NO345755B1 - Method for washing turbocharger rotating blades - Google Patents

Method for washing turbocharger rotating blades Download PDF

Info

Publication number
NO345755B1
NO345755B1 NO20190920A NO20190920A NO345755B1 NO 345755 B1 NO345755 B1 NO 345755B1 NO 20190920 A NO20190920 A NO 20190920A NO 20190920 A NO20190920 A NO 20190920A NO 345755 B1 NO345755 B1 NO 345755B1
Authority
NO
Norway
Prior art keywords
washing
compressor
vanes
gas turbine
method applies
Prior art date
Application number
NO20190920A
Other languages
Norwegian (no)
Other versions
NO20190920A1 (en
Inventor
Knuth Jahr
Original Assignee
Knuth Jahr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knuth Jahr filed Critical Knuth Jahr
Priority to NO20190920A priority Critical patent/NO345755B1/en
Publication of NO20190920A1 publication Critical patent/NO20190920A1/en
Publication of NO345755B1 publication Critical patent/NO345755B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Benevnelse Designation

Metode for vasking av aksialkompressor roterende skovler. Method for washing axial compressor rotary vanes.

Metodens anvendelsesområde. The method's scope of application.

Løsningen angår metode for vasking av roterende skovler i en gassturbin aksial kompressor, og også roterende skovler i en drevet aksial turbokompressor. The solution concerns a method for washing rotating vanes in a gas turbine axial compressor, and also rotating vanes in a driven axial turbo compressor.

En gassturbin aksial kompressor og en drevet aksial turbokompressor er begge utsatt for at det dannes et belegg på skovlene, som følge av urenheter, hydrokarboner og våt-salt i mediet som komprimeres. A gas turbine axial compressor and a driven axial turbo compressor are both susceptible to a coating forming on the vanes, as a result of impurities, hydrocarbons and wet-salt in the medium being compressed.

I det følgende benyttes metoden for en gassturbin kompressor som eksempel. Belegg på skovler, også benevnt som fouling, endrer skovlens geometri og aerodynamiske strømningsbildet, hvilket reduserer kompressorens virkningsgrad. In the following, the method for a gas turbine compressor is used as an example. Coating on vanes, also referred to as fouling, changes the geometry of the vanes and the aerodynamic flow pattern, which reduces the efficiency of the compressor.

Videre vil belegg på skovlene utgjøre en ru overflate hvilket øker friksjonen mellom luft og skovvel overflate, hvilket resulterer i øket friksjonsvarme mellom mediet og kompressor skovle, hvilket reduserer kompressorens effekt og ytelse. Furthermore, coating on the vanes will form a rough surface which increases the friction between air and vane surface, which results in increased frictional heat between the medium and compressor vane, which reduces the compressor's effect and performance.

Belegg på skovlene vil videre utgjøre en termisk isolasjon på skovlene, slik at temperaturen i kompressoren øker, som igjen reduserer kompressorens virkningsgrad. Coating on the vanes will also constitute a thermal insulation on the vanes, so that the temperature in the compressor increases, which in turn reduces the efficiency of the compressor.

Kompressorens effektforbruk utgjør ca.60% av energien produsert av turbinen. The compressor's power consumption accounts for approx. 60% of the energy produced by the turbine.

Når kompressorens virkningsgrad reduseres på grunn av belegg på skovlene, synker turbinens termiske virkningsgrad og akseleffekt. When the compressor's efficiency is reduced due to coating on the blades, the turbine's thermal efficiency and shaft power drop.

For å opprettholde kompressorens ytelse og virkningsgrad må skovlene regelmessig vaskes, ved å sprøyte vann og vaskemiddel inn i kompressorens innløp. To maintain the compressor's performance and efficiency, the vanes must be regularly washed, by spraying water and detergent into the compressor's inlet.

Løsningen angår en metode for vasking av turbinens roterende skovler, slik at det oppnås at alle turbinens skovvelrader vaskes, og at begge sider av skovlene vaskes. The solution concerns a method for washing the turbine's rotating blades, so that it is achieved that all the turbine's blade rows are washed, and that both sides of the blades are washed.

Teknikkens stand. State of the art.

Kjente løsninger er Offline vasking og Online vasking, som begge baseres på å sprøyte vann og vaskemiddel inn i kompressorens innløp. Well-known solutions are Offline washing and Online washing, both of which are based on spraying water and detergent into the compressor's inlet.

Metoden med å sprøyte vann og vaskemiddel inn i kompressorens innløp medfører at kun de fremste skovvelradene vaskes, samt at det kun oppnås vasking av skovlens fremside. The method of spraying water and detergent into the compressor's inlet means that only the foremost rows of blades are washed, and that only the front side of the blades are washed.

Løsninger angitt i de mot-holdte publikasjonene D1 og D2 er: Solutions stated in the contested publications D1 and D2 are:

D1: D1:

JPS59503 (A) CORROSION PREVENTION OF TURBINE BLADE Inventor : SUGAYA MASAYOSHI JPS59503 (A) CORROSION PREVENTION OF TURBINE BLADE Inventor : SUGAYA MASAYOSHI

Applicant : TOKYO SHIBAURA ELECTRIC CO Applicant : TOKYO SHIBAURA ELECTRIC CO

D1 omhandler injeksjon av vann i en dampturbin, for å begrense korrosjon på turbinblad. D1 deals with the injection of water into a steam turbine, to limit corrosion on turbine blades.

D1 omhandler dermed ikke vasking av begge sider av kompressor rotor blader, i alle kompressorens trinn. D1 thus does not deal with washing both sides of the compressor rotor blades, in all stages of the compressor.

D2: D2:

EP1138955 (A2) - Method and apparatus for increasing the efficiency of a multi-stage compressor EP1138955 (A2) - Method and apparatus for increasing the efficiency of a multi-stage compressor

Inventor : INGISTOV STEVE [US] Inventor : INGISTOV STEVE [US]

Applicant : WATSON COGENERATION COMPANY [US] Applicant : WATSON COGENERATION COMPANY [US]

D2 omhandler injeksjon av kjølevannvann gjennom dyser under drift av kompressoren. D2 deals with the injection of cooling water through nozzles during operation of the compressor.

Hensikten er å redusere den komprimerte gassens temperatur, for å bedre kompressorens effekt. The purpose is to reduce the temperature of the compressed gas, in order to improve the compressor's effect.

Injeksjon av vann under drift vil gi en kjøle-effekt. Vannet vill imidlertid fordampe etter et antall trinn i kompressoren, og har derfor ingen vaskeeffekt i nedstrøms kompressor trinn. Injection of water during operation will provide a cooling effect. However, the water will evaporate after a number of steps in the compressor, and therefore has no washing effect in the downstream compressor step.

D2 omhandler dermed ikke vasking av begge sider av kompressor rotor blader, i alle kompressorens trinn. D2 thus does not deal with washing both sides of the compressor rotor blades, in all stages of the compressor.

For å utføre vaskeprosessen Offline vasking må gassturbinen stenges ned og avkjøles og roteres med gassturbinens startmotor, typisk med 1000-1200 omdreininger pr. minutt, og vaskes ved at det spyles vaskemiddel og vann inn i kompressorens innløp. To carry out the washing process Offline washing, the gas turbine must be shut down and cooled and rotated with the gas turbine starter motor, typically at 1000-1200 revolutions per minute. minute, and is washed by flushing detergent and water into the compressor inlet.

Metoden med nedstenging av turbinen for vasking under rotasjon av turbinens rotor benevnes som Krank Wash, eller Soak Wash, eller Offline vasking. The method of shutting down the turbine for washing during rotation of the turbine's rotor is called Crank Wash, or Soak Wash, or Offline washing.

Metoden Offline vasking medfører redusert driftstid for turbinen, hvilket medfører redusert produksjon, for eksempel slik som for en gassturbin kompressor-driver som for eksempel inngår i produksjonsprosessen på en offshore oljeplattform eller produksjonsplattform. The Offline washing method results in reduced operating time for the turbine, which results in reduced production, for example such as for a gas turbine compressor driver which is, for example, part of the production process on an offshore oil platform or production platform.

Metoden Online vasking utføres ved at det spyles vaskemiddel og vann inn i kompressorens innløp mens turbinen er i drift med last, typisk med kompressor turtall 8000-9000 omdreininger pr. minutt. The online washing method is carried out by flushing detergent and water into the compressor inlet while the turbine is operating with load, typically with a compressor speed of 8,000-9,000 rpm. minute.

Metoden Online Wash mens turbinen går med last må utføres hver andre til tredje dag, og har begrenset vaske-effekt innover i kompressoren, da vannet fordamper og har ingen effekt etter trinn 4-5. The Online Wash method while the turbine is running with load must be carried out every two to three days, and has a limited washing effect inside the compressor, as the water evaporates and has no effect after steps 4-5.

Typiske turbiner har 12-16 kompressortrinn. Typical turbines have 12-16 compressor stages.

Begge metodene har begrenset vaskeeffekt ved at kun de fremste skovvelradene vaskes, i det vesentlige på skovlenes fremside. Both methods have a limited washing effect in that only the leading rows of blades are washed, essentially on the front side of the blades.

Erfaringen er at når turbinen vaskes med beskrevne metoder, transporteres belegg som vaskes av fra de fremre skovlradene med kompressorens luftstrøm videre innover i kompressoren, og bygges opp som belegg på nedstrøms skovletrinn. The experience is that when the turbine is washed using the described methods, deposits that are washed off from the front rows of blades are transported by the compressor's air flow further into the compressor, and build up as deposits on downstream blade stages.

Erfaringen er videre at partikler og partikkelflak som bygger seg opp på skovlenes overflate under vasking, løsner under drift kan skade nedstrøms skovler. Experience has also shown that particles and particle flakes that build up on the surface of the vanes during washing, loosen during operation and can damage downstream vanes.

Begge metodene baseres på at det monteres dyser i kompressorens innløp, og at og vaskemiddel og varmt vann under høyt trykk spyles aksielt inn i kompressorens innløp. Both methods are based on nozzles being installed in the compressor's inlet, and detergent and hot water under high pressure being flushed axially into the compressor's inlet.

Vaskedysene, som typisk er fastmontert i kompressorens innløp, tilføres vann og vaskemiddel under høyt trykk fra en vann-vaskeenhet med en tank for vann, varme-elementer for oppvarming av vaskevann, tank for vaskemiddel, en høytrykkspumpe og relatert instrumentering og pumpemotor. The washing nozzles, which are typically fixed in the inlet of the compressor, are supplied with water and detergent under high pressure from a water-washing unit with a tank for water, heating elements for heating washing water, tank for detergent, a high-pressure pump and related instrumentation and pump motor.

Dysene er typisk utført som forstøvningsdyser, som danner svært små vanndråper som skal fukte skovvel overflater og løse opp belegg på skovvel overflater. The nozzles are typically designed as atomizing nozzles, which form very small water droplets that are supposed to wet shovel surfaces and dissolve coatings on shovel surfaces.

Svært små vanndråper har imidlertid en begrenset mekanisk vaske-effekt. Teorien er at små vanndråper ikke vil slynges ut som følge av kompressorens rotasjon, men sveve i luften og legge seg på skovlene. However, very small water droplets have a limited mechanical washing effect. The theory is that small water droplets will not be ejected as a result of the compressor's rotation, but will float in the air and settle on the blades.

Erfaringen er imidlertid at sentrifugalkraften slynger selv svært små dråper ut når de treffer de roterende skovlene. However, the experience is that the centrifugal force ejects even very small droplets when they hit the rotating vanes.

Dette medfører at skovlenes tupp overflate vaskes best, mens vaskeeffekten på overflater i skovle-roten er begrenset. This means that the tip surface of the blades is washed best, while the washing effect on surfaces in the blade root is limited.

Fordi det ved metodene Offline vasking og Online vasking oppnås vasking av kun de fremste skovvelradene, og det kun oppnås vasking av skovlenes fremside, må Offline vasking typisk utføres ca. hver to tusende time, mens Online vasking bør utføres hver tredje dag. Because the Offline washing and Online washing methods achieve washing of only the leading rows of blades, and only the front side of the blades are achieved, Offline washing typically needs to be carried out approx. every two thousand hours, while Online washing should be carried out every three days.

Ved at kun de fremre skovle-radene blir vasket, og kun på fremsiden, synker turbinens termiske virkningsgrad og akseleffekt gradvis, selv om turbinen vaskes ofte. As only the front rows of blades are washed, and only on the front side, the turbine's thermal efficiency and shaft power gradually decrease, even if the turbine is washed often.

Dette medfører at kompressor ytelse og virkningsgrad over tid gradvis reduseres og ikke kan gjenvinnes ved gjentatte vaskesykler, slik at kompressoren til slutt må overhales med utskifting av skovler, eller at kompressoren må demonteres for manuell vasking av skovlene. This means that compressor performance and efficiency gradually decrease over time and cannot be recovered by repeated washing cycles, so that the compressor must eventually be overhauled with the replacement of vanes, or that the compressor must be dismantled for manual washing of the vanes.

Dette må utføres i et spesialverksted, typisk etter 25000 timers drift. This must be carried out in a specialist workshop, typically after 25,000 hours of operation.

Beskrivelse av løsningen. Description of the solution.

Ref. Fig. 1, 2, 3, 4, 5 og 6. Ref. Fig. 1, 2, 3, 4, 5 and 6.

Løsningen baseres på at alle skovvel-radene (10) samtidig spyles med spylestrålen (9), både på skovvel (3) fremside (2) og skovvel (3) bakside (4), mens kompressor rotor roteres motsatt vei (11) av kompressor rotasjonsretningen under drift. The solution is based on all the bucket rows (10) being simultaneously flushed with the spray jet (9), both on the bucket bucket (3) front side (2) and bucket bucket (3) rear side (4), while the compressor rotor is rotated in the opposite direction (11) of the compressor the direction of rotation during operation.

De fleste moderne gassturbiner er utført med boroskop-porter (7) mellom ledeskovlene (20), for inspeksjon av skovlene (3). Most modern gas turbines are made with borescope ports (7) between the guide vanes (20), for inspection of the vanes (3).

Under drift av turbinen er boreskop-portene (7) plugget. During operation of the turbine, the borescope ports (7) are plugged.

Vaskingen forberedes ved å stanse og kjøle ned turbinen og skru ut boreskop-portenes (7) plugger, og ved å skru inn guide-plugg (13) inn i boreskop-port (3) og ved å montere en vaskelanse (6) inn i guide-plugg (13) i hver boreskop-port (7), hvor boreskop-porter (7) penetrerer kompressor ytter-vegg (23) og kompressor innvendig belegg for skovveltetning (24), og eventuelt avstivnings-ribber (25). The washing is prepared by stopping and cooling down the turbine and unscrewing the plugs of the borescope ports (7), and by screwing in the guide plug (13) into the borescope port (3) and by fitting a washing lance (6) into guide plug (13) in each borescope port (7), where borescope ports (7) penetrate the compressor outer wall (23) and compressor internal coating for bushing seal (24), and possibly stiffening ribs (25).

Vaskelansen (6) er utføres som et rør med dobbelt sett dyser (8) i enden, hvor den ene dysens (8) spylestråle (9) spyler aksielt forover mot skovvel (3) bakside (4), og den andre dysen (8) aksielt bakover mot skovvel (3) forside (2). The washing lance (6) is designed as a tube with a double set of nozzles (8) at the end, where the spray jet (9) of one nozzle (8) sprays axially forwards towards the back of the blade (3) (4), and the other nozzle (8) axially backwards towards the vane well (3) front (2).

Dysene (8) utføres og dimensjoneres spesielt for hvert enkelt skovveltrinn (10) med en geometri slik at spylestrålen (9) dekker hele skovvel (3) fremside (2) og hele skovvel (3) bakside (4). The nozzles (8) are specially designed and dimensioned for each individual blade well step (10) with a geometry so that the spray jet (9) covers the entire blade well (3) front side (2) and the entire blade well (3) rear side (4).

Dyser (8) utføres slik at spylestråle (9) er en hard stråle med store dråper, for å oppnå best mulig mekanisk vaskeeffekt av skovvel overflater (2) og (4). Spylestrålen (9) treffer skovlens (3) tupp (32) og spyler innover mot skovlens rot (33), slik at hele skovlens overflate og skovlens rot (33) vaskes. Nozzles (8) are designed so that the spray jet (9) is a hard jet with large droplets, in order to achieve the best possible mechanical washing effect of shovel surfaces (2) and (4). The spray jet (9) hits the tip (32) of the bucket (3) and washes inwards towards the root of the bucket (33), so that the entire surface of the bucket and the root of the bucket (33) are washed.

Vaskelansen (6) med dyser (8) maskineres som én komponent ut fra et smidd emne i for eksempel høy-fast Nikkel-legering, for å hindre at vaskelansens (6) deler kan løsne og falle inn i kompressoren. The wash lance (6) with nozzles (8) is machined as one component from a forged blank in, for example, high-strength nickel alloy, to prevent parts of the wash lance (6) from loosening and falling into the compressor.

Vaskelansen (6) er videre utført med en ansats (12), som styrer hvor langt aksialt inn i guide-plugg (13) vaskelansen (6) stikker. The washing lance (6) is also made with a shoulder (12), which controls how far axially into the guide plug (13) the washing lance (6) sticks.

Vaskelanse (6) er utført med en utvendig diameter (22) tilsvarende boring i guide-plugg (13), slik at når vaskelansen (6) monteres inn i guide-plugg (13) styres dyse (8) til korrekt konsentrisk posisjon mellom skovle-radene (10). En kappemutter (26) med en ansats (12) monteres til guide-plugg (13), slik at kappemutter (26) ikke presser vaskelansen (6) hardt mot innervegg og skovvel tetningsbelegg (24). Wash lance (6) is made with an external diameter (22) corresponding to the bore in the guide plug (13), so that when the wash lance (6) is fitted into the guide plug (13) the nozzle (8) is controlled to the correct concentric position between the vane -the rows (10). A cap nut (26) with a shoulder (12) is fitted to the guide plug (13), so that the cap nut (26) does not press the wash lance (6) hard against the inner wall and the vane sealing coating (24).

En fjær (30) lokaliseres mellom ansats (12) og kappe-mutter (26) slik at enden av vaskelanse (6) fjærer, og ikke presses mot kompressor innervegg og skovvel tetningsbelegg / innervegg (24) med en kraft større enn fjær (30) kompresjonskraft. A spring (30) is located between the shoulder (12) and the cap nut (26) so that the end of the washing lance (6) springs, and is not pressed against the compressor inner wall and vane sealing coating / inner wall (24) with a force greater than the spring (30) ) compression force.

Vaskeprosessen utføres ved å først tilføre vaskemiddel fra vaske-enhet (14) via slanger (21) mens rotor (1) roteres i motsatt rotasjonsretning (11) av rotasjonsretning under turbinens drift. The washing process is carried out by first supplying detergent from the washing unit (14) via hoses (21) while the rotor (1) is rotated in the opposite direction of rotation (11) of the direction of rotation during the turbine's operation.

Rotasjon av rotor (1) oppnås ved å reversere rotorens (1) rotasjonsmotor (17) som benyttes for å rotere kompressor rotor (1) under boreskop-inspeksjon av skovler (3). Rotation of the rotor (1) is achieved by reversing the rotor's (1) rotation motor (17) which is used to rotate the compressor rotor (1) during borescope inspection of vanes (3).

Etter en periode, når vaskemiddelet har løst opp belegget på skovlene (3), spyles (9) deretter skovlenes fremside (2) og skovlenes bakside (4) med varmt vann under høyt trykk fra vaske-enhet (14) via slanger (21) mens turbinens rotor (1) roteres (11) med rotasjonsretning (11) motsatt av rotasjonsretningen under turbinens drift. After a period, when the detergent has dissolved the coating on the vanes (3), (9) the front side of the vanes (2) and the back of the vanes (4) are then flushed with hot water under high pressure from the washing unit (14) via hoses (21) while the turbine's rotor (1) is rotated (11) with the direction of rotation (11) opposite to the direction of rotation during the turbine's operation.

Fordi kompressorens geometri (18) er konisk, med størst diameter i innløpet (15), og fordi kompressor rotor (1) roterer motsatt vei av rotasjon under drift (11), vil vann og urenheter (16) føres ut og renne ut gjennom nedre del av kompressorens innløp (19), og ut i gassturbin innløpsplenum og dreneres ut i innløpsplenum dren. Because the geometry of the compressor (18) is conical, with the largest diameter in the inlet (15), and because the compressor rotor (1) rotates in the opposite direction of rotation during operation (11), water and impurities (16) will be carried out and flow out through the lower part of the compressor inlet (19), and out into the gas turbine inlet plenum and is drained out into the inlet plenum drain.

Detter medfører at vann og urenheter ikke føres videre innover i kompressoren. This means that water and impurities are not carried further into the compressor.

Etter avsluttet spyleprosess gjentas prosessen inntil ønsket renhet på skovlenes (3) fremside (2) og skovlenes (3) bakside (4) er oppnådd. After the flushing process is finished, the process is repeated until the desired cleanliness on the front side (2) of the vanes (3) and the back side (4) of the vanes (3) is achieved.

Ved vasking av begge sider (2) og (4) av kompressorens skovler (3), og ved vasking av alle kompressorens skovveltrinn (10), opprettholdes kompressorens ytelse og virkningsgrad bedre enn ved tradisjonell vasking, hvor kompressorens ytelse og virkningsgrad gradvis reduseres fordi kun de fremste skovlene delvis vaskes. By washing both sides (2) and (4) of the compressor's vanes (3), and by washing all the compressor's vane stages (10), the compressor's performance and efficiency are maintained better than with traditional washing, where the compressor's performance and efficiency are gradually reduced because only the foremost vanes are partially washed.

Claims (7)

Patentkrav.Patent claims. 1. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3), karakterisert ved at alle skovlene (3) i alle skov-trinn (10) vaskes på begge sider ved å montere vaskelanser (6) med guide-plugg (13) i alle boreskopporter (7), lokalisert mellom alle kompressorens trinn, og spyle med spyleretning (9) aksielt forover og bakover mot skovlens tupp (32) slik at hele skovlens (3) fremside (2) og hele skovlens (3) bakside (4), og spyles fra skovlens tupp (32) og inn mot skovlens rot (33), slik at1. The method applies to the washing of gas turbine axial compressor vanes (3), characterized in that all vanes (3) in all vane stages (10) are washed on both sides by mounting washing lances (6) with guide plugs (13) in all bore scoop ports (7), located between all stages of the compressor, and flush with flushing direction (9) axially forwards and backwards towards the tip of the vane (32) so that the entire front side (2) of the vane (3) and the entire rear side (4) of the vane (3), and is flushed from the tip of the shovel (32) towards the root of the shovel (33), so that alle skovlenes (3) fremsider / sugesider (2) og alle skovlenes (3) baksider / trykksider (4) spyles med vaskemiddel og vann under høyt trykk, mens kompressorens rotor (1) roteres i motsatt rotasjonsretning av kompressor rotasjonsretning (11) under drift.all vanes (3) front sides / suction sides (2) and all vanes (3) back sides / pressure sides (4) are flushed with detergent and water under high pressure, while the compressor rotor (1) is rotated in the opposite direction of rotation of the compressor rotation direction (11) during operation . 2. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3) ifølge krav 1, karakterisert ved at hull i dyser (8) utføres med geometri slik at spylestrålen (9) med varmt vann under høyt trykk danner store dråper som under motsatt rotasjon (11) av rotor (1) treffer hele skovlens (3) fremside (2) og hele skovlens (3) bakside (4) slik at det oppnås best mulig mekanisk vaskeeffekt.2. The method applies to the washing of gas turbine axial compressor vanes (3) according to claim 1, characterized in that holes in nozzles (8) are made with geometry so that the flushing jet (9) with hot water under high pressure forms large drops which during reverse rotation (11 ) of the rotor (1) hits the entire front side (2) of the blade (3) and the entire rear side (4) of the blade (3) so that the best possible mechanical washing effect is achieved. 3. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3) ifølge krav 1-2, karakterisert ved at vaske-enhet (14) med høytrykkspumpe og lanser (6) med dyser (8) utføres til å kunne vaske alle kompressorens skovle-trinn (10) samtidig under motsatt rotasjon (11) av rotor (1), slik at turbinens stans-periode for vasking av skovler (3) reduseres.3. The method applies to the washing of gas turbine axial compressor blades (3) according to claims 1-2, characterized in that the washing unit (14) with high-pressure pump and lances (6) with nozzles (8) is carried out to be able to wash all the compressor's blade stages (10) at the same time during opposite rotation (11) of rotor (1), so that the turbine's shutdown period for washing blades (3) is reduced. 4. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3) ifølge krav 1-2-3, karakterisert ved at en fjær (30) lokaliseres mellom guideplugg (13) ansats (12) og kappe-mutter (26) slik at enden av vaskelanse (6) fjærer, og ikke kan presses hardere mot kompressor innervegg / skovveltetning (24) enn kompresjonskraft fra fjær (30).4. The method applies to washing gas turbine axial compressor vanes (3) according to claim 1-2-3, characterized in that a spring (30) is located between guide plug (13), shoulder (12) and cap nut (26) so that the end of washing lance (6) is springy, and cannot be pressed harder against the compressor inner wall / vane well seal (24) than the compression force from spring (30). 5. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3) ifølge krav 1-2-3-4, karakterisert ved at vaskelansen (6) utføres med en styretapp (28) som går i inngrep med spor (29) i guide-plugg (13), slik at spylestrålene (9) sikres til å orienteres til å treffe skovvel (3) korrekt for å oppnå vasking av hele overflaten på skovvel (3) fremside (2) og skovvel (3) bakside (4). 5. The method applies to the washing of gas turbine axial compressor vanes (3) according to claim 1-2-3-4, characterized in that the washing lance (6) is carried out with a guide pin (28) that engages with a groove (29) in the guide plug (13), so that the spray jets (9) are ensured to be oriented to hit the bucket well (3) correctly in order to achieve washing of the entire surface of the bucket well (3) front side (2) and the bucket well (3) back side (4). 6. Metoden gjelder vasking av gassturbin aksial kompressor skovler (3) ifølge krav 1-2-3-4-5, karakterisert ved at vaskelanse (6) med ansats (12) låses i korrekt i aksiell og radiell posisjon i guide-plugg (13) med utvendig gjenge (28) og innvendig ansats (31), ved at kappemutter (26) med innvendig gjenge (27) trekkes til og delvis komprimerer fjær (30) mot ansats (12) inntil guide-plugg (13) er i kontakt med kappemutter (26) innvendig ansats (31).6. The method applies to washing gas turbine axial compressor vanes (3) according to claim 1-2-3-4-5, characterized in that the washing lance (6) with attachment (12) is locked in the correct axial and radial position in the guide plug ( 13) with external thread (28) and internal shoulder (31), by tightening cap nut (26) with internal thread (27) and partially compressing spring (30) against shoulder (12) until guide plug (13) is in contact with cap nut (26) internal shoulder (31). 7. Metoden gjelder vasking av gassturbin aksial kompressor skovler ifølge krav 1-2-3-4-5-6, karakterisert ved at vaskelanse (6) med dyser (8) utføres med utvendig diameter (22) lik innvendig diameter i guide-plugg (13), slik at dyser (8) lokaliseres konsentrisk i boreskop-port (7) slik at spylestråle (9) dekker hele skovlenes (3) fremside (2) og hele skovlenes (3) bakside (4). 7. The method applies to the washing of gas turbine axial compressor vanes according to claim 1-2-3-4-5-6, characterized in that the washing lance (6) with nozzles (8) is carried out with an external diameter (22) equal to the internal diameter of the guide plug (13), so that nozzles (8) are located concentrically in the borescope port (7) so that the spray jet (9) covers the entire front side (2) of the vanes (3) and the entire rear side (4) of the vanes (3).
NO20190920A 2019-07-24 2019-07-24 Method for washing turbocharger rotating blades NO345755B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20190920A NO345755B1 (en) 2019-07-24 2019-07-24 Method for washing turbocharger rotating blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20190920A NO345755B1 (en) 2019-07-24 2019-07-24 Method for washing turbocharger rotating blades

Publications (2)

Publication Number Publication Date
NO20190920A1 NO20190920A1 (en) 2021-01-25
NO345755B1 true NO345755B1 (en) 2021-07-12

Family

ID=74758397

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20190920A NO345755B1 (en) 2019-07-24 2019-07-24 Method for washing turbocharger rotating blades

Country Status (1)

Country Link
NO (1) NO345755B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046155A (en) * 1974-12-30 1977-09-06 Stal-Laval Turbin Ab Washing apparatus for a compound compressor
JPS59503A (en) * 1982-06-25 1984-01-05 Toshiba Corp Corrosion prevention of turbine blade
US5944483A (en) * 1995-12-29 1999-08-31 Asea Brown Boveri Ag Method and apparatus for the wet cleaning of the nozzle ring of an exhaust-gas turbocharger turbine
EP1138955A2 (en) * 2000-03-29 2001-10-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor
US20030133789A1 (en) * 2002-01-17 2003-07-17 Bernhard Kuesters Axial compressor and method of cleaning an axial compressor
EP1388656A2 (en) * 2002-08-09 2004-02-11 Mitsubishi Heavy Industries, Ltd. Extraneous matter removing system for turbine
TWI324537B (en) * 2005-05-20 2010-05-11 Gas Turbine Efficiency Ab Method and apparatus for cleaning a turbofan gas turbine engine
GB2484337A (en) * 2010-10-08 2012-04-11 Uyioghosa Leonard Igie A compressor washing apparatus and associated nozzle for a gas turbine engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046155A (en) * 1974-12-30 1977-09-06 Stal-Laval Turbin Ab Washing apparatus for a compound compressor
JPS59503A (en) * 1982-06-25 1984-01-05 Toshiba Corp Corrosion prevention of turbine blade
US5944483A (en) * 1995-12-29 1999-08-31 Asea Brown Boveri Ag Method and apparatus for the wet cleaning of the nozzle ring of an exhaust-gas turbocharger turbine
EP1138955A2 (en) * 2000-03-29 2001-10-04 Watson Cogeneration Company Method and apparatus for increasing the efficiency of a multi-stage compressor
US20030133789A1 (en) * 2002-01-17 2003-07-17 Bernhard Kuesters Axial compressor and method of cleaning an axial compressor
EP1388656A2 (en) * 2002-08-09 2004-02-11 Mitsubishi Heavy Industries, Ltd. Extraneous matter removing system for turbine
TWI324537B (en) * 2005-05-20 2010-05-11 Gas Turbine Efficiency Ab Method and apparatus for cleaning a turbofan gas turbine engine
GB2484337A (en) * 2010-10-08 2012-04-11 Uyioghosa Leonard Igie A compressor washing apparatus and associated nozzle for a gas turbine engine

Also Published As

Publication number Publication date
NO20190920A1 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
US6394108B1 (en) Inside out gas turbine cleaning method
EP2225445B1 (en) Method for cleaning turbine blades under operation conditions, corresponding turbocharger and turbine
CA2692745A1 (en) Compressor wash nozzle integrated in an inlet case strut
EP2881551A1 (en) Gas turbine engine systems and methods for imparting corrosion resistance to gas turbine engines
US11408339B2 (en) Steam turbine system and combined cycle plant
US20150159559A1 (en) Method and System for Compressor On Line Water Washing With Anticorrosive Solution
US20150159558A1 (en) Method And System For Dispensing Gas Turbine Anticorrosion Fluid
CA2957487A1 (en) Auxiliary cleaning system for gas turbine engines
NO345755B1 (en) Method for washing turbocharger rotating blades
Ogbonnaya Gas turbine performance optimization using compressor online water washing technique
US9816391B2 (en) Compressor wash system with spheroids
US9267393B2 (en) Dry ice cleaning apparatus for gas turbine compressor
KR101578360B1 (en) A axial flow type turbine
US20200256208A1 (en) A method for cleaning a turbofan engine and apparatus for use thereof
RU72514U1 (en) AXIAL MULTI-STAGE COMPRESSOR
Ingistov Interstage Injection System for Heavy Duty Industrial Gas Turbine Model 7EA
Mund et al. A review of gas turbine online washing systems
Kurz et al. Degradation effects on industrial gas turbines
US20160115867A1 (en) Water delivery system for gas turbine compressor
US9670796B2 (en) Compressor bellmouth with a wash door
RU2567530C1 (en) Method for increasing gas turbine engine output power in operation
Brun et al. Impact of continuous inlet fogging and overspray operation on ge 5002 gas turbine life and performance
JP5483625B2 (en) Gas turbine system
JP5449128B2 (en) Condensed steam turbine and its modification method
RU2802116C1 (en) Method for flushing gas-air path of gas-turbine engine of gas-pumping unit using additional nozzle

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees