi for huC252-SMCC-DM1. Figure 5 shows size exclusion chromatography for huC252-SMCC-DM1.

Figurene 6A-C og figur 7 viser grafisk cytotoksisiteten til huC252-SMCC-DM1 sammenlignet med konjugater fremstilt med disulfidinneholdende linkere. Figures 6A-C and Figure 7 graphically show the cytotoxicity of huC252-SMCC-DM1 compared to conjugates prepared with disulfide-containing linkers.

Figurene 8A-D viser grafisk cytotoksisiteten til SMCC-DM1-konjugater bundet til ulike cellebindingsmidler. Figures 8A-D graphically show the cytotoxicity of SMCC-DM1 conjugates bound to various cell binding agents.

Figur 9 viser grafisk cytotoksisiteten til antistoff-maytansinoidkonjugat huC252-SMCC-DM1. Figure 9 graphically shows the cytotoxicity of antibody-maytansinoid conjugate huC252-SMCC-DM1.

Figur 10A viser grafisk antitumoraktiviteten til huC252-SMCC-DM1 mot humane COLO205-kolonkreftxenografter i SCID-mus. Figure 10A graphically shows the antitumor activity of huC252-SMCC-DM1 against human COLO205 colon cancer xenografts in SCID mice.

Figur 10B viser grafisk antitumoraktiviteten til huC252-SMCC-DM1 mot humane SNU16-magetumorxenografter i SCID-mus. Figure 10B graphically shows the antitumor activity of huC252-SMCC-DM1 against human SNU16 gastric tumor xenografts in SCID mice.

Figur 10C viser grafisk antitumoraktiviteten til transtuzumab-SMCC-DM1 mot humane MCF7-tumorxenografter i SCID-mus. Figure 10C graphically shows the antitumor activity of transtuzumab-SMCC-DM1 against human MCF7 tumor xenografts in SCID mice.

Figur 11 viser grafisk plasmauttømmingshastigheter for huC252-SMCC-DM1sammenlignet med konjugater fremstilt med disulfidinneholdende linkere. Figure 11 graphically shows plasma depletion rates for huC252-SMCC-DM1 compared to conjugates prepared with disulfide-containing linkers.

Figurene 12A-C viser grafisk resultatene fra akuttoksisitetsundersøkelser for huC252-SMCC-DM1 sammenlignet med konjugater fremstilt med disulfidinneholdende linkere. Figures 12A-C graphically show the results of acute toxicity studies for huC252-SMCC-DM1 compared to conjugates prepared with disulfide-containing linkers.

Figur 13 viser varigheten av stopp i cellesyklus og celleødeleggelsesaktivitet vist av huC252-SMCC-DM1 sammenlignet med konjugater fremstilt med disulfidinneholdende linkere. Figure 13 shows the duration of cell cycle arrest and cell killing activity exhibited by huC252-SMCC-DM1 compared to conjugates prepared with disulfide-containing linkers.

Figurene 14A-C viser den minimale tilskuereffektaktiviteten for huC242-SMCC-DM1 sammenlignet med konjugater fremstilt med disulfidinneholdende linkere. Figures 14A-C show the minimal bystander activity for huC242-SMCC-DM1 compared to conjugates prepared with disulfide-containing linkers.

Figur 15 viser representative strukturer for maleimidobaserte kryssbindingsmidler. Figure 15 shows representative structures for maleimido-based cross-linking agents.

Figur 16 viser representative strukturer for haloacetylbaserte kryssbindingsmidler. Figure 16 shows representative structures for haloacetyl-based cross-linking agents.

Figur 17 viser strukturen til antistoff-SMCC-DM1-konjugater. Figure 17 shows the structure of antibody-SMCC-DM1 conjugates.

Figur 18 viser strukturen til antistoff-SIAB-DM1-konjugater. Figure 18 shows the structure of antibody-SIAB-DM1 conjugates.

Figur 19 viser strukturen til antistoff-SMCC-DM4-konjugater. Figure 19 shows the structure of antibody-SMCC-DM4 conjugates.

Figur 20 viser strukturen til antistoff-SIAB-DM4-konjugater. Figure 20 shows the structure of antibody-SIAB-DM4 conjugates.

Figur 21 viser syntesen av maytansinoidcellebindingsmiddelkonjugat bundet via en ikke-S-inneholdende ikke-kløyvbare linker. Figure 21 shows the synthesis of maytansinoid cell binding agent conjugate bound via a non-S-containing non-cleavable linker.

Figur 22 viser grafisk cytotoksisitet for huC242-ikke-S-inneholdende ikkekløyvbare linker-DM1. Figure 22 graphically shows cytotoxicity for huC242-non-S-containing non-cleavable linker-DM1.

Figur 23 viser grafisk resultatet for en FACs-analyse med huC242-ikke-S-inneholdende ikke-kløyvbare linker-DM1. Figure 23 graphically shows the result for a FACs assay with huC242-non-S-containing non-cleavable linker-DM1.

Figur 24 viser grafisk resultatene for en HER2 ECD-platebindingsanalyse som sammenligner trastuzumabantistoff med antistoff-maytansinoidkonjugatet trastuzumab-SMCC-DM1. Figure 24 graphically shows the results of a HER2 ECD plate binding assay comparing trastuzumab antibody to the antibody-maytansinoid conjugate trastuzumab-SMCC-DM1.

Figur 25 viser grafisk cytotoksisiteten og spesifisiteten til trastuzumab-SMCC-DM1. Figure 25 graphically shows the cytotoxicity and specificity of trastuzumab-SMCC-DM1.

Figur 26 viser størrelseseksklusjonskromatografi for trastuzumab-SMCC-DM1. Figur 27 viser grafisk resultatene for HER2 ECD- platebindingsanalyse som sammenligner trastuzumabantistoff med antistoff-maytansinoidkonjugatet trastuzumab-SIAB-DM1. Figure 26 shows size exclusion chromatography for trastuzumab-SMCC-DM1. Figure 27 graphically shows the results for the HER2 ECD plate binding assay comparing trastuzumab antibody with the antibody-maytansinoid conjugate trastuzumab-SIAB-DM1.

Figur 28 viser grafisk cytotoksisiteten og spesifisiteten til trastuzumab-SIAB-DM1. Figur 29 viser størrelseseksklusjonskromatografi for trastuzumab-SIAB-DM1. Figure 28 graphically shows the cytotoxicity and specificity of trastuzumab-SIAB-DM1. Figure 29 shows size exclusion chromatography for trastuzumab-SIAB-DM1.

Detaljert beskrivelse Detailed description

Fagområdet avslører at det er ekstremt vanskelig å modifisere eksisterende legemidler uten å minske deres cytotoksiske evne. Likevel viser US patentskrift The field reveals that it is extremely difficult to modify existing drugs without reducing their cytotoxic ability. Nevertheless, US patent documents show

6 441 163 B1, 6 333 410 B1, 5 416 064 og 5 208 020 at sterke cytotoksiske midler kan bli dannet ved å binde maytansinoider til passende cellebindingsmidler via kløyvbare linkere, spesielt kløyvbare linkere som inneholder disulfidgruppe. 6,441,163 B1, 6,333,410 B1, 5,416,064 and 5,208,020 that potent cytotoxic agents can be formed by binding maytansinoids to appropriate cell binding agents via cleavable linkers, particularly cleavable linkers containing disulfide groups.

Cellebindingsmiddelmaytansinoidkonjugater tillater at hele den cytotoksiske virkningen til maytansinoidene blir benyttet på en målsøkt måte kun mot uønskede celler, for derved å unngå bivirkninger som skyldes skade på de ikke-målsøkte friske cellene. Cell binding agent maytansinoid conjugates allow the full cytotoxic effect of the maytansinoids to be used in a targeted manner only against unwanted cells, thereby avoiding side effects due to damage to the non-targeted healthy cells.

Foreliggende oppfinnelse har uventet oppdaget at maytansinoider som er bundet til cellebindingsmidler via ikke-kløyvbare linkere er overlegne på flere måter med hensyn på maytansinoider som er bundet via kløyvbare linkere. Når de blir sammenlignet med konjugater som inneholder kløyvbare linkere viser konjugater med ikke-kløyvbare linkere spesielt ekvivalent antitumoraktivitet både in vitro og in vivo, men viser en markert minskning i plasmauttømmingshastighet og i toksisitet. The present invention has unexpectedly discovered that maytansinoids bound to cell binding agents via non-cleavable linkers are superior in several ways to maytansinoids bound via cleavable linkers. When compared to conjugates containing cleavable linkers, conjugates with non-cleavable linkers particularly show equivalent antitumor activity both in vitro and in vivo, but show a marked reduction in plasma clearance rate and in toxicity.

Konjugatene ifølge oppfinneslen har en eller flere maytansinoider bundet til et cellebindingsmiddel via en ikke-kløyvbar linker. I en fremgangsmåte for å fremstille konjugatet blir et cellebindingsmiddel, for eksempel et antistoff, først modifisert med et kryssbindingsreagens slik som SMCC. I et andre trinn blir en reaktiv maytansinoid som har en tiolgruppe, slik som DM1, reagert med det modifiserte antistoffet for å frembringe antistoff-maytansinoidkonjugater. Alternativt kan maytansinoidet bli modifisert med et kryssbindingsreagens før det blir reagert med et cellebindingsmiddel. Se for eksempel US patenskrift 6 441 163 B1. The conjugates according to the invention have one or more maytansinoids bound to a cell binding agent via a non-cleavable linker. In one method of preparing the conjugate, a cell-binding agent, for example an antibody, is first modified with a cross-linking reagent such as SMCC. In a second step, a reactive maytansinoid having a thiol group, such as DM1, is reacted with the modified antibody to produce antibody-maytansinoid conjugates. Alternatively, the maytansinoid may be modified with a cross-linking reagent before being reacted with a cell binding agent. See, for example, US patent 6,441,163 B1.

Passende maytansinoider Appropriate maytansinoids

Maytansinoider er velkjent på fagområdet og kan bli isolert fra naturlige kilder i henhold til kjente fremgangsmåter, fremstilt ved å benytte genetiske fremstillingsteknikker (se Yu et al., 99 PNAS 7968-7973 (2002)) eller fremstilt syntetisk i henhold til kjente fremgangsmåter. Maytansinoids are well known in the art and can be isolated from natural sources according to known methods, prepared using genetic engineering techniques (see Yu et al., 99 PNAS 7968-7973 (2002)) or prepared synthetically according to known methods.

Eksempler på passende maytansinoider inkluderer maytansinol og maytansinolanaloger. Eksempler på passende maytansinolanaloger inkluderer de som har en modifisert aromatisk ring og de som har modifiseringer på andre posisjoner. Examples of suitable maytansinoids include maytansinol and maytansinol analogs. Examples of suitable maytansinol analogs include those having a modified aromatic ring and those having modifications at other positions.

Spesifikke eksempler på passende maytansinolanaloger som har en modifisert aromatisk ring inkluderer: Specific examples of suitable maytansinol analogs having a modified aromatic ring include:

(1) C-19-deklor (US patentskrift 4 256 746) (fremstilt ved LAH-reduksjon av ansamytocin-2), (1) C-19-dechlor (US Patent 4,256,746) (produced by LAH reduction of ansamytocin-2),

(2) C-20-hydroksy (eller C-20-demetyl)+/-C-19-deklor (US patentskrift (2) C-20-hydroxy (or C-20-demethyl)+/-C-19-dechlor (US Pat.

4 361 650 og 4 307 016) (fremstilt ved demetylering ved å benytte Streptomyces eller Actinomyces eller deklorinering ved å benytte LAH) og (3) C-20-demetyloksy, C-20-acyloksy (-OCOR), /-deklor (US patentskrift 4 294 757) (fremstilt ved acylering ved å benytte acylklorider). Spesifikke eksempler på passende maytansinolanaloger som har modifiseringer på andre posisjoner inkluderer; 4,361,650 and 4,307,016) (prepared by demethylation using Streptomyces or Actinomyces or dechlorination using LAH) and (3) C-20-demethyloxy, C-20-acyloxy (-OCOR), /-dechlor (US patent document 4 294 757) (produced by acylation using acyl chlorides). Specific examples of suitable maytansinol analogs having modifications at other positions include;

(1) C-9-SH (US patentskrift 4 424 219) (fremstilt ved reaksjon av maytansinol med H2S eller P2S5, (1) C-9-SH (US Patent 4,424,219) (prepared by reaction of maytansinol with H2S or P2S5,

(2) C-14-alkoksymetyl(demetoksy/CH2OR) (US patentskrift 4 331 598), (2) C-14-Alkoxymethyl(demethoxy/CH2OR) (US Patent 4,331,598),

(3) C-14-hydroksymetyl eller acyloksymetyl (CH2OH eller CH2OAc) (US patentskrift 4 450 254) (fremstilt fra Nocardia), (3) C-14-hydroxymethyl or acyloxymethyl (CH2OH or CH2OAc) (US Patent 4,450,254) (made from Nocardia),

(4) C-15-hydroksy/acyloksy (US patentskrift 4 364 866) (fremstilt ved konverteringen av maytansinol av Streptomyces), (4) C-15-hydroxy/acyloxy (US Patent 4,364,866) (produced by the conversion of maytansinol by Streptomyces),

(5) C-15-metoksy (US patentskrift 4 313 946 og 4 315 929) (isolert fra Trewia nudlflora), (5) C-15-Methoxy (US Patents 4,313,946 and 4,315,929) (isolated from Trewia nudlflora),

(6) C-18-N-demetyl (US patentskrift 4 362 663 og 4 322 348) (fremstilt ved demetyleringen av maytansinol ved Streptomyces) og (6) C-18-N-demethyl (US Patents 4,362,663 and 4,322,348) (produced by the demethylation of maytansinol by Streptomyces) and

(7) 4,5-deoksy (US patentskrift 4 371 533) (fremstilt ved titantriklorid/LAH-reduksjon av maytansinol). (7) 4,5-deoxy (US Patent 4,371,533) (prepared by titanium trichloride/LAH reduction of maytansinol).

Mange posisjoner på maytansinol er kjent for å være nyttige som bindingsposisjonen, avhengig av typen av binding. For dannelse av en esterbinding er for eksempel C-3-posisjonen som har en hydroksygruppe, C-14-posisjonen som er modifisert med hydroksymetyl, C-15-posisjonen som er modifisert med en hydroksylgruppe og C-20-posisjonen som har en hydroksylgruppe alle passende. Likevel er C-3-posisjonen foretrukket og C-3-posisjonen til maytansinol er spesielt foretrukket. Many positions on maytansinol are known to be useful as the binding site, depending on the type of binding. For the formation of an ester bond, for example, the C-3 position which has a hydroxy group, the C-14 position which is modified with hydroxymethyl, the C-15 position which is modified with a hydroxyl group and the C-20 position which has a hydroxyl group all appropriate. Nevertheless, the C-3 position is preferred and the C-3 position of maytansinol is particularly preferred.

Et foretrukket maytansinoid har en fri tiolgruppe. Spesielt foretrukne maytansinoider som omfatter en fri tiolgruppe inkluderer N-metylalanininneholdende estere og N-metylcysteininneholdende estere av maytansinol og er C-3-ester av maytansinol og dens analoger. Foretrukne estere inkluderer N-metylalanininneholdende estere og N- metylcysteininneholdende estere av maytansinol. Syntese av estere av maytansinol som har en fri tiolgruppe har tidligere blitt beskrevet, for eksempel i US patentskrift 5 208 020, Chari et al., 52 Cancer Res., 127-131 (1992), og Liu et al., 93 Proc Natl. Acad. Sci., 8618-8623 (1996). Videre tilveiebringer US patentskrift 6 333 410 B1, en forbedret fremgangsmåte for fremstilling og rensing av tiolinneholdende maytansinoider som er passende til binding til cellebindingsmidlet. A preferred maytansinoid has a free thiol group. Particularly preferred maytansinoids comprising a free thiol group include N-methylalanine-containing esters and N-methylcysteine-containing esters of maytansinol and are C-3 esters of maytansinol and its analogs. Preferred esters include N-methylalanine-containing esters and N-methylcysteine-containing esters of maytansinol. Synthesis of esters of maytansinol having a free thiol group has previously been described, for example in US Patent 5,208,020, Chari et al., 52 Cancer Res., 127-131 (1992), and Liu et al., 93 Proc Natl . Acad. Sci., 8618-8623 (1996). Furthermore, US Patent 6,333,410 B1 provides an improved method for the preparation and purification of thioline-containing maytansinoids suitable for binding to the cell binding agent.

Konjugatene ifølge foreliggende oppfinnelse benytter det tiolinneholdende maytansinoidet DM1, formelt betegnet N<2'>-deacetyl-N<2'>-(3-merkapto-1-oksopropyl)-maytansin. DM1 er representert ved den følgende strukturelle formel: The conjugates according to the present invention use the thioline-containing maytansinoid DM1, formally designated N<2'>-deacetyl-N<2'>-(3-mercapto-1-oxopropyl)-maytansine. DM1 is represented by the following structural formula:

Syntesen av tiolinneholdende maytansinoid DM1 har tidligere blitt beskrevet (US patentskrift 5 208 020). The synthesis of the thioline-containing maytansinoid DM1 has previously been described (US patent 5,208,020).

US patentsøknad 10/849 136, beskriver sterisk hindrede tiolinneholdende maytansinoider som bærer en eller to alkylsubstituenter på α-karbonet som bærer tiolfunksjonaliteten. I tillegg inneholder acylgruppen på den acylerte aminosyresidekjeden til maytansinoidet som bærer sulfhydrylgruppen en lineær kjedelengde på minst tre karbonatomer mellom karbonylgruppen på amidet og svovelatomet. Disse nye maytansinoidene er hensiktsmessige til anvendelse som beskrevet. US Patent Application 10/849,136 describes sterically hindered thioline-containing maytansinoids bearing one or two alkyl substituents on the α-carbon bearing the thiol functionality. In addition, the acyl group on the acylated amino acid side chain of the maytansinoid bearing the sulfhydryl group contains a linear chain length of at least three carbon atoms between the carbonyl group on the amide and the sulfur atom. These new maytansinoids are suitable for use as described.

Syntesen av maytansinoidene som har sterisk hindret tiolgruppe kan bli beskrevet med referanse til US patensøknad 10/849 136, spesielt i figur 3. The synthesis of the maytansinoids having a sterically hindered thiol group can be described with reference to US patent application 10/849,136, especially in Figure 3.

Andre maytansinoider som omfatter en sidekjede som inneholder en sterisk hindret tiolbinding er maytansinoidene N<2'>-deacetyl-N<2'>-(4-merkapto-1-oksopentyl)-maytansin (betegnet DM3) og N<2'>-deacetyl-N<2'>-(4-metyl-4-merkapto-1-oksopentyl)-maytansin (betegnet DM4). DM3 og DM4 er gitt ved de følgende strukturformlene: Other maytansinoids that comprise a side chain containing a sterically hindered thiol bond are the maytansinoids N<2'>-deacetyl-N<2'>-(4-mercapto-1-oxopentyl)-maytansine (designated DM3) and N<2'>- deacetyl-N<2'>-(4-methyl-4-mercapto-1-oxopentyl)-maytansine (designated DM4). DM3 and DM4 are given by the following structural formulas:

Cellebindingsmidler Cell binding agents

Effektiviteten til de beskrevne konjugatene som terapeutiske midler avhenger av den gjennomtenkte utvelgelsen av et hensiktsmessig cellebindingsmiddel. Cellebindingsmidler kan være av en type som pr. i dag er kjent, eller som kommer til å bli kjent og inkluderer peptider og ikke-peptider. Generelt kan disse være antistoffer (spesielt monoklonale antistoffer), lymfokiner, hormoner, vekstfaktorer, vitaminer, næringstransport-molekyler (slik som transferrin) eller ethvert annet cellebindingsmolekyl eller stoff som spesifikt binder et mål. The effectiveness of the described conjugates as therapeutic agents depends on the judicious selection of an appropriate cell binding agent. Cell binding agents can be of a type that per are currently known or will become known and include peptides and non-peptides. In general, these can be antibodies (especially monoclonal antibodies), lymphokines, hormones, growth factors, vitamins, nutrient transport molecules (such as transferrin) or any other cell binding molecule or substance that specifically binds a target.

Mer spesifikke eksempler på cellebindingsmidler som kan bli benyttet inkluderer: polyklonale og monoklonale antistoffer, inkludert fullt humane antistoffer, enkeltkjedeantistoffer (polyklonale og monoklonale), More specific examples of cell binding agents that may be used include: polyclonal and monoclonal antibodies, including fully human antibodies, single chain antibodies (polyclonal and monoclonal),

fragmenter av antistoffer (polyklonale og monoklonale) slik som Fab, Fab', F(ab')2 og Fv (Parham, 131 J. Immunol. 2895-2902 (1983), Spring et al., 113 J. fragments of antibodies (polyclonal and monoclonal) such as Fab, Fab', F(ab')2 and Fv (Parham, 131 J. Immunol. 2895-2902 (1983), Spring et al., 113 J.

Immunol. 470-478 (1974), Nisonoff et al., 89 Arch. Biochem. Biophys. 230-244 (1960)), kimære antistoffer og antigenbindende fragmenter derav, domeneantistoffer (dAbs) og antigenbindingsfragmenter derav, inkludert kamelidantistoffer (Desmyter et al., 3 Nature Struct. Biol. 752, 1996), Immunol. 470-478 (1974), Nisonoff et al., 89 Arch. Biochem. Biophys. 230-244 (1960)), chimeric antibodies and antigen-binding fragments thereof, domain antibodies (dAbs) and antigen-binding fragments thereof, including camelid antibodies (Desmyter et al., 3 Nature Struct. Biol. 752, 1996),

haiantistoffer kalt nye antigenreseptorer (IgNAR) (Greenberg et al., 374 Nature, 168, 1995, Standfield et al. 305 Science 1770-1773, 2004), shark antibodies called novel antigen receptors (IgNAR) (Greenberg et al., 374 Nature, 168, 1995, Standfield et al. 305 Science 1770-1773, 2004),

interferoner (for eksempel alfa, beta, gamma), interferons (eg alpha, beta, gamma),

lymfokiner slik som IL-2, IL-3, IL-4, IL-6, lymphokines such as IL-2, IL-3, IL-4, IL-6,

hormoner slik som insulin, TRH (tyrotropinfrigjørende hormon), MSH (melanocyttstimulerende hormon), steroidhormoner slik som androgener og østrogener, vekstfaktor og kolonistimulerende faktorer slik som EGF, TGF-alfa, FGF, VEGF, G-CSF, M-CSF og GM-CSF /Burgess, 5 Immunology Today 155-158 (1984)) og vitaminer slik som folat. hormones such as insulin, TRH (thyrotropin-releasing hormone), MSH (melanocyte-stimulating hormone), steroid hormones such as androgens and estrogens, growth factor and colony-stimulating factors such as EGF, TGF-alpha, FGF, VEGF, G-CSF, M-CSF and GM- CSF /Burgess, 5 Immunology Today 155-158 (1984)) and vitamins such as folate.

Monoklonale antistoffteknikker tillater fremstillingen av ekstremt spesifikke cellebindingsmidler i form av spesifikke monoklonale antistoffer. Spesielt velkjent på fagområdet er teknikker for å fremstille monoklonale antistoffer som blir produsert ved å immunisere mus, rotter, hamstere eller ethvert annet pattedyr med antigenet av interesse slik som den intakte målcellen, antigener som er isolert fra målcellen, hele virus, avkortede helevirus og virusproteiner slik som viruskappeproteiner. Sensitiviserte humane celler kan også bli benyttet. En annen fremgangsmåte for å fremstille monoklonale antistoffer er anvendelsen av fagbiblioteker av scFv (enkeltkjedevariable region), spesielt humant scFv (se for eksempel Griffiths et al., US patentskrift 5 885 793 og 5 969 108, McCafferty et al., WO 92/01047, Liming et al., WO99/06587). I tillegg kan overflatebehandlede antistoffer som er tilkjennegjort i US patenskrift 5 639 641 også bli benyttet, og det kan også humaniserte antistoffer. Monoclonal antibody techniques allow the production of extremely specific cell binding agents in the form of specific monoclonal antibodies. Particularly well known in the art are techniques for preparing monoclonal antibodies which are produced by immunizing mice, rats, hamsters or any other mammal with the antigen of interest such as the intact target cell, antigens isolated from the target cell, whole viruses, truncated whole viruses and viral proteins such as viral envelope proteins. Sensitized human cells can also be used. Another method of preparing monoclonal antibodies is the use of phage libraries of scFv (single chain variable region), especially human scFv (see, for example, Griffiths et al., US Patents 5,885,793 and 5,969,108, McCafferty et al., WO 92/01047 , Liming et al., WO99/06587). In addition, surface-treated antibodies disclosed in US patent 5,639,641 can also be used, and so can humanized antibodies.

Valg av hensiktsmessig cellebindingsmiddel er et valg som er avhengig av den spesielle cellepopulasjonen som skal bli målsøkt, men generelt blir humane monoklonale antistoffer foretrukket hvis et hensiktsmessig er tilgjengelig. Selection of the appropriate cell binding agent is a choice that depends on the particular cell population to be targeted, but generally human monoclonal antibodies are preferred if one is conveniently available.

Det monoklonale antistoffet J5 er et murint IgG2a-antistoff som er spesifikt for vanlig akutt lymfoblastisk leukemiantigen (CALLA) (Ritz et al, 283 Nature 583-585 (1980)) og kan for eksempel bli benyttet hvis de målsøkte cellene uttrykker CALLA slik som i sykdommer med akutt lymfoblastisk leukemi. The monoclonal antibody J5 is a murine IgG2a antibody specific for common acute lymphoblastic leukemia antigen (CALLA) (Ritz et al, 283 Nature 583-585 (1980)) and can for example be used if the targeted cells express CALLA as in diseases with acute lymphoblastic leukemia.

Det monoklonale antistoffet MY9 er et murint IgG1-antistoff som bindes spesifikt til CD33-antigenet (J.D. Griffin et al 8 Leukemia Res., 521 (1984)) og kan bli benyttet hvis målcellene uttrykker CD33 som i sykdommer med akutt myelogen leukemi (AML). The monoclonal antibody MY9 is a murine IgG1 antibody that binds specifically to the CD33 antigen (J.D. Griffin et al 8 Leukemia Res., 521 (1984)) and can be used if the target cells express CD33 as in acute myelogenous leukemia (AML) diseases .

Tilsvarende kan det monoklonale antistoffet anti-B4 som også blir kalt B4 og som er et murint IgG1 som binder til CD19-antigenet på G-celler (Nadler et al, 131 J. Similarly, the monoclonal antibody anti-B4, which is also called B4 and is a murine IgG1 that binds to the CD19 antigen on G cells (Nadler et al, 131 J.

Immunol. 244-250 (1983)) bli benyttet hvis målcellene er B-celler eller sykdomsrammede celler som uttrykker dette antigenet slik som ved ikke-Hodgkins lymfom eller kronisk lymfoblastisk leukemi. Immunol. 244-250 (1983)) can be used if the target cells are B cells or diseased cells that express this antigen such as in non-Hodgkin's lymphoma or chronic lymphoblastic leukemia.

I tillegg kan det monoklonale antistoffet C242 som binder til CanAg-antigenet (US patentskrift 5 552 293) bli benyttet til å behandle CanAg-uttrykkende tumor, slik som kolorektalkreft, pankreaskreft, ikke-småcellet lungekreft og magekreft. HuC242 er en humanisert form av det monoklonale antistoffet C242 som er beskrevet i US patentskrift 5 552 293 og for hvilket hybridomen er deponert hos ECACC med identifiseringsnummer 90012601. En humanisert form kan bli fremstilt ved enten å benytte CDR-transplantasjonsmetodikk (US patentskrift 5 585 089, 5 693 761 og 5 693 762) eller overflateendringsmetodikken (US patentskrift 5 639 641). HuC242 kan også bli benyttet til å behandle CanAg-uttrykkende tumor, slik som ved kolorektalkreft, pankreaskreft, ikkesmåcellet lungekreft og magekreft. In addition, the monoclonal antibody C242 that binds to the CanAg antigen (US Patent 5,552,293) can be used to treat CanAg-expressing tumor, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer and gastric cancer. HuC242 is a humanized form of the monoclonal antibody C242 which is described in US patent document 5,552,293 and for which the hybridoma has been deposited at ECACC with identification number 90012601. A humanized form can be produced by either using CDR transplantation methodology (US patent document 5,585,089 , 5,693,761 and 5,693,762) or the surface modification methodology (US Patent 5,639,641). HuC242 can also be used to treat CanAg-expressing tumours, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer and stomach cancer.

Videre kan antistoffet trastuzumab bli benyttet til å behandle brystkreft eller andre kreftformer, slik som prostatakreft og ovariekreft som uttrykker Her2-antigenet. Furthermore, the antibody trastuzumab can be used to treat breast cancer or other forms of cancer, such as prostate cancer and ovarian cancer that express the Her2 antigen.

Anti-IFG-IR-antistoffer som binder til insulinvekstfaktorreseptor er også nyttige. Anti-IFG-IR antibodies that bind to the insulin growth factor receptor are also useful.

Ovariekreft og prostatakreft kan vellykket bli målsøkt med for eksempel et anti-MUC1-antistoff, slik som anti- HMFG-2 (Taylor-Papadimitriou et al., 28. Int. J. Cancer 17-21. 1981) eller hCTM01 (56 Cancer Res. 5179-5185, 1996) og et anti-PSMA (prostataspesifikk membranantigen), slik som J591 (Liu et al. 57 Cancer Res. 36329-3634, 1997). Ovarian and prostate cancer can be successfully targeted with, for example, an anti-MUC1 antibody, such as anti- HMFG-2 (Taylor-Papadimitriou et al., 28. Int. J. Cancer 17-21. 1981) or hCTM01 (56 Cancer Res. 5179-5185, 1996) and an anti-PSMA (prostate-specific membrane antigen), such as J591 (Liu et al. 57 Cancer Res. 36329-3634, 1997).

Ikke-antistoffmolekyler kan også bli benyttet til å målsøke spesifikke cellepopulasjoner. For eksempel kan GM-CSF som binder til myeloide celler bli benyttet som et cellebindingsmiddel for å målsøke sykdomsrammede celler fra akutt myelogen leukemi. I tillegg kan IL-2 som binder til aktiverte T-celler bli benyttet til forebygging av transplantat-frastøtning, til terapi og forhindring av transplantat versus vertssykdom, og til behandling av akutt T-celleleukemi. MSH som binder til melanocytter kan bli benytter i behandlingen av melanom. Folsyre kan bli benyttet for å målsøke folatreseptoren som ble uttrykt på ovarietumorer og andre tumorer. Epidermal vekstfaktor (EGF) kan bli benyttet til å målsøke skvamøse kreftformer slik som lungekreft og hode- og nakkekreft. Non-antibody molecules can also be used to target specific cell populations. For example, GM-CSF that binds to myeloid cells can be used as a cell-binding agent to target disease-affected cells from acute myelogenous leukemia. In addition, IL-2 that binds to activated T cells can be used for the prevention of transplant rejection, for the therapy and prevention of graft versus host disease, and for the treatment of acute T-cell leukemia. MSH that binds to melanocytes can be used in the treatment of melanoma. Folic acid can be used to target the folate receptor that was expressed on ovarian tumors and other tumors. Epidermal growth factor (EGF) can be used to target squamous cancers such as lung cancer and head and neck cancer.

Somatostatin kan bli benyttet til å målsøke nevroblastomer og andre tumortyper. Somatostatin can be used to target neuroblastomas and other tumor types.

Kreftformer i brystet og i testiklene kan bli vellykket målsøke med østrogen (eller østrogenanaloger) eller androgen (eller androgenanaloger) som cellebindingsmidler. Cancer forms in the breast and in the testicles can be successfully targeted with estrogen (or estrogen analogues) or androgen (or androgen analogues) as cell binding agents.

Kryssbindingsreagenser Cross-linking reagents

Maytansinoidet blir bundet til cellebindingsmidlet ved hjelp av et kryssbindingsreagens som, når det blir reagert, danner en ikke-kløyvbar linker mellom maytansinoidet og cellebindings-midlet. The maytansinoid is bound to the cell-binding agent by means of a cross-linking reagent which, when reacted, forms a non-cleavable linker between the maytansinoid and the cell-binding agent.

Benyttet her er en "linker" enhver kjemisk enhet som binder et cellebindingsmiddel kovalent sammen med et maytansinoid. I enkelte tilfeller blir en del av linkeren tilveiebrakt ved maytansinoidet. For eksempel er DM1, som er et tiolinneholdende maytansinoid (figur 2), et derivat av det naturlige maytansinoidet maytansin og tilveiebringer en del av linkeren. Sidekjeden på C-3-hydroksylgruppen til maytansin ender i -CO-CH3, sidekjeden til DM1 ender i -CO-CH2-CH2-SH. Derfor blir den endelige linken sammensatt fra to deler, kryssbindingsreagenset som er introdusert inn i cellebindingsmidlet og sidekjeden fra DM1. As used herein, a "linker" is any chemical entity that covalently binds a cell binding agent together with a maytansinoid. In some cases, part of the linker is provided by the maytansinoid. For example, DM1, which is a thioline-containing maytansinoid (Figure 2), is a derivative of the natural maytansinoid maytansine and provides part of the linker. The side chain of the C-3 hydroxyl group of maytansine ends in -CO-CH3, the side chain of DM1 ends in -CO-CH2-CH2-SH. Therefore, the final link is composed of two parts, the cross-linking reagent introduced into the cell binding agent and the side chain from DM1.

Kløyvbare linkere er linkere som kan bli kløyvd under milde betingelser, det vil si betingelser der aktiviteten til maytansinoidlegemidlet ikke blir påvirket. Mange kjente linkere faller innenfor denne kategorien og er beskrevet nedenfor. Cleavable linkers are linkers that can be cleaved under mild conditions, i.e. conditions where the activity of the maytansinoid drug is not affected. Many well-known linkers fall into this category and are described below.

Disulfidinneholdene linkere er linkere som er kløyvbare via disulfidbytting, som kan foregå ved fysiologiske betingelser. Disulfide-containing linkers are linkers that are cleavable via disulfide exchange, which can take place under physiological conditions.

Syrelabile linkere er linkere som er kløyvbare ved sur pH. Visse intracellulære avdelinger, slik som endosomer og lysosomer, har for eksempel en sur pH (pH 4-5), og tilveiebringer betingelser som er passende for å kløyve syrelabile linkere. Acid-labile linkers are linkers that are cleavable at acidic pH. Certain intracellular compartments, such as endosomes and lysosomes, for example, have an acidic pH (pH 4-5), providing conditions suitable for cleaving acid-labile linkers.

Linkere som er fotolabile er nyttige på kroppsoverflaten og i mange kroppshulrom som er eksponert for lys. Videre kan infrarødt lys trenge igjennom vev. Linkers that are photolabile are useful on the body surface and in many body cavities that are exposed to light. Furthermore, infrared light can penetrate tissue.

Noen linkere kan bli kløyvd med peptidase. Kun visse peptider blir enkelt kløyvd inne i eller på utsiden av celler, se for eksempel Touet et al., 79 Proc.Natl.Axad.Sci.USA, 626-627 (1982) og Umemoto et al. 43 Int. J. Cancer, 677-684 (1989). Videre er peptidet sammensatt av α-aminosyrer og peptidbindinger, som kjemisk er amidbindinger mellom karboksylatet på en aminosyre og α-aminogruppen på en annen aminosyre. Andre amidbindinger, slik som bindingen mellom et karboksylat og ε-aminogruppen på lysin, er forstått å ikke være peptidbindinger og er ansett å være ikke-kløyvbare. Some linkers can be cleaved with peptidase. Only certain peptides are readily cleaved inside or outside cells, see, for example, Touet et al., 79 Proc.Natl.Axad.Sci.USA, 626-627 (1982) and Umemoto et al. 43 Int. J. Cancer, 677-684 (1989). Furthermore, the peptide is composed of α-amino acids and peptide bonds, which are chemically amide bonds between the carboxylate of one amino acid and the α-amino group of another amino acid. Other amide bonds, such as the bond between a carboxylate and the ε-amino group on lysine, are understood not to be peptide bonds and are considered to be non-cleavable.

Enkelte linkere kan bli kløyvet med esteraser. Igjen kan kun visse estere bli kløyvd med esteraser som er tilstede på innsiden eller på utsiden av celler. Estere blir dannet ved kondenseringen av en karboksylsyre og en alkohol. Enkle estere er estere som er fremstilt med enkle alkoholer, slik som alifatiske alkoholer og små sykliske eller små aromatiske alkoholer. For eksempel fant oppfinneren av foreliggende oppfinnelse ingen esterase som kløyvet esteren på C-3-maytansin, siden alkoholkomponenten i esteren, maytansinol, er svært stor og kompleks. Certain linkers can be cleaved by esterases. Again, only certain esters can be cleaved by esterases present on the inside or outside of cells. Esters are formed by the condensation of a carboxylic acid and an alcohol. Simple esters are esters made with simple alcohols, such as aliphatic alcohols and small cyclic or small aromatic alcohols. For example, the inventor of the present invention found no esterase that cleaved the ester of C-3 maytansine, since the alcohol component of the ester, maytansinol, is very large and complex.

En ikke-kløyvbar linker er enhver kjemisk enhet som er i stand til å binde et maytansinoid til et cellebindingsmiddel på en stabil kovalent måte og faller ikke under kategoriene som er fremlagt ovenfor som kløyvbare linkere. Slik er ikke-kløyvbare linkere vesentlig resistente overfor syreindusert kløyving, lysindusert kløyving, peptidaseindusert kløyving, esteraseindusert kløyving og disulfidbindingskløyving. A non-cleavable linker is any chemical entity capable of binding a maytansinoid to a cell binding agent in a stable covalent manner and does not fall under the categories presented above as cleavable linkers. Thus, non-cleavable linkers are substantially resistant to acid-induced cleavage, light-induced cleavage, peptidase-induced cleavage, esterase-induced cleavage and disulfide bond cleavage.

"Vesentlig resistent" overfor kløyving betyr at den kjemiske bindingen i linkeren eller som binder sammen linkeren i minst 80 %, fortrinnsvis minst 85 %, mer foretrukket minst 90 %, enda mer foretrukket minst 95 % og mest foretrukket minst 99 % av cellebindingsmiddelmaytansinoidkonjugatpopulasjonen forblir ikke-kløyvbar ved en syre, et fotolabilt kløyvingsmiddel, en peptidase, en esterase eller en kjemisk eller en fysiologisk forbindelse som kløyver den kjemiske bindingen (slik som en disulfidbinding) i en kløyvbar linker i innenfor noen få timer til flere dager med behandling med hvert av midlene som er beskrevet ovenfor. "Substantially resistant" to cleavage means that the chemical bond in the linker or that binds together the linker in at least 80%, preferably at least 85%, more preferably at least 90%, even more preferably at least 95% and most preferably at least 99% of the cell binding agent maytansinoid conjugate population does not remain -cleavable by an acid, a photolabile cleaving agent, a peptidase, an esterase, or a chemical or a physiological compound that cleaves the chemical bond (such as a disulfide bond) in a cleavable linker within a few hours to several days of treatment with each of the means described above.

Videre refererer "ikke-kløyvbar" til evnen til den kjemiske bindingen i linkeren eller som er bundet til linkeren i å motta kløyving indusert av en syre, et fotolabilt kløyvingsmiddel, en peptidase, en esterase eller en kjemisk eller en fysiologisk forbindelse som kløyver en disulfidbinding med betingelser der maytansinoidet eller cellebindingsmidlet ikke mister sin aktivitet. Furthermore, "non-cleavable" refers to the ability of the chemical bond in the linker or that is attached to the linker to receive cleavage induced by an acid, a photolabile cleaving agent, a peptidase, an esterase, or a chemical or a physiological compound that cleaves a disulfide bond with conditions in which the maytansinoid or cell binding agent does not lose its activity.

En fagperson på området vil enkelt kunne skille mellom ikke-kløyvbare og kløyvbar linker. A person skilled in the art will easily be able to distinguish between non-cleavable and cleavable links.

Et eksempel på en passende kontroll for å teste hvorvidt en linker er vesentlig resistent overfor kløyving er en linker med en kjemisk binding, slik som en disulfidbinding som er utsatt for kløyving ved ethvert av midlene som er beskrevet overfor. Man kan teste hvorvidt en linker er vesentlig resistent overfor kløyving ved å måle stabiliteten til konjugatene ved hjelp av ELISA, HPLC eller på annen hensiktsmessig måte, over en tidsperiode som strekker seg fra mellom et par timer til flere dager, typisk 4 timer til 5 dager. ELISA-analyse kan bli benyttet til å måle nivået av stabilt konjugat i plasmakonsentrasjonen. An example of a suitable control for testing whether a linker is substantially resistant to cleavage is a linker with a chemical bond, such as a disulfide bond, which is susceptible to cleavage by any of the agents described above. One can test whether a linker is substantially resistant to cleavage by measuring the stability of the conjugates by means of ELISA, HPLC or other appropriate means, over a period of time ranging from between a few hours to several days, typically 4 hours to 5 days . ELISA assay can be used to measure the level of stable conjugate in the plasma concentration.

Ikke-kløyvbare er også karakterisert ved at halveringstiden in vivo for konjugater som omfatter ikke-kløyvbare linkere generelt er omtrent 20 % høyere enn de for konjugater som omfatter kløyvbare linkere. I mus er halveringstiden in vivo for IgG-maytansinoidkonjugatene som er bundet sammen via ikke-kløyvbare linkere minst 4 dager. Non-cleavable are also characterized in that the in vivo half-life of conjugates comprising non-cleavable linkers is generally approximately 20% higher than that of conjugates comprising cleavable linkers. In mice, the in vivo half-life of the IgG-maytansinoid conjugates linked via non-cleavable linkers is at least 4 days.

Passende kryssbindingsmidler som danner ikke-kløyvbare linkere mellom maytansinoidet og cellebindingsmidlet er velkjente på fagområdet og kan danne ikkekløyvbare linkere som omfatter et svovelatom (slik som DMCC) eller som er uten et svovelatom. Suitable cross-linking agents that form non-cleavable linkers between the maytansinoid and the cell binding agent are well known in the art and may form non-cleavable linkers that comprise a sulfur atom (such as DMCC) or that are without a sulfur atom.

Kryssbindingsreagenser som danner ikke-kløyvbare linkere mellom maytansinoidet og cellebindingsmidlet omfatter en maleimido- eller haloacetylbasert enhet. ifølge den foreliggende oppfinnelse er slike ikke-kløyvbare linkere sagt å være avledet fra maleimido- eller haloacetylbasert enhet. Kryssbindingsreagenser som omfatter en maleimidobasert enhet inkluderer N-succinimidyl-4-(maleimidometyl)sykloheksan-karboksylat (SMCC), N-succinimidyl-4-(N-maleimidometyl)-sykloheksane-1-karboksy-(6-amidokaproat), som er en "langkjedet" analog av SMCC (LC-SMCC) κ-maleimido-undekansyre-N-succinimidoundekansyre- N-succinimidylester (KMUA), γ-maleimido-smørsyre-N-succinimidylester (GMBS), εmaleimidokapronsyre-N-hydroksysuccinimidester (EMCS), N-maleimidobenzoyl-N-hydroksysuccinimidester (MBS), N-( α-maleimidoacetoksy)-succinimidester (AMAS), succinimidyl-6-(β-maleimidopropionamido)heksanoat (SMPH), N-succinimidyl-4-(pmaleimidofenyl)-butyrat (SMPB), og N-(p-maleimidofenyl)isocyanat (PMPI) (se figur 15 for representative strukturer av maleimidobaserte kryssbindingsmidler). Disse kryssbindingsreagensene danner ikke-kløyvbare linkere som er avledet fra maleimidobaserte enheter. Cross-linking reagents that form non-cleavable linkers between the maytansinoid and the cell binding agent include a maleimido- or haloacetyl-based unit. according to the present invention, such non-cleavable linkers are said to be derived from maleimido- or haloacetyl-based units. Cross-linking reagents comprising a maleimido-based unit include N-succinimidyl-4-(maleimidomethyl)cyclohexanecarboxylate (SMCC), N-succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxy-(6-amidocaproate), which is a "long chain" analog of SMCC (LC-SMCC) κ-maleimido-undecanoic acid-N-succinimidonedecanoic acid-N-succinimidyl ester (KMUA), γ-maleimido-butyric acid-N-succinimidyl ester (GMBS), εmaleimidocaproic acid-N-hydroxysuccinimide ester (EMCS), N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), N-(α-maleimidoacetoxy)-succinimide ester (AMAS), succinimidyl 6-(β-maleimidopropionamido)hexanoate (SMPH), N-succinimidyl-4-(pmaleimidophenyl)-butyrate ( SMPB), and N-(p-maleimidophenyl)isocyanate (PMPI) (see Figure 15 for representative structures of maleimido-based crosslinkers). These cross-linking reagents form non-cleavable linkers that are derived from maleimido-based units.

Kryssbindingsreagenser som omfatter en haloacetylbasert enhet inkluderer N-succinimidyl-4-(jodacetyl)-aminobenzoat (SIAB), N-succinimidyljodacetat (SIA), N-succinimidylbromacetat (SBA) og N-succinimidyl-3-(bromacetamido)propionat (SBAP) (se figur 16 for representative strukturer av haloacetylbaserte kryssbindingsmidler). Disse kryssbindingsreagensene danner ikke-kløyvbare linkere som avledes fra haloacetylbaserte enheter. Cross-linking reagents comprising a haloacetyl-based unit include N-succinimidyl-4-(iodoacetyl)-aminobenzoate (SIAB), N-succinimidyl iodoacetate (SIA), N-succinimidyl bromoacetate (SBA) and N-succinimidyl-3-(bromoacetamido)propionate (SBAP) ( see Figure 16 for representative structures of haloacetyl-based cross-linking agents). These cross-linking reagents form non-cleavable linkers that are derived from haloacetyl-based units.

Mens de aktive esterne beskrevet i figur 15 og 16 er sammensatt av N-succinimidyl- og sulfosuccinimidylestere, kan andre aktive esteres liks som N-hydroksyftalimidylestere, While the active esters described in Figures 15 and 16 are composed of N-succinimidyl and sulfosuccinimidyl esters, other active esters such as N-hydroxyphthalimidyl esters,

N-hydroksysulfoftalimidylestere, ortonitrofenylestere, paranitrofenylestere, 2,4-dinitrofenyl-estere, 3-sulfonyl-4-nitrofenylestere, 3-karboksy-4-nitrofenylestere, pentafluorfenylestere og sulfonyltetrafluorfenylestere også bli benyttet. N-hydroxysulfophthalimidyl esters, orthonitrophenyl esters, paranitrophenyl esters, 2,4-dinitrophenyl esters, 3-sulfonyl-4-nitrophenyl esters, 3-carboxy-4-nitrophenyl esters, pentafluorophenyl esters and sulfonyl tetrafluorophenyl esters can also be used.

Spesielt foretrukne kryssbindingsreagenser danner ikke-kløyvbare linkere som ikke inneholder et svovelatom. Figur 21 viser et maytansinoidmolekyl som er derivatisert med et kryssbindingsreagens som er avledet fra en α, ω-dikarboksylsyre (en alkan- eller alkendisyre der alkanet eller alkenet har 3-24 karbonatomer). Når det reageres med cellebindingsmidlet vil kryssbindingsreagenset danne en ikke-svovelinneholdende ikkekløyvbar linker (ikke-S-inneholdende ikke-kløyvbar linker). Particularly preferred cross-linking reagents form non-cleavable linkers that do not contain a sulfur atom. Figure 21 shows a maytansinoid molecule that is derivatized with a cross-linking reagent that is derived from an α,ω-dicarboxylic acid (an alkane or alkenedic acid where the alkane or alkene has 3-24 carbon atoms). When reacted with the cell binding agent, the cross-linking reagent will form a non-sulfur-containing non-cleavable linker (non-S-containing non-cleavable linker).

Maytansinoidmolekylet i figur 21 ble fremstilt som følger. Først blir en monoester av adipinsyre (også kjent som heksandisyre eller 1,6-heksandikarboksysyre) klargjort ved behandling med en ekvivalent med 2-trimetylsilyletanol i nærvær av de sykloheksylkarbodiimid. Aktivering av den gjenværende karboksylsyregruppen med isobutylklorformat etterfulgt av reaksjon med N-metyl-L-alanin tilveiebringer det acylerte N-metyl-L-alanin. Reaksjon med maytansinol i nærvær av disykloheksylkarbodiimid og sinkklorid etterfulgt av den beskyttende trimetylsilylgruppen med tetrabutylammoniumfluorid tilveiebringer maytansinoidesteren som bærer en fri karboksygruppe. Forestering av karboksylgruppen ved reaksjon med sulfo-N-hydroksysuccinimid i nærvær av de sykloheksylkarbodiimid tilveiebringer den aktive esteren av maytansinol som kan reagere med et cellebindings-middel for å gi et ikke-kløyvbart konjugat som ikke inneholder et svovelatom. The maytansinoid molecule in Figure 21 was prepared as follows. First, a monoester of adipic acid (also known as hexanedioic acid or 1,6-hexanedicarboxylic acid) is prepared by treatment with one equivalent of 2-trimethylsilylethanol in the presence of decyclohexylcarbodiimide. Activation of the remaining carboxylic acid group with isobutyl chloroformate followed by reaction with N-methyl-L-alanine provides the acylated N-methyl-L-alanine. Reaction with maytansinol in the presence of dicyclohexylcarbodiimide and zinc chloride followed by the protecting trimethylsilyl group with tetrabutylammonium fluoride provides the maytansinoide ester bearing a free carboxy group. Esterification of the carboxyl group by reaction with sulfo-N-hydroxysuccinimide in the presence of decyclohexylcarbodiimide provides the active ester of maytansinol which can react with a cell binding agent to give a non-cleavable conjugate that does not contain a sulfur atom.

Syntese av cytotoksiske konjugater Synthesis of cytotoxic conjugates

Konjugater av cellebindingsmidler og maytansinoider kan bli dannet ved å benytte enhver teknikk som i dag er kjent eller som senere vil bli utviklet. Conjugates of cell binding agents and maytansinoids can be formed using any technique currently known or that will later be developed.

Fremgangsmåter for konjugering av cellebindingsmidler med maytansinoider involverer generelt to reaksjonstrinn. I en fremgangsmåte som er beskrevet i US patentskrift 5 208 020 kan et cellebindingsmiddel slik som et antistoff bli modifisert med et kryssbindingsreagens for å introdusere en eller flere, vanligvis 1-10 reaktive grupper. Det modifiserte cellebindingsmidler ble deretter reagert med en eller flere tiolinneholdende maytansinoider for å fremstille et konjugat. Methods for conjugating cell binding agents with maytansinoids generally involve two reaction steps. In a method described in US Patent 5,208,020, a cell-binding agent such as an antibody can be modified with a cross-linking reagent to introduce one or more, usually 1-10 reactive groups. The modified cell binding agents were then reacted with one or more thioline-containing maytansinoids to produce a conjugate.

Alternativt, slik som tilkjennegitt i US patentskrift 6 441 163 B1, kan et tiolinneholdende maytansinoid først bli modifisert med et kryssbindingsreagens, etterfulgt av reaksjon av det modifiserte maytansinoidet med et cellebindingsmiddel. For eksempel kan det tiolinneholdende maytansinoidet bli reagert med maleimidoforbindelsene som er beskrevet i figur 15 eller med haloacetylforbindelsene som er beskrevet i figur 16, for å gi en maytansinoidtioeter som bærer en aktiv succinimidyl- eller sulfosuccinimidylester. Reaksjon av disse maytansinoidene som inneholder en aktivert linkerenhet med et cellebindingsmiddel tilveiebringer en annen fremgangsmåte for å fremstille et ikkekløyvbart cellebindingsmiddelmaytansinoidkonjugat. Alternatively, as disclosed in US Patent 6,441,163 B1, a thioline-containing maytansinoid may first be modified with a cross-linking reagent, followed by reaction of the modified maytansinoid with a cell binding agent. For example, the thioline-containing maytansinoid can be reacted with the maleimido compounds described in Figure 15 or with the haloacetyl compounds described in Figure 16 to give a maytansinoid thioether bearing an active succinimidyl or sulfosuccinimidyl ester. Reaction of these maytansinoids containing an activated linker unit with a cell binding agent provides another method for preparing a non-cleavable cell binding agent maytansinoid conjugate.

I et annet eksempel, som tilkjennegitt ovenfor, kan et maytansinoid som ikke inneholder et svovelatom først bli derivatisert med et dikarboksylsyrebasert kryssbindingsreagens, etterfulgt av reaksjon med cellebindingsmidlet for å danne et konjugat der maytansinoidet er bundet til cellebindingsmidlet via en ikke-S-inneholdende ikke-kløyvbar linker. In another example, as indicated above, a maytansinoid that does not contain a sulfur atom may first be derivatized with a dicarboxylic acid-based cross-linking reagent, followed by reaction with the cell-binding agent to form a conjugate in which the maytansinoid is bound to the cell-binding agent via a non-S-containing non- cleavable linker.

Typisk er gjennomsnittlig 1-10 maytansinoider pr. antistoff bundet. Konjugatet kan bli renset gjennom en Sephadex G-25-kolonne. Typically, the average is 1-10 maytansinoids per antibody bound. The conjugate can be purified through a Sephadex G-25 column.

US patentskrift 5 208 020 og 6 441 163 B1 er herved innkorporert ved referanse. Eksempler på konjugater er antistoff-maytansinoidderivater, antistoffragmentmaytansinoidderivater, vekstfaktor-maytansinoidkonjugater slik som epidermal vekstfaktor (EGF)-maytansinoidderivater, hormon-maytansinoidkonjugater slik som melanocyttstimulerende hormon (MSH)-maytansinoidderivater, tyroidstimulerende hormon (TSH)-maytansinoidderivater, østrogen-maytansinoidderivater, østrogenanalogmaytansinoidderivater, androgen- maytansinoidderivater, androgenanalog- maytansinoidderivater og vitamin-maytansinoidkonjugater slik som folatmaytansinoid. US Patent Nos. 5,208,020 and 6,441,163 B1 are hereby incorporated by reference. Examples of conjugates are antibody-maytansinoid derivatives, antibody fragment maytansinoid derivatives, growth factor-maytansinoid conjugates such as epidermal growth factor (EGF)-maytansinoid derivatives, hormone-maytansinoid conjugates such as melanocyte-stimulating hormone (MSH)-maytansinoid derivatives, thyroid-stimulating hormone (TSH)-maytansinoid derivatives, estrogen-maytansinoid derivatives, estrogen analog maytansinoid derivatives, androgen-maytansinoid derivatives, androgen analog-maytansinoid derivatives and vitamin-maytansinoid conjugates such as folate maytansinoid.

Maytansinoidkonjugater av antistoffer, antistoffragmenter, proteinhormoner, proteinvekstfaktorer og andre proteiner ble fremstilt på samme måte. For eksempel kan peptider og antistoffer bli modifisert med de ikke-kløyvbare kryssbindingsreagensene som er nevnt ovenfor. En løsning av et antistoff i vandig buffer kan bli innkubert med et molart overskudd av et antistoffmodifiserende kryssbindingsreagens slik som succinimidyl-4-(N-maleimidometyl)-sykloheksan-1-karboksylat (SMCC), sulfo-SMCC, -maleimidobenzoyl-N-hydroksysuccinimidester (MBS), sulfo-MBS, succinimidyl-jodacetat eller N-succinimidyl-4-(jodacetyl)-aminobenzoat (SIAB N-succinimidyl-4-(N-maleimidometyl)-sykloheksan-1-karboksy-(6-amidokaproat) som er en "langkjedet" analog av SMCC (LC-SMCC), sulfo-LC-SMCC, κ-maleimidoundekansyre-N-succinimidylester (KMUA), sulfo-KMUA, γ-maleimido-smørsyre-N-succinimidylester (GMBS), sulfo-GMBS, ε-maleimidkapronsyre-N-hydroksy-succiminidester (EMCS), sulfo-EMCS, N-( α-maleimidoacetoksy)-succinimidester (AMAS), sulfo-AMAS, succinimidyl-6-( βmaleimidopropionamido)heksanoat (SMPH), sulfo-SMPH, N-succinimidyl-4-(pmaleimidofenyl)-butyrat (SMPB), sulfo-SMPH, N-(p-maleimidofenyl)-isocyanat (PMPI), N-succinimidyl-4-(jodacetyl)-aminobenzoat (SIAB), N-succinimidyl-jodacetat (SIA), N-succinimidylbromacetat (SBA) og N-succiminidyl-3-(bromacetamido)-propionat (SBAP), som beskrevet i litteraturen. Se Yoshitake et al., 101 Eur. J. Biochem. 395-399 (1979), Hashida et al., J. Applied Biochem. 56-63 (1984), og Liu et al., 18 690-697 (1979), Uto et al., 138 J. Immunol. Meth. 87-94 (1991), Rich et al., 18 J. Med. Chem. 1004-1010 (1975), Kitagawa and Aikawa, 79 J. Biochem. (Tohyo) 233-236 (1976), Tanimori et al., 62 J. Immunol. Meth. 123-128 (1983), Hashida et al., 6 J. Appl. Biochem. 56-63 (1984), Thorpe et al., 140 Eur. J. Biochem. 63-71 (1984), Chrisey et al., 24 Nucl. Acid Res. 3031-3039 (1996), Annunziato et al., 4 Bioconjugate Chem. 212-218 (1993), Rector et al., 24 J. Immunol. Meth. 321-336 (1978), and Inman et al., 2 Bioconjugate Chem. 458-463 (1991). Maytansinoid conjugates of antibodies, antibody fragments, protein hormones, protein growth factors and other proteins were similarly prepared. For example, peptides and antibodies can be modified with the non-cleavable cross-linking reagents mentioned above. A solution of an antibody in aqueous buffer can be incubated with a molar excess of an antibody-modifying cross-linking reagent such as succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC), sulfo-SMCC, -maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), sulfo-MBS, succinimidyl iodoacetate or N-succinimidyl-4-(iodoacetyl)-aminobenzoate (SIAB N-succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxy-(6-amidocaproate)) which is a "long chain" analog of SMCC (LC-SMCC), sulfo-LC-SMCC, κ-maleimidodecanoic acid-N-succinimidyl ester (KMUA), sulfo-KMUA, γ-maleimido-butyric acid-N-succinimidyl ester (GMBS), sulfo-GMBS . , N-succinimidyl-4-(p-maleimidophenyl)-butyrate (SMPB), sulfo-SMPH, N-(p-maleimidophenyl)-isocyanate (PMPI), N-succinimidyl-4-(iodoacetyl)-aminobenzoate (SIAB), N- succinimidyl iodoacetate (SIA), N-succinimidyl bromoacetate (SBA) and N-succiminidyl-3-(bromoacetamido)-propionate (SBAP), as described in the literature. See Yoshitake et al., 101 Eur. J. Biochem. 395-399 (1979), Hashida et al., J. Applied Biochem. 56-63 (1984), and Liu et al., 18 690-697 (1979), Uto et al., 138 J. Immunol. Meth. 87-94 (1991), Rich et al., 18 J. Med. Chem. 1004-1010 (1975), Kitagawa and Aikawa, 79 J. Biochem. (Tohyo) 233-236 (1976), Tanimori et al., 62 J. Immunol. Meth. 123-128 (1983), Hashida et al., 6 J. Appl. Biochem. 56-63 (1984), Thorpe et al., 140 Eur. J. Biochem. 63-71 (1984), Chrisey et al., 24 Nucl. Acid Res. 3031-3039 (1996), Annunziato et al., 4 Bioconjugate Chem. 212-218 (1993), Rector et al., 24 J. Immunol. Meth. 321-336 (1978), and Inman et al., 2 Bioconjugate Chem. 458-463 (1991).

Det modifiserte antistoffet ble deretter behandlet med det tiolinneholdende maytansinoidet (1,26 molar ekvivalent/maleimido eller jodacetylgruppe) for å fremstille et konjugat. Blandingene blir innkubert over natten ved omtrent 4 ºC. Antistoffmaytansinoidkonjugatene blir renset ved hjelp av gelfiltrering gjennom en Sephadex-G-25- kolonne. Antallet maytansinoidmolekyler bundet pr. antistoffmolekyl kan bli bestemt ved spektrofotometrisk å måle forholdet mellom absorbansene ved 252 nm og 280 nm. Typisk blir et gjennomsnitt på 1-10 maytansinoider pr. antistoff bundet. The modified antibody was then treated with the thioline-containing maytansinoid (1.26 molar equivalent/maleimido or iodoacetyl group) to prepare a conjugate. The mixtures are incubated overnight at approximately 4 ºC. The antibody maytansinoid conjugates are purified by gel filtration through a Sephadex-G-25 column. The number of maytansinoid molecules bound per antibody molecule can be determined by spectrophotometrically measuring the ratio between the absorbances at 252 nm and 280 nm. Typically, an average of 1-10 maytansinoids per antibody bound.

En foretrukket fremgangsmåte er å modifisere antistoffet med succinimidyl-4-(N-maleimidometyl)-sykloheksane-1-karboksylat (SMCC) for å introdusere maleimidogrupper etterfulgt av reaksjon av det modifiserte antistoffet med et tiolinneholdende maytansiniod for å gi et tioeterbundet konjugat. Igjen fører dette konjugatet til 1-10 legemiddelmolekyler pr. antistoffmolekyl. Eksempler på antistoff-maytansinoidkonjugater er vist i figurene 17-20. A preferred method is to modify the antibody with succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC) to introduce maleimido groups followed by reaction of the modified antibody with a thioline-containing maytansine iodide to give a thioether-linked conjugate. Again, this conjugate leads to 1-10 drug molecules per antibody molecule. Examples of antibody-maytansinoid conjugates are shown in figures 17-20.

Likeledes kan for eksempel østrogen- og androgencellebindingsmidler slik som østradiol og androstendiol bli forestret på C-17-hydroksygruppen ved reaksjon med en hensiktsmessig beskyttet tiolgruppe inneholdende karboksylklorid slik som 3-S-acetylpropanoylklorid. Andre fremgangsmåter for forestring kan også bli benyttet som beskrevet i litteraturen (Haslam, 36 Tetrahedron 2400-2433 (1980)). Det beskyttede eller frie tiolinneholdende androgenet eller østrogenet kan deretter bli reagert med et tiolinneholdende maytansinoid for å fremskaffe konjugater. Konjugatene kan bli renset ved hjelp av kolonnekromatografi på silikagel eller ved hjelp av HPLC. Likewise, for example, estrogen and androgen cell binding agents such as estradiol and androstenediol can be esterified on the C-17 hydroxy group by reaction with an appropriately protected thiol group containing carboxyl chloride such as 3-S-acetylpropanoyl chloride. Other methods for esterification can also be used as described in the literature (Haslam, 36 Tetrahedron 2400-2433 (1980)). The protected or free thioline-containing androgen or estrogen can then be reacted with a thioline-containing maytansinoid to provide conjugates. The conjugates can be purified by means of column chromatography on silica gel or by means of HPLC.

En spesielt foretrukket fremgangsmåte er å modifisere maytansinol med et kryssreagens som fører til en binding som ikke inneholder noen svovelatomer, etterfulgt av reaksjon av det modifiserte maytansinoidet med et antistoff for å fremstille konjugatet. A particularly preferred method is to modify maytansinol with a cross-linking reagent which leads to a bond containing no sulfur atoms, followed by reaction of the modified maytansinoid with an antibody to produce the conjugate.

Terapeutisk effektivitet for cytotoksiske konjugater Cellebindingsmiddelmaytansinoidkonjugater kan bli evaluert for deres evne til å undertrykke proliferasjon for ulike cellelinjer in vitro. For eksempel kan cellelinjer slik som den humane kolonkarsinomlinjen COLO205, den humane melanomcellelinjen A375, den humane myeloidleukemicellelinjen HL60, den humane brystkarsinomcellelinjen SKBR3 eller den humane epidermoide karsinomcellelinjen KB blir benyttet for undersøkelsen av cytotoksisitet for disse konjugatene. Celler som skal bli evaluert kan bli eksponert for forbindelsene i 24 timer og den overlevende fraksjonen av celler kan bli målt i direkte analyse ved hjelp av kjente fremgangsmåter. (Se for eksempel Goldmacher et al., 135 J. Immunol. 3648-3651 (1985), og Goldmacher et al., 102 J. Cell Biol. 1312-1319 (1986).) IC50-verdier kan deretter bli beregnet fra resultatene av analysen. Therapeutic Efficacy of Cytotoxic Conjugates Cell binding agent maytansinoid conjugates can be evaluated for their ability to suppress proliferation for various cell lines in vitro. For example, cell lines such as the human colon carcinoma cell line COLO205, the human melanoma cell line A375, the human myeloid leukemia cell line HL60, the human breast carcinoma cell line SKBR3 or the human epidermoid carcinoma cell line KB can be used for the investigation of cytotoxicity of these conjugates. Cells to be evaluated can be exposed to the compounds for 24 hours and the surviving fraction of cells can be measured in direct analysis using known methods. (See, for example, Goldmacher et al., 135 J. Immunol. 3648-3651 (1985), and Goldmacher et al., 102 J. Cell Biol. 1312-1319 (1986).) IC50 values can then be calculated from the results of the analysis.

Høy cytotoksisitet kan bli definert som oppvisning av en toksisitet som har en IC50 (den inhiberende konsentrasjonen av et toksisk stoff som gir en overlevelsesfraksjon på 0,5) på omtrent 10<-8 >M eller mindre når det blir målt in vitro med SKBR3-celler ved en 24 timers eksponering overfor legemidlet. High cytotoxicity can be defined as the demonstration of a toxicity that has an IC50 (the inhibitory concentration of a toxic substance that gives a survival fraction of 0.5) of about 10<-8 >M or less when measured in vitro with SKBR3- cells during a 24-hour exposure to the drug.

In vitro-styrken og målspesifisitet for antistoff-maytansinoidkonjugatene er vist i figur 4. Konjugater av huC242 med DM1 ved å benytte kryssbindingsreagenset SMCC er svært potente når det gjelder å ødelegge antigenpositive SKBR3-celler med en IC50-verdi på 3,5 x 10<-12 >M. I motsetning til dette er antigennegative A375-celler omtrent 800 ganger mindre sensitive, noe som viser at maytansinoidkonjugater ifølge foreliggende oppfinnelse er svært potente og spesifikke. The in vitro potency and target specificity of the antibody-maytansinoid conjugates are shown in Figure 4. Conjugates of huC242 with DM1 using the cross-linking reagent SMCC are highly potent in killing antigen-positive SKBR3 cells with an IC50 value of 3.5 x 10< -12 >M. In contrast, antigen-negative A375 cells are approximately 800 times less sensitive, demonstrating that maytansinoid conjugates of the present invention are highly potent and specific.

huC242-SMCC-DM1-konjugatet var like sterkt eller sterkere sammenlignet med konjugater som var fremstilt med disulfidinneholdende linkere i klonogene (figur 6A-C) og i indirekte cytotoksisitetsanalyser (figur 7). Disse resultatene var uventede basert på tidligere publiserte data som viser at et anti-Her2-antistoff konjugert til maytansinoider via SMCC ikke viste noen spesifikk aktivitet (Chari et al., 52 Cancer Res. 127-133 (1992). The huC242-SMCC-DM1 conjugate was equally potent or more potent compared to conjugates prepared with disulfide-containing linkers in clonogenic (Figure 6A-C) and indirect cytotoxicity assays (Figure 7). These results were unexpected based on previously published data showing that an anti-Her2 antibody conjugated to maytansinoids via SMCC showed no specific activity (Chari et al., 52 Cancer Res. 127-133 (1992).

Aktivitet for konjugater fremstilt med SMCC-ikke-kløyvbar linker er ikke begrenset til huC242-konjugater. Spesifikk aktivitet in vitro ble også observert med SMCC-DM1-konjugater av trastuzumab, som er et anti-Her2-antistoff, My9-6 som er et anti-CD33-antistoff, KS77 som er et anti-EGFR-antistoff og N901 som er et anti-CD56-antistoff (figur 8A-D og 25). Activity of conjugates prepared with SMCC-non-cleavable linker is not limited to huC242 conjugates. Specific activity in vitro was also observed with SMCC-DM1 conjugates of trastuzumab, which is an anti-Her2 antibody, My9-6 which is an anti-CD33 antibody, KS77 which is an anti-EGFR antibody and N901 which is an anti-CD56 antibody (Figures 8A-D and 25).

I tillegg er ikke konjugater med ikke-kløyvbare linkere som viser spesifikk aktivitet in vitro begrenset til SMCC-linkeren. Et huC242-konjugat av DM1 som er syntetisert med den ikke-kløyvbare linkeren SIAB viste sterk og antigenspesifikk cytotoksisitet i klonogene analyser in vitro (figur 9). Videre var et trastuzumabkonjugat av DM1 som var syntetisert med SIAB også cytotoksisk i klonogene analyser (figur 28). Videre viste et huC242-ikke-S-inneholdende ikke-kløyvbart linker-DM1-konjugat også sterk og antigenspesifikk cytotoksisitet i klonogene analyser in vitro (figur 22). In addition, conjugates with non-cleavable linkers that show specific activity in vitro are not limited to the SMCC linker. A huC242 conjugate of DM1 synthesized with the non-cleavable linker SIAB showed strong and antigen-specific cytotoxicity in clonogenic assays in vitro (Figure 9). Furthermore, a trastuzumab conjugate of DM1 synthesized with SIAB was also cytotoxic in clonogenic assays (Figure 28). Furthermore, a huC242-non-S-containing non-cleavable linker-DM1 conjugate also showed strong and antigen-specific cytotoxicity in clonogenic assays in vitro (Figure 22).

Antistoffkonjugater med DM1 som benytter SMCC-linkeren viser antitumoreffektivitet mot humane tumorxenografter i mus (figur 10A-C). Som vist i figur 10A ble først markert inhibering av tumorvekst observert ved behandling av COLO205-kolontumorxenografter med huC242-SMCC-DM1. I dette eksperimentet ble en gruppe på fem dyr som bar på etablerte, subkutane tumorer behandlet med huC242-SMCC-DM1 ved en dosering på 150 μg/kg med konjugert DM1. Tumorstørrelser ble målt periodisk og benyttet i en graf mot tid etter tumorinokulering. Alle de fem behandlede dyrene hadde fullstendig remisjon, selv om tre dyr deretter fikk tilbakefall ved ulike tidspunkter, mens to dyr forble tumorfrie inntil avslutningen av eksperimentet (figur 10 A). Som vist i figur 10B ble i tillegg denne antitumoraktiviteten observert ved konjugatdoser som ikke har noen effekt på musekroppsvekt, som er et mål for legemiddeltoksisitet. I dette eksperimentet ble tre grupper på fem dyr hver som hver bar på etablerte, subkutane SNU-tumorer behandlet med huC242-SMCC-DM1 ved doser på henholdsvis 15 μg/kg, 30 μg/kg og 60 μg/kg med konjugert DM1. Tumorstørrelser ble målt periodisk og benyttet i en graf mot tid etter tumorinokulering. HuC242-SMCC-DM1 viste en doseavhengig antitumoreffekt. Resultatene viser at behandling av mus som bærer COLO205-kolonkarsinomtumorxenografter med huC242-SMCC-DM1-konjugat førte til fullstendig tilbakedannelse av tumorer, der noen mus forble uten påvisbare tumorer i over to måneder etter behandling (figur 10A). Igjen ble denne aktiviteten oppnådd ved en konjugatkonsentrasjon som ikke viste noen effekt på musekroppsvekt. Et trastuzumab-SMCC-DM1-konjugat viste også signifikant tumortilbakedannelse i en musetumorxenograftmodell med MCF-7-brystkarsinomcellelinjen (figur 10C). Antibody conjugates with DM1 utilizing the SMCC linker show antitumor efficacy against human tumor xenografts in mice (Figure 10A-C). As shown in Figure 10A, marked inhibition of tumor growth was first observed upon treatment of COLO205 colon tumor xenografts with huC242-SMCC-DM1. In this experiment, a group of five animals bearing established subcutaneous tumors were treated with huC242-SMCC-DM1 at a dosage of 150 μg/kg of conjugated DM1. Tumor sizes were measured periodically and used in a graph against time after tumor inoculation. All five treated animals had complete remission, although three animals subsequently relapsed at various time points, while two animals remained tumor-free until the end of the experiment (Figure 10 A). Additionally, as shown in Figure 10B, this antitumor activity was observed at conjugate doses that have no effect on mouse body weight, which is a measure of drug toxicity. In this experiment, three groups of five animals each bearing established subcutaneous SNU tumors were treated with huC242-SMCC-DM1 at doses of 15 μg/kg, 30 μg/kg, and 60 μg/kg of conjugated DM1, respectively. Tumor sizes were measured periodically and used in a graph against time after tumor inoculation. HuC242-SMCC-DM1 showed a dose-dependent antitumor effect. The results show that treatment of mice bearing COLO205 colon carcinoma tumor xenografts with huC242-SMCC-DM1 conjugate led to complete regression of tumors, with some mice remaining without detectable tumors for over two months after treatment (Figure 10A). Again, this activity was obtained at a conjugate concentration that showed no effect on mouse body weight. A trastuzumab-SMCC-DM1 conjugate also showed significant tumor regression in a mouse tumor xenograft model with the MCF-7 breast carcinoma cell line (Figure 10C).

Plasmauttømming av antistoff-maytansinoidkonjugat syntetisert med den ikkekløyvbare linkeren SMCC er svært sen og sammenlignbar med uttømmingen av antistoff alene. Dette står i skarp kontrast til plasmauttømming av konjugater som er fremstilt med relativt labile disulfidbindinger slik som huC242-SPP-DM1. For eksempel er halveringstiden for uttømming av SMCC-konjugatet omtrent 320 timer, mens halveringstiden for SPP-konjugatet er i området 40-50 timer (figur 11). Likevel er uttømmingen av antistoff-komponenten for hver type av konjugat identisk, noe som tyder på at forskjellen i målt konjugatuttømming skyldes tapet av maytansinoid fra antistoffkonjugatet i tilfellet for SPP-DM1-konjugatet. Den ikke-kløyvbare SMCC-bindingen er derfor mye mer motstandsdyktig overfor maytansinoidlinkerkløyvingsaktiviteter som foreligger in vivo enn SPP-DM1-konjugatet. Videre fører den minskede uttømmingshastigheten for de SMCC-bundne konjugatene sammenlignet med SPP-DM1-konjugatene til en nesten 5 gangers økning i total maytansinoideksponering for dyret som målt ved arealet under kurven (AUC). Denne økte eksponeringen kan ha vesentlig påvirkning på legemiddeleffektivitet i noen tilfeller. Plasma clearance of the antibody-maytansinoid conjugate synthesized with the non-cleavable linker SMCC is very late and comparable to the clearance of antibody alone. This is in sharp contrast to the plasma depletion of conjugates prepared with relatively labile disulfide bonds such as huC242-SPP-DM1. For example, the depletion half-life of the SMCC conjugate is approximately 320 hours, while the half-life of the SPP conjugate is in the range of 40-50 hours (Figure 11). Nevertheless, the depletion of the antibody component for each type of conjugate is identical, suggesting that the difference in measured conjugate depletion is due to the loss of maytansinoid from the antibody conjugate in the case of the SPP-DM1 conjugate. The non-cleavable SMCC bond is therefore much more resistant to maytansinoid linker cleavage activities present in vivo than the SPP-DM1 conjugate. Furthermore, the decreased depletion rate of the SMCC-bound conjugates compared to the SPP-DM1 conjugates leads to an almost 5-fold increase in total maytansinoid exposure to the animal as measured by the area under the curve (AUC). This increased exposure can have a significant impact on drug effectiveness in some cases.

Maytansinoidkonjugater som er fremstilt med ikke-kløyvbare linkere slik som SMCC viser en uventet økt tolererbarhet i mus sammenlignet med konjugater som er fremstilt med kløyvbare disulfidlinkere. En akutt toksisitetstest med en enkel intravenøs dose ble utført i CD-1-hunnmus. En sammenligning av tolererbarheten for et huC242-SMCC-DM1-konjugat (ikke-kløyvbart) med huC242-konjugater som er fremstilt med linkere inneholdende kløyvbare disulfidbindinger ble utført ved å overvåke døden for mus (figur 12A og B) og tegn på toksisitet (12C og D) over en serie på 4 eskalerende doser av hvert konjugat. Den maksimaltolererte dosen (MTD) for SMCC-DM1-konjugatet var høyere enn den høyeste dosen som ble testet (150 mg/kg) mens MTD for det disulfidbundne konjugatet SPP-DM1 var i området på 45-90 mg/kg. Ved 150 mg/kg overlevde alle musene i den SMCC-DM1-dannede gruppen mens dødelig toksisitet ble observert for alle musene i den SPP-DM1-behandlede gruppen ved 96 timer etter behandling. Maytansinoid conjugates prepared with non-cleavable linkers such as SMCC show an unexpectedly increased tolerability in mice compared to conjugates prepared with cleavable disulfide linkers. An acute toxicity test with a single intravenous dose was performed in CD-1 female mice. A comparison of the tolerability of a huC242-SMCC-DM1 conjugate (non-cleavable) with huC242 conjugates prepared with linkers containing cleavable disulfide bonds was performed by monitoring mouse death (Figure 12A and B) and signs of toxicity (Figure 12C and D) over a series of 4 escalating doses of each conjugate. The maximum tolerated dose (MTD) of the SMCC-DM1 conjugate was higher than the highest dose tested (150 mg/kg) while the MTD of the disulfide-linked conjugate SPP-DM1 was in the range of 45-90 mg/kg. At 150 mg/kg, all mice in the SMCC-DM1-induced group survived while lethal toxicity was observed for all mice in the SPP-DM1-treated group at 96 hours post-treatment.

Maytansinoidkonjugater er antatt å påføre sin celleødeleggende aktivitet via inhiberingen av mikrotubulipolymerisering. Denne inhiberingen av mikrotubulipolymerisering fører til en stopp av cellesyklusen prinsipielt ved G2/M. Den antigenavhengige stoppingen av celler på G2/M ved hjelp av antistoff-maytansinoidkonjugater kan bli overvåket vedhjelp av flowcytometri-analyse (figur 13). Behandling av COLO205-celler med huC242-SPP-DM1 eller huC242-SMCC-DM1-konjugater fører til en fullstendig G2/M-stopp ved 6-10 timer. Ved 30 timer etter behandling unnslipper likevel noen av cellene som er stoppet ved behandling ved det disulfidbundne huC242-SPP-DM1-konjugatet fra cellesyklusstopp og begynner på nytt celledeling. Overraskende unnslipper ikke celler som er behandlet med det ikke-kløyvbare konjugatet fra cellesyklusblokkeringen på dette senere tidspunktet. Forskjellen i varigheten for aktiviteten til disse to konjugatene er også reflektert i prosentandelen av døde celler ved 30 timers tidspunktet, som vurdert ut fra en fargestoffeksklusjonsanalyse ved å benytte trypanblått. Disse resultatene viser en uventet varighet for de molekylære hendelsene som er indusert ved behandling ved de ikke-kløyvbare SMCC-linkerkonjugatene. Maytansinoid conjugates are thought to exert their cytotoxic activity via the inhibition of microtubule polymerization. This inhibition of microtubule polymerization leads to an arrest of the cell cycle principally at G2/M. The antigen-dependent arrest of cells at G2/M by antibody-maytansinoid conjugates can be monitored by flow cytometry analysis (Figure 13). Treatment of COLO205 cells with huC242-SPP-DM1 or huC242-SMCC-DM1 conjugates leads to a complete G2/M arrest at 6-10 hours. At 30 hours after treatment, however, some of the cells arrested by treatment with the disulfide-bonded huC242-SPP-DM1 conjugate escape from cell cycle arrest and begin cell division again. Surprisingly, cells treated with the non-cleavable conjugate do not escape the cell cycle arrest at this later time point. The difference in the duration of activity of these two conjugates is also reflected in the percentage of dead cells at the 30 hour time point, as assessed by a dye exclusion assay using trypan blue. These results demonstrate an unexpected duration of the molecular events induced by treatment with the non-cleavable SMCC linker conjugates.

Et ytterligere aspekt ved konjugater som er fremstilt med ikke-kløyvbare linkere sammenlignet med konjugater som har kløyvbare disulfidlinkere er fraværet av aktivitet mot antigennegative celler når det er i nærhet til antigenpositive celler, betegnet her som tilskuereffekten. Det betyr at konjugatene som er fremstilt med ikke-kløyvbare linkere har minimal tilskueraktivitet. Både huC242-SPP-DM1 (kløyvbare) og huC242-SMCC (ikke-kløyvbare)-konjugater viser sterk celleødeleggende aktivitet mot den antigenpositive COLO205-cellelinjen og har ingen aktivitet mot den antigennegative cellelinjen Namalwa når de blir dyrket separat (figur 14A-C). Likevel avslører behandling av kokulturer av COLO205- og namalwa-celler med huC242-SPP-DM1 dramatisk celleødeleggende aktivitet av konjugatet mot selv de antigennegative namalwa-cellene. I motsetning til dette viser ikke huC242-SMCC-DM1-konjugatet noen slik tilskueraktivitet ved disse betingelsene. Ingen celleødeleggende aktivitet mot namalwa-celler blir observert med huC242-SMCC-DM1-konjugatet selv når det blir dyrket sammen med de antigenpositive COLO205-cellene. Denne minimale tilskueraktiviteten for det ikkekløyvbare konjugatet, som målt i denne in vitro-analysen, kan bidra til den økte tolerabiliteten for konjugat med ikke-kløyvbare linkere observert i akuttoksisitetsundersøkelser. A further aspect of conjugates prepared with non-cleavable linkers compared to conjugates having cleavable disulfide linkers is the absence of activity against antigen-negative cells when in proximity to antigen-positive cells, referred to herein as the bystander effect. This means that the conjugates prepared with non-cleavable linkers have minimal bystander activity. Both huC242-SPP-DM1 (cleavable) and huC242-SMCC (non-cleavable) conjugates show strong cytotoxic activity against the antigen-positive COLO205 cell line and have no activity against the antigen-negative Namalwa cell line when grown separately (Figure 14A-C). . Nevertheless, treatment of cocultures of COLO205 and namalwa cells with huC242-SPP-DM1 reveals dramatic cytotoxic activity of the conjugate against even the antigen-negative namalwa cells. In contrast, the huC242-SMCC-DM1 conjugate shows no such bystander activity under these conditions. No cytotoxic activity against namalwa cells is observed with the huC242-SMCC-DM1 conjugate even when co-cultured with the antigen-positive COLO205 cells. This minimal bystander activity for the non-cleavable conjugate, as measured in this in vitro assay, may contribute to the increased tolerability of conjugates with non-cleavable linkers observed in acute toxicity studies.

Resultater fra eksperimentene ovenfor viser at maytansinoidkonjugatene med ikke-kløyvbare linkere ifølge foreliggende oppfinnelse innehar sterkt forbedret antitumoraktivitet sammenlignet med tidligere beskrevne cellebindingsmiddelmaytansinoidkonjugater. Results from the above experiments show that the maytansinoid conjugates with non-cleavable linkers according to the present invention have greatly improved antitumor activity compared to previously described cell binding agent maytansinoid conjugates.

Anvendelser Applications

Konjugatene som er beskrevet ovenfor kan bli benyttet i en in vitro fremgangsmåte for å styre maytansinoider til en valgt cellepopulasjon, der fremgangsmåten omfatter å kontakte en cellepopulasjon eller et vev som er mistenkt for å inneholde den valgte cellepopulasjonen med et cellebindingsmiddelmaytansinoidkonjugat, der en eller flere maytansinoider er bundet til cellebindingsmidlet via en ikke-kløyvbar linker og cellebindingsmidlet binder til celler i den valgte cellepopulasjonen. The conjugates described above may be used in an in vitro method for administering maytansinoids to a selected cell population, wherein the method comprises contacting a cell population or a tissue suspected of containing the selected cell population with a cell binding agent maytansinoid conjugate, wherein one or more maytansinoids is bound to the cell binding agent via a non-cleavable linker and the cell binding agent binds to cells in the selected cell population.

De ovenfor beskrevne konjugatene kan også bli benyttet i en in vitro fremgangsmåte for å ødelegge celler, der fremgangsmåten omfatter å kontakte cellene med et cellebindingsmiddelmaytansinoidkonjugat, der en eller flere maytansinoider er kovalent bundet til cellebindingsmidlet via en ikke-kløyvbar linker og cellebindingsmidlet binder til cellene. The above-described conjugates can also be used in an in vitro method for destroying cells, where the method comprises contacting the cells with a cell-binding agent maytansinoid conjugate, where one or more maytansinoids are covalently bound to the cell-binding agent via a non-cleavable linker and the cell-binding agent binds to the cells.

Eksempler på medisinske tilstander som kan bli behandlet inkluderer, men er ikke begrenset til, ondartede krefttyper av enhver type inkludert for eksempel kreft i lunge, bryst, tykktarm, prostata, nyre, pankreas, ovarier og lymfatiske organer, autoimmune sykdommer slik som systemisk lupus, revmatoid artritt og multippel sklerose, transplantatavstøtninger slik som nyretransplantasjons-frastøtning, levertransplantasjonsfrastøtning, lungetransplantasjonsfrastøtning, hjertetransplantasjonsfrastøtning og benmargstransplantasjonsfrastøtning, transplantat versus vertssykdom, virusinfeksjoner slik som CMV-infeksjon, HIV-infeksjon, AIDS osv., og parasittinfeksjoner slik som giardiasis, amoebiasis, schistosomiasis, og andre som bestemt av en fagperson på området. Examples of medical conditions that may be treated include, but are not limited to, malignant cancers of any type including, for example, cancers of the lung, breast, colon, prostate, kidney, pancreas, ovaries and lymphatic organs, autoimmune diseases such as systemic lupus, rheumatoid arthritis and multiple sclerosis, transplant rejections such as kidney transplant rejection, liver transplant rejection, lung transplant rejection, heart transplant rejection and bone marrow transplant rejection, graft versus host disease, viral infections such as CMV infection, HIV infection, AIDS, etc., and parasitic infections such as giardiasis, amoebiasis, schistosomiasis, and others as determined by a professional in the field.

Fremgangsmåtene kan bli utøvd in vitro eller in vivo. The methods may be practiced in vitro or in vivo.

De ovenfor beskrevne konjugatene kan bli benyttet i en fremgangsmåte ved anvendelse in vitro for å behandle for eksempel autologe benmargceller før deres transplantasjon inn i den samme pasienten for å ødelegge sykdomsrammede eller maligne celler, benmargceller eller andre vev før deres transplantasjon for å ødelegge T-celler og andre lymfoide celler og forhindre transplantat versus vertssyksom (GVHD), cellekultur for å ødelegge alle celler bortsett fra ønskede varianter som ikke uttrykker målantigenet, eller cellekulturer for å ødelegge variantceller som uttrykker uønsket antigen, der fremgangs-måten omfatter å behandle cellene med en effektiv mengde av et cellebindingsmiddel-maytansinoidkonjugat, der ett eller flere maytansinoider er kovalent bundet til cellebindings-midlet via en ikke-kløyvbar linker og cellebindingsmidlet binder til cellene som skal bli ødelagt. The above-described conjugates can be used in a method using in vitro to treat, for example, autologous bone marrow cells before their transplantation into the same patient to destroy diseased or malignant cells, bone marrow cells or other tissues before their transplantation to destroy T cells and other lymphoid cells and prevent graft versus host disease (GVHD), cell culture to destroy all cells except desired variants that do not express the target antigen, or cell cultures to destroy variant cells that express the unwanted antigen, the method comprising treating the cells with an effective amount of a cell binding agent-maytansinoid conjugate, where one or more maytansinoids are covalently bound to the cell binding agent via a non-cleavable linker and the cell binding agent binds to the cells to be destroyed.

Betingelsene for klinisk og ikke-klinisk in vitro-anvendelse kan egentlig bli bestemt av en fagperson på området. The conditions for clinical and non-clinical in vitro use can really be determined by a person skilled in the art.

For eksempel kan behandling bli utført som følger. Benmarg kan bli høstet fra pasienten eller annet individ og deretter bli innkubert i medium inneholdende serum til hvilket det er tilsatt det cytotoksiske middel ifølge oppfinnelsen, konsentrasjonsområdet fra omtrent 10 pM til 1 nM i omtrent 30 minutter til omtrent 48 timer ved omtrent 37 ºC. De eksakte betingelsene for konsentrasjon og tid for innkubering, det vil si dosen, kan enkelt bli bestemt av en fagperson på området. Etter innkubering kan benmargcellen bli vasket med et medium inneholdende serum og ført tilbake i pasienten intravenøst i henhold til kjente fremgangsmåter. I tilfeller der pasienten mottar annen behandling slik som i en omgang med ablativ kjemoterapi eller totalkroppsbestrålning mellom tidspunktet for høsting av marg og reinfeksjon av behandlede celler kan de behandlede margcellene bli lagret frosne i flytende nitrogen ved å benytte standard medisinsk utstyr. For example, processing can be carried out as follows. Bone marrow may be harvested from the patient or other individual and then incubated in medium containing serum to which has been added the cytotoxic agent of the invention, concentration range from about 10 pM to 1 nM for about 30 minutes to about 48 hours at about 37 ºC. The exact conditions for concentration and time for incubation, i.e. the dose, can easily be determined by a person skilled in the field. After incubation, the bone marrow cell can be washed with a medium containing serum and returned to the patient intravenously according to known methods. In cases where the patient receives other treatment, such as in a round of ablative chemotherapy or total body radiation between the time of marrow harvesting and reinfection of treated cells, the treated marrow cells can be stored frozen in liquid nitrogen using standard medical equipment.

For klinisk in vivo-anvendelse kan det cytotoksiske midlet bli tilført som en løsning eller et lyofilisert pulver som er testet for sterilitet og for endotoksinnivåer. For in vivo clinical use, the cytotoxic agent can be administered as a solution or a lyophilized powder that has been tested for sterility and for endotoxin levels.

Eksempler på passende protokoller for konjugatadministrering er som følger. Konjugater kan bli gitt ukentlig i fire uker som en intravenøs bolus hver uke. Bolusdoser kan bli gitt i 50 til 500 ml normalt fysiologisk saltvann til hvilket 5 til 10 ml humant serumalbumin kan bli tilsatt. Doseringer vil være 10 mg til 2 000 pr. administrering intravenøst (i området 100 ng til 20 mg/kg pr. dag). Etter fire uker med behandling kan pasienten fortsette å motta behandling på en ukentlig basis. Examples of suitable protocols for conjugate administration are as follows. Conjugates can be given weekly for four weeks as an intravenous bolus every week. Bolus doses may be given in 50 to 500 ml of normal physiological saline to which 5 to 10 ml of human serum albumin may be added. Dosages will be 10 mg to 2,000 per administration intravenously (in the range of 100 ng to 20 mg/kg per day). After four weeks of treatment, the patient can continue to receive treatment on a weekly basis.

Spesifikk in vivo-kliniske protokoller med hensyn på administreringsmåte, eksipienser, fortynningsmidler, doseringer, tider osv. kan bli bestemt av en fagperson på området etter som den kliniske situasjonen krever. Specific in vivo clinical protocols with respect to route of administration, excipients, diluents, dosages, times, etc. may be determined by one skilled in the art as the clinical situation requires.

Hvis ønskelig kan andre aktive midler slik som andre antitumormidler bli administrert sammen med konjugatet. If desired, other active agents such as other antitumor agents may be administered together with the conjugate.

Nye konjugater, preparater og fremgangsmåter for å fremstille konjugatene New conjugates, preparations and methods for preparing the conjugates

Mens noen konjugater er antistoffer av maytansinoider som er bundet med en ikke-kløyvbar linker er kjente, så er andre nye. Derfor blir det tilveiebrakt et cellebindings-middelmaytansinoidkonjugat som har minst ett maytansinoid bundet til et cellebindings-middel via en ikke-kløyvbar linker, gitt at linkeren ikke omfatter en gruppe som er avledet fra et kryssbindingsmiddel som er valgt fra gruppen som består av: succinimidyl-4-(N-maleimidometyl)-sykloheksan-1-karboksylat (SMCC), sulfo-SMCC, mmaleimidobenzoyl-N-hydroksysuccinimidester (MBS), sulfo-MBS og succinimidyl-jodacetat når cellebindingsmidlet er et antistoff. While some conjugates are antibodies of maytansinoids linked with a non-cleavable linker are known, others are new. Therefore, there is provided a cell-binding agent-maytansinoid conjugate having at least one maytansinoid bound to a cell-binding agent via a non-cleavable linker, provided that the linker does not comprise a group derived from a cross-linking agent selected from the group consisting of: succinimidyl- 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC), sulfo-SMCC, mmaleimidobenzoyl-N-hydroxysuccinimide ester (MBS), sulfo-MBS and succinimidyl iodoacetate when the cell binding agent is an antibody.

De nye konjugatene kan bli fremstilt og benyttes som beskrevet ovenfor. The new conjugates can be prepared and used as described above.

Preparatet omfatter cellebindingsmiddelmaytansinoidkonjugatet og en bærer. The preparation comprises the cell binding agent maytansinoid conjugate and a carrier.

Bæreren kan være en farmasøytisk akseptabel bærer, fortynningsmiddel eller eksipiens. The carrier may be a pharmaceutically acceptable carrier, diluent or excipient.

Passende farmasøytisk akseptable bærere, fortynningsmidler og eksipienser er velkjente og kan bli bestemt av fagfolk på området slik den kliniske situasjonen krever dette. Suitable pharmaceutically acceptable carriers, diluents and excipients are well known and can be determined by those skilled in the art as the clinical situation requires.

Eksempler på passende bærere, fortynningsmidler og/eller eksipienser: (1) Dulbeccos fosfatbufrede saltløsning, pH omtrent 7,4, inneholdende eller ikke inneholdende omtrent 1 mg/ml til 25 mg/ml humant serumalbumin, (2) 0,9 % fysiologisk saltløsning (0,9 vekt/volum NaCl) og (3) 5 % (vekt/volum) dekstrose og kan også inneholde en antioksidant slik som tryptamin og et stabiliserende middel slik som Tween-20. Examples of suitable carriers, diluents and/or excipients: (1) Dulbecco's phosphate buffered saline, pH about 7.4, containing or not containing about 1 mg/ml to 25 mg/ml human serum albumin, (2) 0.9% physiological saline (0.9 w/v NaCl) and (3) 5% (w/v) dextrose and may also contain an antioxidant such as tryptamine and a stabilizing agent such as Tween-20.

For disse nye konjugatene blir også syntesefremgangsmåter tilveiebrakt. For these new conjugates, synthetic procedures are also provided.

En av fremgangsmåtene for fremstilling av cellebindingsmiddelmaytansinoidkonjugatet omfatter: One of the methods for producing the cell binding agent maytansinoid conjugate includes:

(a) tilveiebringe cellebindingsmidlet (a) providing the cell binding agent

(b) modifisere cellebindingsmidlet med et kryssbindingsmiddel og (b) modifying the cell binding agent with a cross-linking agent and

(c) konjugere det modifiserte cellebindingsmidlet med et maytansinoid eller et tiolinneholdende maytansinoid for derved å tilveiebringe den ikke-kløyvbare linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiolinneholdende maytansinoidet for å fremstille konjugatet. (c) conjugating the modified cell-binding agent with a maytansinoid or a thioline-containing maytansinoid thereby providing the non-cleavable linker between the cell-binding agent and the maytansinoid or the thioline-containing maytansinoid to produce the conjugate.

En annen fremgangsmåte for å fremstille cellebindingsmiddelmaytansinoidkonjugatet omfatter: Another method for preparing the cell binding agent maytansinoid conjugate comprises:

(a) tilveiebringe maytansinoidet eller et tiolinneholdende maytansinoid, (a) providing the maytansinoid or a thioline-containing maytansinoid;

(b) modifisere maytansinoidet eller det tiolinneholdende maytansinoidet med et kryssbindende middel for derved å danne en ikke-kløyvbar linker og (b) modifying the maytansinoid or the thioline-containing maytansinoid with a cross-linking agent to thereby form a non-cleavable linker and

(c) konjugere det maytansinoidet eller det tiolinneholdende maytansinoidet med cellebindingsmidlet for derved å tilveiebringe den ikke-kløyvbar linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiolinneholdende maytansinoidet for å fremstille konjugatet. (c) conjugating the maytansinoid or the thioline-containing maytansinoid with the cell-binding agent to thereby provide the non-cleavable linker between the cell-binding agent and the maytansinoid or the thioline-containing maytansinoid to produce the conjugate.

En ytterligere prosess for fremstilling av cellebindingsmiddelmaytansinoidkonjugatet omfatter: A further process for making the cell binding agent maytansinoid conjugate comprises:

(a) tilveiebringe maytansinoidet (a) providing the maytansinoid

(b) modifisere maytansinoidet for å tilveiebringe et ikke-svovelinneholdende maytansinol som har en aktiv ester og (b) modifying the maytansinoid to provide a non-sulfur containing maytansinol having an active ester and

(c) konjugere det modifiserte maytansinoidet med cellebindingsmidlet for derved å tilveiebringen en ikke-S-inneholdende-ikkekløyvbar linker mellom cellebindingsmidlet og maytansinol for å fremstille konjugatet. (c) conjugating the modified maytansinoid with the cell binding agent thereby providing a non-S-containing non-cleavable linker between the cell binding agent and maytansinol to produce the conjugate.

Disse fremgangsmåtene er beskrevet i detalj ovenfor og i US-patentene som er referert til her. These methods are described in detail above and in the US patents referenced herein.

EKSEMPLER EXAMPLES

Oppfinnelsen vil nå bli illustrert med referanser til eksempler. Hvis ikke annet er understreket er alle prosentandeler, forhold, deler osv. etter vekt. Eksempel 2 og 3 illustrerer oppfinnelsen, de andre eksemplene er referanse eksempler. The invention will now be illustrated with reference to examples. Unless otherwise stated, all percentages, ratios, parts, etc. are by weight. Examples 2 and 3 illustrate the invention, the other examples are reference examples.

Bufferne som ble benyttet i de følgende eksperimentene var: 50 mM kaliumfosfat (KPi)/50 mM natriumklorid (NaCl)/2 mM etylendiamitetraeddiksyre (EDTA), pH 6,5 (buffer A), 1x fosfatbufret fysiologisk saltvann (PBS), pH 6,5 (buffer B), og 0,1 M KPi-buffer/2 mM EDTA ved pH 7,5 (analysebuffer). The buffers used in the following experiments were: 50 mM potassium phosphate (KPi)/50 mM sodium chloride (NaCl)/2 mM ethylenediaminetetraacetic acid (EDTA), pH 6.5 (buffer A), 1x phosphate-buffered saline (PBS), pH 6 .5 (buffer B), and 0.1 M KPi buffer/2 mM EDTA at pH 7.5 (assay buffer).

SMCC (produkt nr. 22360, M.W. 334,33 g/mole) og SIAB (produkt nr. 22329, M. W. 412,15 g/mole) ble kjøpt fra Pierce. huC242-antistoffet er en humanisert form av det monoklonale antistoffet C242, beskrevet i US patentskrift 5 552 293, der hybridomet er deponert med ECACC-identifikasjonsnummer 90012601). Tastuzumabantistoff ble fremskaffet fra Genentech. DM1 (fri tiolform, M.W. 737,5 g/mole) ble fremstilt som beskrevet tidligere i US patentskrift 5 208 020 og 6 333 410 B1. SMCC (Product No. 22360, M.W. 334.33 g/mole) and SIAB (Product No. 22329, M.W. 412.15 g/mole) were purchased from Pierce. The huC242 antibody is a humanized form of the monoclonal antibody C242, described in US patent document 5,552,293, where the hybridoma has been deposited with ECACC identification number 90012601). Tastuzumab antibody was obtained from Genentech. DM1 (free thiol form, M.W. 737.5 g/mole) was prepared as previously described in US Patents 5,208,020 and 6,333,410 B1.

Kromatografi ble utført ved å benytte kromatografikolonner som ble kjøpt fra Amersham Biosciences (Sephadex G25 NAP-25 forhåndspakkede kolonner (Amersham 17-0852-02), HiPrep 26/10 avsaltingskolonner, Sephadex G25 fine resin, 3 sammenbundet i serie (Amersham 17-5087-01)). TSK-GEL G3000SWXL-kromatografikolonner (TOSOH Bioscience, 08541) ble også benyttet med TSK Column Guard SWxl (TOSOH Bioscience 08543). Chromatography was performed using chromatography columns purchased from Amersham Biosciences (Sephadex G25 NAP-25 prepacked columns (Amersham 17-0852-02), HiPrep 26/10 desalting columns, Sephadex G25 fine resin, 3 connected in series (Amersham 17-5087 -01)). TSK-GEL G3000SWXL chromatography columns (TOSOH Bioscience, 08541) were also used with TSK Column Guard SWxl (TOSOH Bioscience 08543).

Løsningsmidler som ble benyttet i de følgende eksperimentene var dimetylsulfoksid (DMSO), dimetylacetamid (DMA), etanol (EtOH) og 100 mM Ellmans reagens (DTNB, tilgjengelig fra Cayman Chemical) i DMSO. Solvents used in the following experiments were dimethylsulfoxide (DMSO), dimethylacetamide (DMA), ethanol (EtOH) and 100 mM Ellman's reagent (DTNB, available from Cayman Chemical) in DMSO.

EKSEMPEL 1A - REFERANSEEKSEMPEL EXAMPLE 1A - REFERENCE EXAMPLE

Fremstilling av huC242-SMCC-DM1-konjugat Preparation of huC242-SMCC-DM1 conjugate

a. Fremstilling og måling av huC242-antistoff a. Preparation and measurement of huC242 antibody

Konsentrasjonen av antistoff ble målt ved å benytte en ekstinksjonskoeffisient på 1,48 (mg/ml)<-1 >ved 280 nm og en molekylvekt på 147 000 g/mole. The concentration of antibody was measured using an extinction coefficient of 1.48 (mg/ml)<-1 >at 280 nm and a molecular weight of 147,000 g/mole.

b. Fremstilling og måling SMCC-stokkløsning b. Preparation and measurement of SMCC stick solution

En 20 mM løsning av SMCC (6,69 mg/ml) ble fremstilt i dimetylsulfoksid (DMSO). Løsningen ble fortynnet 1/40 i analysebuffer og absorbansen til prøvene ble målt ved 302 nm. Konsentrasjonen av stokkløsningen ble beregnet til å benytte en ekstinksjonskoeffisient på 602 M<-1>cm<-1>. A 20 mM solution of SMCC (6.69 mg/ml) was prepared in dimethyl sulfoxide (DMSO). The solution was diluted 1/40 in analysis buffer and the absorbance of the samples was measured at 302 nm. The concentration of the stock solution was calculated using an extinction coefficient of 602 M<-1>cm<-1>.

c. Fremstilling og måling DM1-stokkløsning c. Preparation and measurement of DM1 stick solution

En 10 nM løsning av DM1 (fri tiolform) ble fremstilt i dimetylacetamid (DMA) (7,37 mg/ml) (figur 2). Absorbansen i fortynningene av stokkløsningen i etanol (EtOH) ble målt ved 280 nm. Konsentrasjonen i stokk-DM1 ble beregnet ved å benytte en ekstinksjonskoeffisient på 5 700 M<-1 >ved 280 nm. Konsentrasjonen av frie sulfhydryleller tiolgrupper (-SH) i stokk-DM1-preparatet ble benyttet ved å bruke Ellmans reagens (DTNB). Fortynninger av stokkløsningen ble fremstilt i analysebuffer til 3 % (volum/volum) DMA og deretter ble 100 nM DTNB i DMSO (1/100 volum) tilsatt. A 10 nM solution of DM1 (free thiol form) was prepared in dimethylacetamide (DMA) (7.37 mg/ml) (Figure 2). The absorbance in the dilutions of the stock solution in ethanol (EtOH) was measured at 280 nm. The concentration in cane DM1 was calculated using an extinction coefficient of 5,700 M<-1 >at 280 nm. The concentration of free sulfhydryl or thiol groups (-SH) in the stick DM1 preparation was determined using Ellman's reagent (DTNB). Dilutions of the stock solution were made in assay buffer to 3% (vol/vol) DMA and then 100 nM DTNB in DMSO (1/100 vol) was added.

Økningen i absorbans ved 412 nm ble målt mot en nullprøve og konsentrasjonen ble beregnet ved å benytte en ekstinksjonskoeffisient på 14 150 M<-1>cm<-1>. Konsentrasjonen av –SH som fremkom fra Ellman-analysen ble benyttet til å representere DM1-stokkkonsentrasjonen i beregninger for konjugeringsbetingelser. The increase in absorbance at 412 nm was measured against a blank and the concentration was calculated using an extinction coefficient of 14,150 M<-1>cm<-1>. The concentration of –SH that emerged from the Ellman analysis was used to represent the DM1 stick concentration in calculations for conjugation conditions.

d. Modifisering av huC242 med SMCC-kryssbinder d. Modification of huC242 with SMCC crosslinker

Antistoffet ble splittet i to prøver, en ble modifisert ved å benytte et 7,5 gangers molart overskudd av SMCC-kryssbinder, den andre med et 8,5 gangers molart overskudd av SMCC-kryssbinder. Prøver ble reagert ved 8 mg/ml antistoff. Reaksjonene ble utført i buffer A (95 % volum/volum) med DMSO (5 % volum/volum) i 2 timer ved romtemperatur under omrøring. The antibody was split into two samples, one modified using a 7.5-fold molar excess of SMCC cross-linker, the other with an 8.5-fold molar excess of SMCC cross-linker. Samples were reacted at 8 mg/ml antibody. The reactions were carried out in buffer A (95% v/v) with DMSO (5% v/v) for 2 h at room temperature with stirring.

e. G25-kromatografi for å fjerne overskudd av SMCC e. G25 chromatography to remove excess SMCC

huC242-SMCC-reaksjonsblandingene ble gelfiltrert gjennom 1,5 x 4,9 cm forhåndspakkede kolonner med Sephadex G25-resin balansert i buffer A. Påsetnings- og elueringsvolumet var i henhold til produsentens instruksjoner. Det eluerte, modifiserte, antistoffet ble analysert for å bestemme konsentrasjonen av antistoffet ved å benytte ekstinksjonskoeffisienten som er beskrevet overfor. Utbyttet av modifisert antistoff var 74,6 % for reaksjonen med 7,5 ganger molart overskudd av SMCC og 81,6 % for reaksjonen med 8,5 ganger molart overskudd av SMCC. The huC242-SMCC reaction mixtures were gel filtered through 1.5 x 4.9 cm prepacked columns with Sephadex G25 resin equilibrated in buffer A. The loading and elution volumes were according to the manufacturer's instructions. The eluted modified antibody was analyzed to determine the concentration of the antibody using the extinction coefficient described above. The yield of modified antibody was 74.6% for the reaction with a 7.5-fold molar excess of SMCC and 81.6% for the reaction with an 8.5-fold molar excess of SMCC.

f. Konjugering av huC242-SMCC med DM1 f. Conjugation of huC242-SMCC with DM1

De modifiserte antistoffprøvene ble reagert med et 1,7 gangers overskudd av DM1 i forhold til linker (ved å anta 5 linkere pr. antistoff). Reaksjonen ble utført ved en antistoffkonsentrasjon på 2,5 mg/ml i buffer A (97 % volum/volum) med DMA (3 % volum/volum). Etter tilsetning av DM1 ble reaksjonen innkubert ved romtemperatur i omtrent 20 timer under omrøring. The modified antibody samples were reacted with a 1.7-fold excess of DM1 relative to linker (assuming 5 linkers per antibody). The reaction was performed at an antibody concentration of 2.5 mg/ml in buffer A (97% v/v) with DMA (3% v/v). After addition of DM1, the reaction was incubated at room temperature for about 20 hours with stirring.

g. Konjugeringsrensing ved hjelp av G25-komatogravi Konjugeringsreaksjonsblandingene ble gelfiltrert via 1,5 x 4,9 cm forhåndspakkede kolonner med Sephadex G25-resin balansert i buffer B. Påsettings- og elueringsvolumene var i overensstemmelse med produsentens instruksjoner. Antallet DM1-molekyler som er bundet pr. mol huC242 ble bestemt ved å måle absorbans i det eluerte materialet ved både 252 nm og 280 nm. Forholdet DM1/antistoff for SMCC-prøven med 7,5 ganger molart overskudd ble funnet å være 3,54 og forholdet for SMCC-prøven med 8,5 ganger molart overskudd ble funnet å være 3,63. g. Conjugation purification using G25 comatograph The conjugation reaction mixtures were gel filtered via 1.5 x 4.9 cm pre-packed columns with Sephadex G25 resin equilibrated in buffer B. The loading and elution volumes were according to the manufacturer's instructions. The number of DM1 molecules that are bound per moles of huC242 were determined by measuring absorbance in the eluted material at both 252 nm and 280 nm. The DM1/antibody ratio for the 7.5-fold molar excess SMCC sample was found to be 3.54 and the ratio for the 8.5-fold molar excess SMCC sample was found to be 3.63.

Konjugeringstrinnutbyttene var henholdsvis 83,7 % og 75,4 %. Begge konjugater ble slått sammen, sterilfiltrert og analysert på nytt for legemiddel- og antistoffkonsentrasjoner. Den sammenslåtte prøven ble tilordnet Lot # 1713-146C og analysert for binding, cytotoksisitet, spesifisitet, omfang av aggregering og fritt legemiddelinnhold. The conjugation step yields were 83.7% and 75.4%, respectively. Both conjugates were pooled, sterile filtered and reanalyzed for drug and antibody concentrations. The pooled sample was assigned to Lot # 1713-146C and analyzed for binding, cytotoxicity, specificity, extent of aggregation and free drug content.

Tabell 1. Karakteristika for huC242-SMCC-DM1 Table 1. Characteristics of huC242-SMCC-DM1

EKSEMPEL 1B - REFERANSEEKSEMPEL EXAMPLE 1B - REFERENCE EXAMPLE

In vitro-testing av huC242-SMCC-DM1 In vitro testing of huC242-SMCC-DM1

a. Binding a. Binding

Bindingsaffinitetene for huC242-antistoff og huC242-SMCC-DM1 ble sammenlignet ved å benytte en indirekte fremgangsmåte på COLO205-celler, der 5 x 10<3 >celler per brønn ble benyttet, med en primær inkubering på is i tre timer. Resultatene er vist i figur 3. Det nakne antistoffet bandt med en KD på 5,1 x 10<-10 >M og den konjugerte versjonen bandt med en KD på 5,52 x 10<-10 >M. Slik ser det ikke ut til at konjugering med DM1 endrer bindingsaffiniteten for hu242. The binding affinities for huC242 antibody and huC242-SMCC-DM1 were compared using an indirect method on COLO205 cells, where 5 x 10<3 >cells per well were used, with a primary incubation on ice for three hours. The results are shown in Figure 3. The naked antibody bound with a KD of 5.1 x 10<-10 >M and the conjugated version bound with a KD of 5.52 x 10<-10 >M. Thus, conjugation with DM1 does not appear to change the binding affinity for hu242.

b. Cytotokisitet og spesifisitet b. Cytotoxicity and specificity

In vitro-cytotoksisiteten og -spesifisiteten til huC242-SMCC-DM1-konjugat ble undersøkt ved å benytte en klonogen analyse med kontinuerlig eksponering. Resultatene er vist i figur 4. huC242-SMCC-DM1 var effektivt i å ødelegge de antigenpositive SKBR3-cellene (IC50 = 3,5 x 10<-12 >M). Spesifisitet ble vist ved å sammenligne IC50-verdien for mål-SKBR3-celler med den for den antigennegative cellelinjen, A375, der IC50 for konjugatet var større en 3,0 x 10<-9 >M. The in vitro cytotoxicity and specificity of huC242-SMCC-DM1 conjugate was investigated using a continuous exposure clonogenic assay. The results are shown in Figure 4. huC242-SMCC-DM1 was effective in destroying the antigen-positive SKBR3 cells (IC50 = 3.5 x 10<-12 >M). Specificity was shown by comparing the IC 50 value for target SKBR3 cells with that of the antigen-negative cell line, A375, where the IC 50 of the conjugate was greater than 3.0 x 10<-9 >M.

c. Størrelseseksklusjonskromatografianalyse c. Size exclusion chromatography analysis

Konjugatet ble analysert ved å benytte en TSK3000 størrelseseksklusjonskolonne (figur 5). Topp 4 representerer monomerfraksjonen av konjugatet mens tidligere topper representerer multimer og senere topper representerer fragment. Arealet under hver kurve delt på totale topparealer representerer toppens bidrag til prøven. Konjugatprøven ble funnet å være 96,0 % monomer. The conjugate was analyzed using a TSK3000 size exclusion column (Figure 5). Peak 4 represents the monomer fraction of the conjugate while earlier peaks represent multimer and later peaks represent fragment. The area under each curve divided by total peak areas represents the peak's contribution to the sample. The conjugate sample was found to be 96.0% monomeric.

d. Fritt legemiddel d. Free drug

Prosentandelen av fritt legemiddel ble målt ved hjelp av ELISA og ble funnet å være 4,4 %. The percentage of free drug was measured by ELISA and was found to be 4.4%.

EKSEMPEL 2A EXAMPLE 2A

Fremstilling av trastuzumat-SMCC-DM1-konjugat Preparation of trastuzumat-SMCC-DM1 conjugate

Trastuzumabantistoff ble fremskaffet fra Genentech for konjugering til DM1 ved å benytte det ikke-kløyvbare, heterobifunksjonelle, kryssbindingsreagenset SMCC. Buffer ble byttet på antistoffet fra 50 mM kaliumfosfat/2 mM EDTA, pH 6,0 til 50 mM kaliumfosfat/50 Mm natriumklorid/2 mM EDTA, pH 6,5 (buffer A). Antistoffet ble deretter reagert med et 7,5 ganger molart overskudd av SMCC-linker og renset ved hjelp av Sephadex-G25-resin før det ble konjugert med DM1. Det endelige konjugatet ble igjen renset med Sephadex-G25-resin. Det resulterende konjugatet inneholdt 3,1 M med DM1 pr. mol antistoff. Trastuzumab antibody was obtained from Genentech for conjugation to DM1 using the non-cleavable, heterobifunctional, cross-linking reagent SMCC. Buffer was changed on the antibody from 50 mM potassium phosphate/2 mM EDTA, pH 6.0 to 50 mM potassium phosphate/50 mM sodium chloride/2 mM EDTA, pH 6.5 (buffer A). The antibody was then reacted with a 7.5-fold molar excess of SMCC linker and purified using Sephadex-G25 resin before being conjugated with DM1. The final conjugate was again purified with Sephadex-G25 resin. The resulting conjugate contained 3.1 M of DM1 per moles of antibody.

a. Fremstilling og måling av trastuzumabantistoff a. Production and measurement of trastuzumab antibody

Trastuzumabantistoff i 50 mM kaliumfosfat/2 mM EDTA, pH 6,0 buffer ble passert over en Sephadex-G25-kolonne som var balansert med buffer A og eluert inn i buffer A. Alle bufferne som ble benyttet i dette eksperimentet ble testet for å være sikker på at de var fri for endotoksin ved å benytte en kromogen Lymulus-amoebocyte-lysat (LAL)-fremgangsmåte (Cambrex). Konsentrasjonen av antistoff ble målt ved å benytte en ekstinksjonskoeffisient på 1,45 ml mg<-1 >cm<-1 >ved 280 nm og en molekylvekst på 145 423 g. Trastuzumab antibody in 50 mM potassium phosphate/2 mM EDTA, pH 6.0 buffer was passed over a Sephadex-G25 column equilibrated with buffer A and eluted into buffer A. All buffers used in this experiment were tested to be certain that they were free of endotoxin using a chromogenic Lymulus amoebocyte lysate (LAL) method (Cambrex). The concentration of antibody was measured using an extinction coefficient of 1.45 ml mg<-1 >cm<-1 >at 280 nm and a molecular weight of 145,423 g.

b. Fremstilling og måling av SMCC-stokkløsning b. Preparation and measurement of SMCC stick solution

En 20 mM løsning av SMCC (6,69 mg/ml) ble fremstilt i DMSO. Løsningen ble fortynnet 1/40 i analysebuffer og absorbansen til prøven ble målt ved 203 nm. A 20 mM solution of SMCC (6.69 mg/ml) was prepared in DMSO. The solution was diluted 1/40 in analysis buffer and the absorbance of the sample was measured at 203 nm.

Konsentrasjonen av stokkløsningen ble beregnet ved å benytte en molar ekstinksjonskoeffisient på 602 M<-1>cm<-1>. The concentration of the stock solution was calculated using a molar extinction coefficient of 602 M<-1>cm<-1>.

c. Fremstilling og måling av DM1-stokkløsning c. Preparation and measurement of DM1 stick solution

En 10 mM løsning av DM1 (fri tiolform) ble fremstilt i DMA (7,37 mg/ml) (figur 2). Absorbansen til fortynninger av stokkløsningen i EtOH ble målt ved 280 nm. A 10 mM solution of DM1 (free thiol form) was prepared in DMA (7.37 mg/ml) (Figure 2). The absorbance of dilutions of the stock solution in EtOH was measured at 280 nm.

Konsentrasjonen av DM1-stokkløsning ble beregnet ved å benytte en molar ekstinksjonskoeffisient på 5 700 M<-1>cm<-1 >ved 280 nm. Konsentrasjonen av fri-SH i DM1-stokkløsninen ble målt ved å benytte Ellmans reagens (DTNB). Fortynninger av stokkløsningen ble fremstilt i analysebuffer og laget til 3 % (volum/volum) DMA og deretter ble 100 nM DTNB i DMSO (1/100 volum) tilsatt. Økningen i absorbans ved 412 nm ble målt mot en nullprøve og konsentrasjonen ble beregnet ved å benytte en ekstinksjonskoeffisient på 14 159 M<-1>cm<-1>. Konsentrasjonen av -SH som fremkom fra Ellman-analysen ble benyttet til å representere DM1 til stokkløsningskonsentrasjonen i beregninger for konjugeringsbetingelser. The concentration of DM1 stock solution was calculated using a molar extinction coefficient of 5700 M<-1>cm<-1 >at 280 nm. The concentration of free SH in the DM1 stick solution was measured using Ellman's reagent (DTNB). Dilutions of the stock solution were prepared in assay buffer and made to 3% (vol/vol) DMA and then 100 nM DTNB in DMSO (1/100 vol) was added. The increase in absorbance at 412 nm was measured against a blank and the concentration was calculated using an extinction coefficient of 14,159 M<-1>cm<-1>. The concentration of -SH obtained from the Ellman assay was used to represent DM1 to the stock solution concentration in calculations for conjugation conditions.

d. Modifisering av trastuzumab med SMCC-kryssbinder d. Modification of trastuzumab with SMCC crosslinker

Antistoffet ble modifisert ved å benytte et 7,5 gangers molart overskudd av SMCC ved 20 mg/ml antistoff. Reaksjonen ble utført i buffer A (95 % volum/volum) med DMSO (5 % volum/volum) i 2 timer ved romtemperatur under omrøring. The antibody was modified using a 7.5-fold molar excess of SMCC at 20 mg/ml antibody. The reaction was carried out in buffer A (95% v/v) with DMSO (5% v/v) for 2 h at room temperature with stirring.

e. G25-kromatografi for å fjerne overskudd av SMCC e. G25 chromatography to remove excess SMCC

Trastuzumab-SMCC-reaksjonsblandingen ble gelfiltrert gjennom 1,5 x 4,9 cm forhåndspakket kolonne med Sephadex-G25-resin balansert til buffer A. Påsettings- og elueringsvolumene var i henhold til produsentens instruksjoner (Amersham Biosciences). Konsentrasjonen av den modifiserte antistoffløsningen ble analysert spektrofotometrisk ved å benytte ekstinksjonskoeffisienten som er beskrevet ovenfor. Utbyttet av modifisert antistoff var 88 % basert på proteinkonsentrasjon. The trastuzumab-SMCC reaction mixture was gel filtered through a 1.5 x 4.9 cm prepacked column with Sephadex-G25 resin equilibrated to buffer A. The loading and elution volumes were according to the manufacturer's instructions (Amersham Biosciences). The concentration of the modified antibody solution was analyzed spectrophotometrically using the extinction coefficient described above. The yield of modified antibody was 88% based on protein concentration.

f. Konjugering av trastuzumab- SMCC med DM1 f. Conjugation of trastuzumab-SMCC with DM1

Det modifiserte antistoffet ble reagert med et 1,7 gangers overskudd av DM1 i forhold til linker (ved å anta 5 linkere pr. antistoff). Reaksjonen ble utført ved 10 mg/ml antistoffkonsentrasjon i buffer A (94 % volum/volum) med DMA (6 % volum/volum). Etter tilsetning av DM1 ble reaksjonen innkubert ved romtemperatur i 16, 5 timer under omrøring. The modified antibody was reacted with a 1.7-fold excess of DM1 relative to linker (assuming 5 linkers per antibody). The reaction was performed at 10 mg/ml antibody concentration in buffer A (94% v/v) with DMA (6% v/v). After addition of DM1, the reaction was incubated at room temperature for 16.5 hours with stirring.

g. Konjugeringsrensing ved hjelp av G25-kromatografi Konjugeringsreakjonsblaningen ble gelfiltrert gjennom en 1,5 x 4,9 cm forhåndspakket kolonne med Sephadex-G25-resin balansert i buffer B. Påsettings- og evelueringsvolumene var i henhold til produsentens instruksjoner (Amersham Biosciences). Antallet DM1-molekyler bundet pr. mol med trastuzumab ble bestemt ved å måle absorbans ved både 252 nm og 280 nm for det eluerte materialet. Forholdet DM1/antistoff ble funnet å være 3,13 og konjugeringstrinnutbyttet var 95,7 %. Det totale utbyttet av konjugert trastuzumab var 84 % basert på utgangsantistoffet. Det resulterende konjugatet ble analysert for binding, cytotoksisitet, spesifisitet, omfang av aggregering og fritt legemiddelinnhol. g. Conjugation Purification by G25 Chromatography The conjugation reaction mixture was gel filtered through a 1.5 x 4.9 cm prepacked column with Sephadex-G25 resin equilibrated in buffer B. The loading and elution volumes were according to the manufacturer's instructions (Amersham Biosciences). The number of DM1 molecules bound per moles of trastuzumab was determined by measuring absorbance at both 252 nm and 280 nm of the eluted material. The DM1/antibody ratio was found to be 3.13 and the conjugation step yield was 95.7%. The overall yield of conjugated trastuzumab was 84% based on the starting antibody. The resulting conjugate was analyzed for binding, cytotoxicity, specificity, extent of aggregation and free drug content.

Tabell II. Karakteristika for trastuzumab-SMCC-DM1 Table II. Characteristics of trastuzumab-SMCC-DM1

EKSEMPEL 2B EXAMPLE 2B

In vitro-testing av trastuzumat-SMCC-DM1 In vitro testing of trastuzumat-SMCC-DM1

Bindingsundersøkelser viste at konjugeringen av antistoff til DM1 ikke påvirket den tilsynelatende KD, både nakent trastuzumabantistoff og trastuzumat-SMCC-DM1-konjugat hadde den samme bindingsaffiniteten til ECD-plater (5,5 x 10<-11 >M). Evaluering av in vitro-cytotoksisteten for prøven viste at trastuzumab-SMCC-DM1-konjugatet både er svært toksisk (IC<50 >3,6 x 10<-12 >M på antigenpositiv cellelinje) og spesifikt (IC<50 >større enn 3,0 x 10<-9 >M på antigennegativ cellelinje). Binding studies showed that the conjugation of antibody to DM1 did not affect the apparent KD, both naked trastuzumab antibody and trastuzumab-SMCC-DM1 conjugate had the same binding affinity to ECD plates (5.5 x 10<-11 >M). Evaluation of the in vitro cytotoxicity of the sample showed that the trastuzumab-SMCC-DM1 conjugate is both highly toxic (IC<50 >3.6 x 10<-12 >M on antigen-positive cell line) and specific (IC<50 >greater than 3 .0 x 10<-9 >M on antigen-negative cell line).

a. Binding a. Binding

Bindingsaffiniteten til trastuzumabantistoff og trastuzumat-SMCC-DM1 ble sammenlignet ved å benytte HER2-ECD-platebindingsanalysen tilveiebrakt av Genetech. Resultatene er vist i figur 24. Både det nakne antistoffet og den konjugerte versjonen begynner med en tilsynelatende KD på 5,5 x 10<-11 >M. Slik endrer ikke konjugering med DM1 bindingsaffiniteten til trastuzumab. The binding affinity of trastuzumab antibody and trastuzumab-SMCC-DM1 was compared using the HER2-ECD plate binding assay provided by Genetech. The results are shown in Figure 24. Both the naked antibody and the conjugated version start with an apparent KD of 5.5 x 10<-11 >M. Thus, conjugation with DM1 does not change the binding affinity of trastuzumab.

b. Cytotoksisitet og spesifisitet b. Cytotoxicity and specificity

In vitro-cytotoksisiteten og spesifisiteten til trastuzumab-SMCC-DM1-konjugatet ble evaluert ved å benytte en klonogen analyse med kontinuerlig eksponering. The in vitro cytotoxicity and specificity of the trastuzumab-SMCC-DM1 conjugate were evaluated using a continuous exposure clonogenic assay.

Resultatene er vist i figur 25. Trastuzumab-SMCC-DM1 var effektiv til å ødelegge de antigenpositive SKBR3-cellene (IC<50>1,6 x 10<-12 >M). Spesifisitet ble vist når IC50 ble sammenlignet for mål-SKBR3-cellene og den antigennegative cellelinjen A375, der IC50 for konjugatet var større enn 3,0 x 10<-9 >M. The results are shown in Figure 25. Trastuzumab-SMCC-DM1 was effective in destroying the antigen-positive SKBR3 cells (IC<50>1.6 x 10<-12 >M). Specificity was shown when the IC50 was compared for the target SKBR3 cells and the antigen-negative cell line A375, where the IC50 of the conjugate was greater than 3.0 x 10<-9 >M.

c. Størrelseseksklusjonskromatografianalyse c. Size exclusion chromatography analysis

Konjugatet ble analysert ved å benytte en TSK3000 størrelseseksklusjonskolonne (figur 26). Topp 1 representerer multimer, topp 2 representerer dimer og topp 3 representerer monomer. Arealet under hver kurve delt på totale topparealer representerer toppens bidrag til prøven. Konjugatprøven ble funnet å være 95,3 % monomer (figur 26). The conjugate was analyzed using a TSK3000 size exclusion column (Figure 26). Peak 1 represents multimer, peak 2 represents dimer and peak 3 represents monomer. The area under each curve divided by total peak areas represents the peak's contribution to the sample. The conjugate sample was found to be 95.3% monomeric (Figure 26).

d. Analyse av fritt legemiddel d. Analysis of free drug

Prosentandelen av fritt legemiddel ble målt ved hjelp av ELISA og funnet å være 3,4 %. The percentage of free drug was measured by ELISA and found to be 3.4%.

e. Endotoksinnivå e. Endotoxin level

Konjugatet ble testet ved å benytte en kromatografisk LAL-test og funnet å inneholde 0,03 EU/mg. The conjugate was tested using a chromatographic LAL test and found to contain 0.03 EU/mg.

EKSEMPEL 3A EXAMPLE 3A

Fremstilling av trastuzumat-SIAB-DM1-konjugat Preparation of trastuzumat-SIAB-DM1 conjugate

Trastuzumabantistoff ble fremskaffet fra Genetech for konjugering til DM1 ved å benytte den ikke-kløyvbare heterobifunksjonelle kryssbinderen SIAB. Antistoffet ble reagert med 7,0 ganger molart overskudd av SIAB-linker ved pH 6,5 og renset ved hjelp av Sephadex-G25F-resin. Antistoffinneholdende fraksjoner ble slått sammen og reagert med DM1 over natt ved standard konjugeringsbetingelser med pH 6,5 og romtemperatur, men i mørke. Et volum ble fjernet fra reaksjonsrøret og analysert for å bestemme inkorporering av DM1. Volumet ble målt etter en NAP-5-filtrering til å ha kun 1,4 legemidler/Ab. Et ytterligere 8 ganger overskudd av SIAB ble tilsatt til reaksjonen i 2 timer og deretter ble pH økt til 8 rett før tilsetningen av ytterligere 1,5 ganger overskudd av DM1/SIAB. Reaksjonen ble tillatt å fortsette og ble renset ved å benytte Sephadex-G25F-resin. Det resulterende konjugatet inneholdt 3,42 mol DMI pr. mol antistoff. Trastuzumab antibody was obtained from Genetech for conjugation to DM1 using the non-cleavable heterobifunctional cross-linker SIAB. The antibody was reacted with a 7.0-fold molar excess of SIAB linker at pH 6.5 and purified using Sephadex-G25F resin. Antibody-containing fractions were pooled and reacted with DM1 overnight at standard conjugation conditions of pH 6.5 and room temperature, but in the dark. A volume was removed from the reaction tube and analyzed to determine incorporation of DM1. The volume was measured after a NAP-5 filtration to have only 1.4 drugs/Ab. An additional 8-fold excess of SIAB was added to the reaction for 2 h and then the pH was raised to 8 immediately prior to the addition of an additional 1.5-fold excess of DM1/SIAB. The reaction was allowed to proceed and was purified using Sephadex-G25F resin. The resulting conjugate contained 3.42 moles of DMI per moles of antibody.

a. Måling av trastuzumabantistoff a. Measurement of trastuzumab antibody

Konsentrasjonen av antistoff ble målt ved å benytte en ekstinksjonskoeffisient på 1,45 ml mg<-1 >i cm<-1 >ved 280 nm og en molekylvekt på 145 423 g. The concentration of antibody was measured using an extinction coefficient of 1.45 ml mg<-1 >in cm<-1 >at 280 nm and a molecular weight of 145,423 g.

b. Fremstilling og måling av SIAB-stokkløsning b. Production and measurement of SIAB cane solution

En 18 mM løsning av SIAB (7,2 mg/ml) ble fremstilt i DMSO. En bølgelengdeskanning av løsningen fortynnet i pH 4-buffer ble registrert kun for informasjonshensikter. An 18 mM solution of SIAB (7.2 mg/ml) was prepared in DMSO. A wavelength scan of the solution diluted in pH 4 buffer was recorded for information purposes only.

c. Fremstilling og måling av DM1-stokkløsning c. Preparation and measurement of DM1 stick solution

En løsning av DM1 (fri tiolform) på omtrent 30 mM ble fremstilt i DMA. A solution of DM1 (free thiol form) of approximately 30 mM was prepared in DMA.

Konsentrasjonen av fri -SH i DM1-stokkløsningen ble målt ved å benytte Ellman-reagens (DTMB). Fortynninger av stokkløsningen ble klargjort i analysebufferen og gjort til 3 % (volum/volum) DMA, og deretter ble 100 mM DTNV i DMSO (1/100 volum) tilsatt. The concentration of free -SH in the DM1 stock solution was measured using Ellman's reagent (DTMB). Dilutions of the stock solution were prepared in the assay buffer and made to 3% (vol/vol) DMA, and then 100 mM DTNV in DMSO (1/100 vol) was added.

Økningen i absorbans ved 412 nm ble målt mot en nullprøve og konsentrasjonen ble beregnet ved å benytte en molar ekstinksjonskoeffisient på 14 150 M<-1>cm<-1>. The increase in absorbance at 412 nm was measured against a blank and the concentration was calculated using a molar extinction coefficient of 14,150 M<-1>cm<-1>.

Konsentrasjonen av -SH som fremkom fra Ellman-analysen ble benyttet til å representere DM1-stokkkonsentrasjon i beregninger for konjugeringsbetingelser. The concentration of -SH resulting from the Ellman analysis was used to represent DM1 stick concentration in calculations for conjugation conditions.

d. Modifisering av trastuzumab med SIAB-kryssbinder d. Modification of trastuzumab with SIAB crosslinker

Antistoffet ble modifisert ved å benytte et 7,0 ganger molart overskudd av SIAB ved 20 mg/ml antistoff. Reaksjonen ble utført i buffer A (95 % volum/volum) med DMSO (5 % volum/volum) i 2 timer ved romtemperatur under omrøring i mørke. The antibody was modified using a 7.0-fold molar excess of SIAB at 20 mg/ml antibody. The reaction was carried out in buffer A (95% v/v) with DMSO (5% v/v) for 2 h at room temperature with stirring in the dark.

e. G25-kromatografi for å fjerne overskudd av SIAB e. G25 chromatography to remove excess SIAB

Trastuzumab-SIAB-reaksjonsblandingen ble gelfiltrert gjennom HiPrep 26/10 avsaltingskolonner balansert i buffer A. Det så ut til å være en interferens ved 280 nm fra SIAB-reagenset slik at utbyttet av modifisert antistoff ble antatt å være 100 % og en modifisering med 5 linkere/antistoff ble antatt for bestemmelse av mengden av DM1 i konjugeringsreaksjonen. The trastuzumab-SIAB reaction mixture was gel filtered through HiPrep 26/10 desalting columns equilibrated in buffer A. There appeared to be an interference at 280 nm from the SIAB reagent so the yield of modified antibody was assumed to be 100% and a modification of 5 linkers/antibody was assumed to determine the amount of DM1 in the conjugation reaction.

f. Konjugering av trastuzumab-SIAB med DM1 f. Conjugation of trastuzumab-SIAB with DM1

Det modifiserte antistoffet ble reagert med en 1,7 ganger overskudd av DM1 i forhold til linker ved å anta 100 % utbytte og 5 kryssbindere/antistoff som nevnt ovenfor. Konsentrasjonen av antistoff i reaksjonen ble beregnet til å være 12,5 mg/ml og reaksjonen ble utført i buffer A (97 % volum/volum) med DMA (3 % volum/volum). Etter tilsetning av DM1 ble reaksjonen innkubert ved romtemperatur i mørke i 16,5 timer under omrøring. The modified antibody was reacted with a 1.7-fold excess of DM1 relative to linker assuming 100% yield and 5 crosslinkers/antibody as mentioned above. The concentration of antibody in the reaction was calculated to be 12.5 mg/ml and the reaction was performed in buffer A (97% v/v) with DMA (3% v/v). After addition of DM1, the reaction was incubated at room temperature in the dark for 16.5 hours with stirring.

g. Konjugeringsreaksjonsanalyse g. Conjugation reaction analysis

Et volum på 0,25 ml fra reaksjonsblandingen ble fjernet og gelfiltrert gjennom en forhåndspakket G25-Sephadexkolonne balansert i buffer B. Antallet DM1-molekyler bundet pr. mol med trastuzumab ble bestemt ved å måle absorbans ved både 252 nm og 280 nm i det eluerte materialet. Forholdet DM1/antistoff var kun 1,4. A volume of 0.25 ml from the reaction mixture was removed and gel filtered through a pre-packed G25-Sephadex column equilibrated in buffer B. The number of DM1 molecules bound per moles of trastuzumab was determined by measuring absorbance at both 252 nm and 280 nm in the eluted material. The ratio DM1/antibody was only 1.4.

h. Ytterligere modifiserings-/konjugeringsreaksjon h. Additional modification/conjugation reaction

Et ytterligere 8 gangers molart overskudd av SIAB ble tilsatt og tillatt å innkubere i 2 timer ved romtemperatur. Et 1,5 ganger molart overskudd av DM1 i forhold til SIAB ble tilsatt og pH i reaksjonen ble økt til 8 med tilsetning av 1 N NaOH. An additional 8-fold molar excess of SIAB was added and allowed to incubate for 2 hours at room temperature. A 1.5 times molar excess of DM1 relative to SIAB was added and the pH of the reaction was increased to 8 with the addition of 1 N NaOH.

Reaksjonen ble innkubert ved romtemperatur i mørke og gelfiltrert gjennom en kolonne med G25F-resin balansert i buffer B. The reaction was incubated at room temperature in the dark and gel filtered through a column of G25F resin equilibrated in buffer B.

i. Sammenslåing og karakterisering av konjugat i. Aggregation and characterization of conjugate

Proteininnholdende fraksjoner ble slått sammen, filtrert og målt ved absorbans ved 252 og 280 nm. Prøver av konjugatet ble testet for endotoksinnivå, binding, spesifikk og ikke-spesifikk cytotoksisitet, prosentmonomer og fritt legemiddelnivå. Protein-containing fractions were pooled, filtered and measured by absorbance at 252 and 280 nm. Samples of the conjugate were tested for endotoxin level, binding, specific and non-specific cytotoxicity, percent monomer and free drug level.

Tabell III. Karakteristika for trastuzumab-SIAB-DM1 Table III. Characteristics of trastuzumab-SIAB-DM1

EKSEMPEL 3B EXAMPLE 3B

In vitro-testing av trastuzumab-SIAB-DM1 In vitro testing of trastuzumab-SIAB-DM1

Bindingsundersøkelser viste at konjugering av antistoff til DM1 ikke påvirket den åpenbare KD, både nakent trastuzumab og trastuzumab-SIAB-DM1 hadde tilsvarende bindingsaffiniteter (1,2 x 10<-10 >M Ab og 1,9 x 10<-10 >M åpenbar KD-konjugat). Evaluering av in vitro-cytotoksisteten til prøven viste at trastuzumab-SIAB-DM1-konjugatet både er svært toksisk (IC505 x 10<-12 >M på antigenpositiv cellelinje SKBR3) og spesifikt (IC50 større enn 3,0 x 10<-9 >M på antigennegativ cellelinje A375). Binding studies showed that conjugation of antibody to DM1 did not affect the apparent KD, both naked trastuzumab and trastuzumab-SIAB-DM1 had similar binding affinities (1.2 x 10<-10 >M Ab and 1.9 x 10<-10 >M apparent KD conjugate). Evaluation of the in vitro cytotoxicity of the sample showed that the trastuzumab-SIAB-DM1 conjugate is both highly toxic (IC505 x 10<-12 >M on antigen-positive cell line SKBR3) and specific (IC50 greater than 3.0 x 10<-9 > M on antigen-negative cell line A375).

a. Binding a. Binding

Bindingsaffiniteten til trastuzumabantistoff og trastuzumab-SIAAB-DM1 ble sammenlignet ved å benytte HER2-ECD-platebindingsanalysen tilveiebrakt av Genentech. Resultatene er vist i figur 27. Naken trastuzumab og trastuzumab-SIAB-DM1 hadde tilsvarende bindingsaffiniteter (1,2 x 10<-10 >M for antistoffet og 1,9 x 10<-10 >M åpenbar KD for konjugatet). The binding affinity of trastuzumab antibody and trastuzumab-SIAAB-DM1 was compared using the HER2-ECD plate binding assay provided by Genentech. The results are shown in figure 27. Naked trastuzumab and trastuzumab-SIAB-DM1 had similar binding affinities (1.2 x 10<-10 >M for the antibody and 1.9 x 10<-10 >M apparent KD for the conjugate).

b. Cytotoksisitet og spesifisitet b. Cytotoxicity and specificity

Evaluering av in vitro-cytotoksisteten for prøven viste at trastuzumab-SIAB-DM1-konjugatet både er svært toksisk (IC50=5 x 10<-12 >M på antigenpositiv cellelinje SKBR3) og spesifikt (IC50 større enn 3,0 x 10<-9 >M på antigennegativ cellelinje A375). Se figur 28. Evaluation of the in vitro cytotoxicity of the sample showed that the trastuzumab-SIAB-DM1 conjugate is both highly toxic (IC50=5 x 10<-12 >M on antigen-positive cell line SKBR3) and specific (IC50 greater than 3.0 x 10<- 9 >M on antigen-negative cell line A375). See Figure 28.

c. Størrelseseksklusjonskromatografianalyse c. Size exclusion chromatography analysis

Konjugatet ble analysert ved å benytte en TSK3000-størrelseseksklusjonskolonne (figur 29). Topp 1 representerer dimer og topp 2 representerer monomer. Arealet under hver kurve delt på totalt toppareal representerer toppens bidrag til prøven. The conjugate was analyzed using a TSK3000 size exclusion column (Figure 29). Peak 1 represents dimer and peak 2 represents monomer. The area under each curve divided by the total peak area represents the peak's contribution to the sample.

Konjugatprøven ble funnet å være 96,4 % monomer (figur 29). The conjugate sample was found to be 96.4% monomeric (Figure 29).

d. Fritt legemiddel d. Free drug

Prosentandelen av fritt legemiddel ble målt ved ELISA og ble funnet å være 0,35 %. The percentage of free drug was measured by ELISA and was found to be 0.35%.

e. Endotoksinnivå e. Endotoxin level

Konjugatet ble testet ved å benytte en kromatografisk LAL-test og funnet å inneholde >0,04 EU/mg. The conjugate was tested using a chromatographic LAL test and found to contain >0.04 EU/mg.

EKSEMPEL 4 - REFERANSEEKSEMPEL EXAMPLE 4 - REFERENCE EXAMPLE

Konjugering av huC242 med et kryssbindingsmiddel som danner en ikke-S-inneholdende ikke-kløyvbar linker Conjugation of huC242 with a cross-linker that forms a non-S-containing non-cleavable linker

a. Syntese a. Synthesis

En stokkløsning av kryssbindingsreagenset (se figur 21 for struktur) ble klargjort i DMA, uløselig presipitat ble spunnet vekk og konsentrasjonen i den gjenværende løsningen ble bestemt til å benytte en ekstinksjonskoeffisient på ε<280>= 5 700 M<-1 >cm<-1 >som er ekstinksjonen for DM1 ved denne bølgelengden. Siden den reelle ekstinksjonskoeffisienten for dette materialet ikke har blitt målt er dette kun et estimat på konsentrasjonen. Det bør bli påpekt at forholdet ε<252>/ ε<280 >for DM1 er 4,7 (i EtOH) mens ε<252>/ ε<280 >for kryssbindingsreagensløsningen (i pH 7,5 buffer) ble målt til 1,42, noe som verken tyder på ulike ekstinksjoner eller urenheter. A stock solution of the crosslinking reagent (see Figure 21 for structure) was prepared in DMA, insoluble precipitate was spun off and the concentration in the remaining solution was determined using an extinction coefficient of ε<280>= 5,700 M<-1 >cm<- 1 >which is the extinction for DM1 at this wavelength. Since the real extinction coefficient for this material has not been measured, this is only an estimate of the concentration. It should be pointed out that the ratio ε<252>/ ε<280 > for DM1 is 4.7 (in EtOH) while ε<252>/ ε<280 > for the crosslinking reagent solution (in pH 7.5 buffer) was measured to be 1, 42, which does not indicate either various extinctions or impurities.

Konjugeringsreaksjonen ble utført i en skala på 2 mg ved å benytte 2,8 mg/ml huC242-antistoff i 16 % DMA i buffer E, pH 7,5 (buffer E = 50 mM natriumfosfat, 150 mM NaCl, 10mM EDTA). Basert på den estimerte kryssbindingsreagenskonsentrasjonen i stokkløsningen ble 30 ekvivalenter med kryssbinder/antistoff benyttet (et tidligere eksperiment som benyttet 10 eq med kryssbinder/antistoff produserte et konjugat med kun 0,9 DM1/antistoff). Reaksjonen ble tillatt å gå i 3 timer og deretter ble konjugatet renset ved passering gjennom en Nap-10 (G25)-kolonne. Etter filtrering (Millex GV filter, 0,2 µm porestørrelse), hadde konjugatet 2,56 DM1/antistoff (Lot # 1749-119A, antistoffgjenvinning = 78 %). Et volum av konjugatet ble undersøkt ved HPLC (HiPrep-kolonne) for fritt DM1 og en DM1-topp ble observert ved 12,09'. Prøven ble derfor dialysert i buffer B for å bli kvitt denne toppen og deretter bli analysert på nytt. Den endelige konjugatprøven (Lot # 1749-124A) hadde ikke noe fritt DM1 ifølge HPLC og hadde 1,84 DM1/antistoff. SEC-HPLC ble utført på konjugatet for å vise at det var 97 % monomert antistoff. The conjugation reaction was performed on a 2 mg scale using 2.8 mg/ml huC242 antibody in 16% DMA in buffer E, pH 7.5 (buffer E = 50 mM sodium phosphate, 150 mM NaCl, 10 mM EDTA). Based on the estimated cross-linking reagent concentration in the stock solution, 30 equivalents of cross-linker/antibody were used (a previous experiment using 10 eq of cross-linker/antibody produced a conjugate of only 0.9 DM1/antibody). The reaction was allowed to proceed for 3 hours and then the conjugate was purified by passage through a Nap-10 (G25) column. After filtration (Millex GV filter, 0.2 µm pore size), the conjugate had 2.56 DM1/antibody (Lot # 1749-119A, antibody recovery = 78%). A volume of the conjugate was examined by HPLC (HiPrep column) for free DM1 and a DM1 peak was observed at 12.09'. The sample was therefore dialysed in buffer B to get rid of this peak and then reanalyzed. The final conjugate sample (Lot # 1749-124A) had no free DM1 by HPLC and had 1.84 DM1/antibody. SEC-HPLC was performed on the conjugate to show that it was 97% monomeric antibody.

b. Cytotoksisitet og binding b. Cytotoxicity and binding

Oppfinnerne utførte bindings- og cytotoksisitetsundersøkelser på det huC242-ikke-S-inneholdende ikke-kløyvbare linker-DM1-konjugatet. Først ble bindingsaffinitetene til huC242-antistoff, huC242-SMNP-DM3 og huC242-ikke-S-inneholdende, ikke-kløyvbar linker-DM1 sammenlignet ved å benytte en indirekte fremgangsmåte på COLO205-celler. The inventors performed binding and cytotoxicity studies on the huC242-non-S-containing non-cleavable linker-DM1 conjugate. First, the binding affinities of huC242 antibody, huC242-SMNP-DM3, and huC242-non-S-containing, non-cleavable linker-DM1 were compared using an indirect method on COLO205 cells.

5 x 10<3 >celler per brønn ble benyttet, med en primær inkubering på is i tre timer. 5 x 10<3 >cells per well were used, with a primary incubation on ice for three hours.

Resultatene er vist i figur 23, som viser at det huC242-ikke-S-inneholdende ikkekløyvbare linker-DM1-konjugatet hadde en omtrent to ganger høyere tilsynelatende dissosieringskonstant i forhold til fritt antistoff (se figur 23). I tillegg hadde det huC242ikke-S-inneholdende ikke-kløyvbare linker-DM1-konjugatet en in vitro-cytotoksisitet som var sammenlignbar med huC242-SMNP-DM3 (IC50 til det ikke-S-inneholdende ikkekløyvbare linkerkonjugatet = 7,0 x 10<-12 >M) (se figur 22). The results are shown in Figure 23, which shows that the huC242-non-S-containing non-cleavable linker-DM1 conjugate had an approximately two-fold higher apparent dissociation constant relative to free antibody (see Figure 23). In addition, the huC242 non-S-containing non-cleavable linker-DM1 conjugate had an in vitro cytotoxicity comparable to huC242-SMNP-DM3 (IC50 of the non-S-containing non-cleavable linker conjugate = 7.0 x 10<- 12 >M) (see figure 22).

Claims (13)

PATENTKRAVPATENT CLAIMS 1. Cellebindingsmiddel-maytansinoid-konjugat som har følgende formel: trastuzumab-N-succinimidyl-4-(maleimidometyl)sykloheksankarboksylat (SMCC)-N<2>'-deacetyl-N<2>'-(3-merkapto-1-oksopropyl)-maytansin (DM1) eller trastuzumab-N-succinimidyl-4-(iodoacetyl)-aminobenzoat (SIAB)-DM1.1. Cell binding agent-maytansinoid conjugate having the following formula: trastuzumab-N-succinimidyl-4-(maleimidomethyl)cyclohexanecarboxylate (SMCC)-N<2>'-deacetyl-N<2>'-(3-mercapto-1-oxopropyl )-maytansine (DM1) or trastuzumab-N-succinimidyl-4-(iodoacetyl)-aminobenzoate (SIAB)-DM1. 2. Cellebindingsmiddel-maytansinoid-konjugat ifølge krav 1,2. Cell binding agent-maytansinoid conjugate according to claim 1, hvor cellebindingsmidlet binder til celler som er valgt fra gruppen som består av brystkreftceller, ovariekreftceller, ikke-småcellet lungekreftceller og bukspyttkjertelkreftceller.wherein the cell binding agent binds to cells selected from the group consisting of breast cancer cells, ovarian cancer cells, non-small cell lung cancer cells and pancreatic cancer cells. 3. Cellebindingsmiddel-maytansinoid-konjugat ifølge krav 1,3. Cell binding agent-maytansinoid conjugate according to claim 1, hvor cellebindingsmidlet binder til brystkreftceller.where the cell binding agent binds to breast cancer cells. 4. Cellebindingsmiddel-maytansinoid-konjugat ifølge krav 1,4. Cell binding agent-maytansinoid conjugate according to claim 1, hvor cellebindingsmidlet binder til tumorceller.where the cell binding agent binds to tumor cells. 5. Sammensetning omfattende cellebindingsmiddel-maytansinoid-konjugatet ifølge ethvert av kravene 1 til 4 og en bærer.5. A composition comprising the cell binding agent-maytansinoid conjugate according to any one of claims 1 to 4 and a carrier. 6. Fremgangsmåte for fremstilling av cellebindingsmiddel-maytansinoid-konjugatet ifølge krav 1, hvor fremgangsmåten omfatter å:6. Method for producing the cell binding agent-maytansinoid conjugate according to claim 1, wherein the method comprises: (a) tilveiebringe cellebindingsmidlet(a) providing the cell binding agent (b) modifisere cellebindingsmidlet med et kryssbindingsmiddel og(b) modifying the cell binding agent with a cross-linking agent and (c) konjugere det modifiserte cellebindingsmidlet med et maytansinoid eller et tiol-inneholdende maytansinoid for derved å tilveiebringe den ikke-kløyvbare linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiol-inneholdende maytansinoidet for å fremstille konjugatet.(c) conjugating the modified cell binding agent with a maytansinoid or a thiol-containing maytansinoid thereby providing the non-cleavable linker between the cell binding agent and the maytansinoid or the thiol-containing maytansinoid to produce the conjugate. 7. Fremgangsmåte for fremstilling av cellebindingsmiddel-maytansinoid-konjugatet ifølge krav 1, hvor fremgangsmåten omfatter å:7. Method for producing the cell binding agent-maytansinoid conjugate according to claim 1, where the method comprises: (a) tilveiebringe maytansinoidet eller et tiol-inneholdende maytansinoid, (b) modifisere maytansinoidet eller det tiol-inneholdende maytansinoidet med et kryssbindingsmiddel for derved å danne en ikke-kløyvbar linker og(a) providing the maytansinoid or a thiol-containing maytansinoid, (b) modifying the maytansinoid or the thiol-containing maytansinoid with a cross-linking agent to thereby form a non-cleavable linker and (c) konjugere det modifiserte maytansinoidet eller tiol-inneholdende maytansinoidet med cellebindingsmidlet for derved å tilveiebringe den ikke-kløyvbare linkeren mellom cellebindingsmidlet og maytansinoidet eller det tiol-inneholdende maytansinoidet for å fremstille konjugatet. (c) conjugating the modified maytansinoid or thiol-containing maytansinoid with the cell-binding agent to thereby provide the non-cleavable linker between the cell-binding agent and the maytansinoid or the thiol-containing maytansinoid to produce the conjugate. 8. In vitro fremgangsmåte for å styre maytansinoider til en valgt cellepopulasjon, k a r a k t e r i s e r t v e d at fremgangsmåten omfatter å kontakte en cellepopulasjon eller et vev som er mistenkt for å inneholde den valgte cellepopulasjonen med et cellebindingsmiddel-maytansinoid-konjugat, der cellebindingdmiddelet-maytansinoidkonjugated har følgende formel: trastuzumab-SMCC-DM1 eller trastuzumab-SIAB.8. In vitro method for administering maytansinoids to a selected cell population, characterized in that the method comprises contacting a cell population or a tissue suspected of containing the selected cell population with a cell binding agent-maytansinoid conjugate, where the cell binding agent-maytansinoid conjugated has the following formula: trastuzumab-SMCC-DM1 or trastuzumab-SIAB. 9. In vitro fremgangsmåte for eliminering av celler,9. In vitro method for the elimination of cells, k a r a k t e r i s e r t v e d at fremgangsmåten omfatter å kontakte cellene med et cellebindingsmiddel-maytansinoid-konjugat der cellebindingsmiddelet-maytansinoidkonjugated har følgende formel: trastuzumab-SMCC-DM1 eller trastuzumab-SIAB.characterized in that the method comprises contacting the cells with a cell binding agent-maytansinoid conjugate where the cell binding agent-maytansinoid conjugate has the following formula: trastuzumab-SMCC-DM1 or trastuzumab-SIAB. 10. Fremgangsmåte ifølge krav 8 eller 9,10. Method according to claim 8 or 9, hvor cellebindingsmidlet binder til tumorceller eller celler som uttrykker Her-2-antigenet.where the cell binding agent binds to tumor cells or cells expressing the Her-2 antigen. 11. Fremgangsmåte ifølge krav 8 eller 9,11. Method according to claim 8 or 9, hvor cellebindingsmidlet binder til celler utvalgt fra gruppen bestående av brystkreftceller, ikke-småcellet lungekreftceller og bukspyttkjertelkreftceller.wherein the cell binding agent binds to cells selected from the group consisting of breast cancer cells, non-small cell lung cancer cells and pancreatic cancer cells. 12. Cellebindingsmiddel-maytansinoid-konjugat som har følgende formel: trastuzumab-SMCC-DM1 eller trastuzumab-SIAB-DM1, der cellene er sykdomsrammede eller infiserte celler fra tumorer, for anvendelse i en fremgangsmåte for behandling av nevnte tumorer, der fremgangsmåten omfatter å administrere til et individ med behov for behandling en effektiv mengde av nevnte konjugatet.12. Cell binding agent-maytansinoid conjugate having the following formula: trastuzumab-SMCC-DM1 or trastuzumab-SIAB-DM1, where the cells are diseased or infected cells from tumors, for use in a method for treating said tumors, where the method comprises administering to an individual in need of treatment an effective amount of said conjugate. 13. Konjugat ifølge krav 12,13. Conjugate according to claim 12, hvor tumorene er valgt fra gruppen som består av brystkreft, ikke-småcellet lungekreft, bukspyttkjertelkreftceller og ovariekreft. wherein the tumors are selected from the group consisting of breast cancer, non-small cell lung cancer, pancreatic cancer cells and ovarian cancer.
NO20150450A 2003-10-10 2004-10-12 Cell-binding agent maytansinoid conjugate of formula trastuzumab-SMCC-DM1 or trastuzumab-SIABDM1, method for producing these and an in vitro method for directing maytansinoids to a selected cell population or to eliminate cells, as well as application. NO347360B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50990103P 2003-10-10 2003-10-10
PCT/US2004/030917 WO2005037992A2 (en) 2003-10-10 2004-10-12 Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates

Publications (2)

Publication Number Publication Date
NO20150450L NO20150450L (en) 2006-04-21
NO347360B1 true NO347360B1 (en) 2023-09-25

Family

ID=38938205

Family Applications (3)

Application Number Title Priority Date Filing Date
NO20150450A NO347360B1 (en) 2003-10-10 2004-10-12 Cell-binding agent maytansinoid conjugate of formula trastuzumab-SMCC-DM1 or trastuzumab-SIABDM1, method for producing these and an in vitro method for directing maytansinoids to a selected cell population or to eliminate cells, as well as application.
NO20160447A NO20160447A1 (en) 2003-10-10 2016-03-16 Method of Targeting Specific Cell Populations Using Cell Binding Agent Maytansinoid Conjugates Bound via a Non-cleavable Linker, Said Conjugates and Preparation of Said Conjugates
NO20231301A NO20231301A1 (en) 2003-10-10 2023-11-29 Method for targeting specific cell populations by using cell binding agent-maytansinoid conjugates bound via a non-cleavable linker, said conjugates and preparation of said conjugates.

Family Applications After (2)

Application Number Title Priority Date Filing Date
NO20160447A NO20160447A1 (en) 2003-10-10 2016-03-16 Method of Targeting Specific Cell Populations Using Cell Binding Agent Maytansinoid Conjugates Bound via a Non-cleavable Linker, Said Conjugates and Preparation of Said Conjugates
NO20231301A NO20231301A1 (en) 2003-10-10 2023-11-29 Method for targeting specific cell populations by using cell binding agent-maytansinoid conjugates bound via a non-cleavable linker, said conjugates and preparation of said conjugates.

Country Status (3)

Country Link
CN (1) CN101087611B (en)
NO (3) NO347360B1 (en)
ZA (1) ZA200601182B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993146A (en) * 2004-06-01 2007-07-04 健泰科生物技术公司 Antibody-drug conjugates and methods
BRPI0510883B8 (en) * 2004-06-01 2021-05-25 Genentech Inc drug-antibody conjugate compound, pharmaceutical composition, method of manufacturing a drug-antibody conjugate compound, and uses of a formulation, a drug-antibody conjugate and a chemotherapeutic agent, and a combination
EP2276506A4 (en) * 2008-04-30 2014-05-07 Immunogen Inc Potent conjugates and hydrophilic linkers
ES2544608T3 (en) * 2010-11-17 2015-09-02 Genentech, Inc. Antibody and alaninyl-maitansinol conjugates
EP2691117A2 (en) * 2011-03-29 2014-02-05 Immunogen, Inc. Process for manufacturing conjugates of improved homogeneity
CN104640572B (en) * 2012-05-15 2018-04-27 索伦托医疗有限公司 Drug conjugates, coupling method, and application thereof
CN104650113A (en) * 2012-12-21 2015-05-27 百奥泰生物科技(广州)有限公司 Maytansine derivative as well as preparation method and application thereof
US9498532B2 (en) * 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
NZ710929A (en) * 2013-03-15 2018-02-23 Novartis Ag Antibody drug conjugates
CN103254311B (en) * 2013-05-09 2015-05-13 齐鲁制药有限公司 Method for preparing antibody-maytansine alkaloid medicine conjugate
MX2019011635A (en) 2017-03-30 2020-01-20 Jiangsu Hengrui Medicine Co Method for preparing antibody-drug conjugate.
CN110075315B (en) * 2018-01-26 2023-08-11 上海复旦张江生物医药股份有限公司 Antibody conjugate, and preparation method and application thereof
CN109652376B (en) * 2019-01-08 2021-10-15 创芯国际生物科技(广州)有限公司 Culture medium for 3D culture of ovarian cancer tissues
US20220226334A1 (en) * 2019-05-21 2022-07-21 Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd. Antibody conjugate and application of pharmaceutical composition thereof
CN112691190A (en) * 2019-10-23 2021-04-23 东曜药业有限公司 Antibody-high-activity cytotoxic small molecule drug conjugate drug, preparation and application thereof
CN113336823A (en) * 2021-05-28 2021-09-03 联宁(苏州)生物制药有限公司 Synthetic method for antibody-conjugated drug linker LND1067

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024763A2 (en) * 1999-10-01 2001-04-12 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
WO2002098883A1 (en) * 2001-05-31 2002-12-12 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
EP1354896A1 (en) * 2000-12-28 2003-10-22 Kirin Beer Kabushiki Kaisha Novel monoclonal antibody

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208020A (en) * 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) * 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US6531131B1 (en) * 1999-08-10 2003-03-11 The United States Of America As Represented By The Department Of Health And Human Services Conjugate vaccine for Neisseria meningitidis
US7097840B2 (en) * 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
CN101446590A (en) * 2001-09-05 2009-06-03 杰南技术公司 Methods for the identification of polypeptide antigens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024763A2 (en) * 1999-10-01 2001-04-12 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
EP1354896A1 (en) * 2000-12-28 2003-10-22 Kirin Beer Kabushiki Kaisha Novel monoclonal antibody
WO2002098883A1 (en) * 2001-05-31 2002-12-12 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHARI RAVI V.J. ET AL.; "Immunoconjugates containing novel maytansinoids: promising anticancer drugs"; Cancer Research, vol. 52, nr. 1, 1992, s. 127-131, ISSN 0008-5472., Dated: 01.01.0001 *

Also Published As

Publication number Publication date
CN101087611B (en) 2019-04-23
NO20150450L (en) 2006-04-21
NO20160447A1 (en) 2016-03-16
ZA200601182B (en) 2007-04-25
CN101087611A (en) 2007-12-12
NO20231301A1 (en) 2006-04-21

Similar Documents

Publication Publication Date Title
US20210261683A1 (en) Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates and methods of making said conjugates
NO20231301A1 (en) Method for targeting specific cell populations by using cell binding agent-maytansinoid conjugates bound via a non-cleavable linker, said conjugates and preparation of said conjugates.
MXPA06002949A (en) Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates