NO344828B1 - Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process - Google Patents

Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process Download PDF

Info

Publication number
NO344828B1
NO344828B1 NO20081203A NO20081203A NO344828B1 NO 344828 B1 NO344828 B1 NO 344828B1 NO 20081203 A NO20081203 A NO 20081203A NO 20081203 A NO20081203 A NO 20081203A NO 344828 B1 NO344828 B1 NO 344828B1
Authority
NO
Norway
Prior art keywords
straight
substituted
cycloalkyl
branched alkyl
mixtures
Prior art date
Application number
NO20081203A
Other languages
Norwegian (no)
Other versions
NO20081203L (en
Inventor
Frank Cheng-Yu Wang
Michael Siskin
Alan R Katritzky
Original Assignee
Exxonmobil Res And Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Res And Engineering Co filed Critical Exxonmobil Res And Engineering Co
Publication of NO20081203L publication Critical patent/NO20081203L/en
Publication of NO344828B1 publication Critical patent/NO344828B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/04Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
    • C10G70/06Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0408Pretreatment of the hydrogen sulfide containing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/12Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C305/00Esters of sulfuric acids
    • C07C305/02Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C305/04Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C307/00Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C307/02Monoamides of sulfuric acids or esters thereof, e.g. sulfamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Description

Den foreliggende oppfinnelsen vedrører en fremgangsmåte for selektiv absorpsjon av H2S fra gassformige blandinger som angitt i krav 1. Oppfinnelsen vedrører også en absorbentsammensetning og anvendelse derav for selektiv absorpsjon av H2S fra en H2S- og andre syrekomponentinneholdende blandinger. The present invention relates to a method for selective absorption of H2S from gaseous mixtures as stated in claim 1. The invention also relates to an absorbent composition and its use for selective absorption of H2S from an H2S- and other acid component-containing mixtures.

BESKRIVELSE AV RELATERT TEKNIKK DESCRIPTION OF RELATED ART

Det er velkjent innen teknikken å behandle gasser og væsker, så som blandinger inneholdende syregasser, inkludert CO2, H2S, CS2, HCN, COS og oksygen- og svovelderivater av C1-C4-hydrokarboner med aminløsninger for å fjerne disse syregassene. Aminet bringes vanligvis i kontakt med syregassene og væskene som en vandig løsning inneholdende aminet i et absorpsjonstårn med den vandige aminløsningen brakt i motstrøms kontakt med syrefluidet. It is well known in the art to treat gases and liquids, such as mixtures containing acid gases, including CO2, H2S, CS2, HCN, COS and oxygen and sulfur derivatives of C1-C4 hydrocarbons with amine solutions to remove these acid gases. The amine is usually contacted with the acid gases and liquids as an aqueous solution containing the amine in an absorption tower with the aqueous amine solution brought into countercurrent contact with the acid fluid.

Behandlingen av syregassblandinger inneholdende, blant annet, CO2 og H2S med aminløsninger fører typisk til den samtidige fjerningen av vesentlige mengder av både CO2 og H2S. For eksempel, i en slik prosess, generelt referert til som den ”vandige aminprosessen”, brukes relativt oppkonsentrerte aminløsninger. En nylig forbedring av denne prosessen innebærer bruk av sterisk hindrede aminer, som beskrevet i USP 4112052, for å oppnå nesten fullstendig fjerning av syregasser, så som CO2 og H2S. Denne prosesstypen kan brukes hvor partialtrykkene for CO2 og relaterte gasser er lave. En annen prosess som ofte brukes for spesialiserte applikasjoner, hvor partialtrykket for CO2 er svært høyt, og/eller hvor mange syregasser er til stede, f.eks. H2S, COS, CH3SH og CS2, innebærer bruken av et amin i kombinasjon med en fysikalsk absorbent, generelt referert til som ”den ikke-vandige løsningsmiddelprosessen”. En forbedring av denne prosessen innebærer bruk av sterisk hindrede aminer og organiske løsningsmidler som den fysikalske absorbenten, slik som beskrevet i USP 4112051. Andre fremgangsmåter og blandinger for slik fjerning av H2S er kjent fra US 3042483 A og US 3532637 A. The treatment of acid gas mixtures containing, among other things, CO2 and H2S with amine solutions typically leads to the simultaneous removal of significant amounts of both CO2 and H2S. For example, in such a process, generally referred to as the "aqueous amine process", relatively concentrated amine solutions are used. A recent improvement to this process involves the use of sterically hindered amines, as described in USP 4112052, to achieve almost complete removal of acid gases, such as CO2 and H2S. This type of process can be used where the partial pressures for CO2 and related gases are low. Another process that is often used for specialized applications, where the partial pressure of CO2 is very high, and/or where many acid gases are present, e.g. H2S, COS, CH3SH and CS2, involves the use of an amine in combination with a physical absorbent, generally referred to as "the non-aqueous solvent process". An improvement of this process involves the use of sterically hindered amines and organic solvents as the physical absorbent, as described in USP 4112051. Other methods and compositions for such removal of H2S are known from US 3042483 A and US 3532637 A.

Det er imidlertid ofte ønskelig å behandle syregassblandinger inneholdende både CO2 og H2S, for så å fjerne H2S selektivt fra blandingen, og derved minimere fjerning av CO2. Selektiv fjerning av H2S fører til et relativt høyt H2S/CO2-forhold i den separerte syregassen, som forenkler omdanning av H2S til elementært svovel ved anvendelse av Claus-prosessen. However, it is often desirable to treat acid gas mixtures containing both CO2 and H2S, in order to selectively remove H2S from the mixture, thereby minimizing the removal of CO2. Selective removal of H2S leads to a relatively high H2S/CO2 ratio in the separated acid gas, which facilitates conversion of H2S to elemental sulfur using the Claus process.

De typiske reaksjonene for vandige sekundære og tertiære aminer med CO2 og H2S kan representeres som følger: The typical reactions of aqueous secondary and tertiary amines with CO2 and H2S can be represented as follows:

hvori hver R er et organisk radikal som kan være like eller forskjellige og kan substitueres med en hydroksygruppe. Ovenstående reaksjoner er reversible, og partialtrykkene for både CO2 og H2S er således viktige for å bestemme i hvilken grad ovenstående reaksjoner vil skje. wherein each R is an organic radical which may be the same or different and may be substituted with a hydroxy group. The above reactions are reversible, and the partial pressures for both CO2 and H2S are thus important in determining the extent to which the above reactions will occur.

Mens selektiv H2S-fjerning er anvendbar for et antall gassbehandlingsoperasjoner, inkludert behandling av hydrokarbongasser fra skiferpyrolyse, raffinerigass og naturgass som har et lavt H2S/CO2-forhold, er det ønskelig i behandling av gasser, hvori partialtrykket av H2S er relativt lavt sammenlignet med det for CO2, pga. at aminets kapasitet for å absorbere H2S fra sistnevnte type gasser er svært lav. Eksempler på gasser med relativt lave partialtrykk av H2S inkluderer syntetiske gasser laget ved gullgassifisering, halegass fra svovelanlegg og drivstoffgasser med lav-Joule verdier som man møter i raffinerier hvor tung restolje termisk omdannes til væsker og gasser med lavere molekylvekt. While selective H2S removal is applicable to a number of gas processing operations, including the treatment of hydrocarbon gases from shale pyrolysis, refinery gas, and natural gas having a low H2S/CO2 ratio, it is desirable in the treatment of gases in which the partial pressure of H2S is relatively low compared to the for CO2, due to that the amine's capacity to absorb H2S from the latter type of gases is very low. Examples of gases with relatively low partial pressures of H2S include synthetic gases made by gold gasification, tail gas from sulfur plants and fuel gases with low Joule values encountered in refineries where heavy residual oil is thermally converted to lower molecular weight liquids and gases.

Selv om det er kjent at løsninger av primære og sekundære aminer, så som monoetanolamin (MEA), dietanolamin (DEA), dipropanolamin (DPA) og hydroksyetoksyetylamin (DGA) absorberer både H2S- og CO2-gass, har de ikke vist seg spesielt tilfredsstillende for preferensiell absorpsjon av H2S i forhold til eksklusjon av CO2, fordi aminene gjennomgår en lett reaksjon med CO2 for å danne karbamater, som vist i ligningene 5 og 6. Although solutions of primary and secondary amines such as monoethanolamine (MEA), diethanolamine (DEA), dipropanolamine (DPA) and hydroxyethoxyethylamine (DGA) are known to absorb both H2S and CO2 gas, they have not proven particularly satisfactory for preferential absorption of H2S over exclusion of CO2, because the amines undergo a facile reaction with CO2 to form carbamates, as shown in Equations 5 and 6.

Diisopropanolamin (DIPA) er relativt unik blant sekundære aminalkoholer, ved at det har blitt industrielt anvendt, alene eller med et fysikalsk løsningsmiddel så som sulfolan, for selektiv fjerning av H2S fra gasser som inneholder H2S og CO2, men kontakttiden må holdes relativt kort for å dra fordel av den raske reaksjonen av H2S med aminet, sammenlignet med hastigheten for CO2-reaksjon vist i ligningene 2 og 4 ovenfor. Diisopropanolamine (DIPA) is relatively unique among secondary amine alcohols in that it has been used industrially, alone or with a physical solvent such as sulfolane, for the selective removal of H2S from gases containing H2S and CO2, but the contact time must be kept relatively short to take advantage of the rapid reaction of H2S with the amine, compared to the rate of CO2 reaction shown in equations 2 and 4 above.

I 1950 viste Frazier og Kohl, Ind. and Eng. Chem., 42, 2288 (1950), at tertiæraminet, metyldietanolamin (MDEA), har en høy selektivitetsgrad mot H2S absorpsjon i forhold til CO2. Denne større selektiviteten ble knyttet til den relativt langsomme kjemiske reaksjonen av CO2 med tertiæraminer, sammenlignet med den raske kjemiske reaksjonen av H2S. Den kommersielle nytten for MDEA er imidlertid begrenset pga. dens begrensede kapasitet for H2S-lasting og dens begrensede evne til å redusere H2S-innholdet til det nivået ved lave trykk, som er nødvendig for behandling av f.eks. syntetiske gasser laget ved kullgassifisering. In 1950, Frazier and Kohl, Ind. and Eng. Chem., 42, 2288 (1950), that the tertiary amine, methyldiethanolamine (MDEA), has a high degree of selectivity against H2S absorption in relation to CO2. This greater selectivity was attributed to the relatively slow chemical reaction of CO2 with tertiary amines, compared to the fast chemical reaction of H2S. However, the commercial utility of MDEA is limited due to its limited capacity for H2S loading and its limited ability to reduce the H2S content to the level at low pressures necessary for the treatment of e.g. synthetic gases made by coal gasification.

Nylig har UK patentpublikasjonsnummer 2017524A av Shell, vist at vandige løsninger av dialkylmonoalkanolaminer og spesielt dietylmonoetanolamin (DEAE), har høyere selektivitet og kapasitet for H2S-fjerning ved høyere lastnivåer enn MDEA-løsninger. Ikke desto mindre, selv DEAE er ikke svært effektiv for den lave H2S-lasthyppigheten som man møter i industrien. Dessuten har DEAE et kokepunkt på 161 °C, og som sådan karakteriseres det for å være en aminoalkohol med lavt kokepunkt og relativt høy flyktighet. Slike stoffer med høy flyktighet vil under de fleste gasscrubbingsbetingelsene føre til store materialtap, med påfølgende tap av økonomiske fordeler. Recently, UK patent publication number 2017524A by Shell, has shown that aqueous solutions of dialkyl monoalkanolamines, and in particular diethyl monoethanolamine (DEAE), have higher selectivity and capacity for H2S removal at higher loading levels than MDEA solutions. Nevertheless, even DEAE is not very effective for the low H2S loading frequency encountered in industry. Also, DEAE has a boiling point of 161 °C, and as such it is characterized as being an amino alcohol with a low boiling point and relatively high volatility. Such substances with high volatility will under most gas scrubbing conditions lead to large material losses, with consequent loss of economic benefits.

US patentnummer 4405581; 4405583 og 44055585 viser anvendelsen av sterkt sterisk hindrede aminforbindelser for den selektive fjerningen av H2S i nærvær av CO2. Sammenlignet med vandig metyldietanolamin (MDEA) fører sterkt sterisk hindrede aminer til mye høyere selektivitet ved høyere H2S-belastninger. US Patent Number 4405581; 4405583 and 44055585 show the use of highly sterically hindered amine compounds for the selective removal of H 2 S in the presence of CO 2 . Compared to aqueous methyldiethanolamine (MDEA), highly sterically hindered amines lead to much higher selectivities at higher H2S loadings.

USP 4112052 er rettet mot en prosess for fjerning av CO2 fra syregasser ved anvendelse av en vandig aminscrubbingløsning. Aminene som anvendes er sterisk hindrede aminer, inneholdende minst én sekundæramingruppe festet til enten et sekundært eller et tertiært karbonatom, eller en primær amingruppe festet til et tertiært karbonatom. Aminene velges til å være i det minste delvis løselige i det løsningsmidlet som anvendes, dvs. vann. USP 4112052 is directed to a process for removing CO2 from acid gases using an aqueous amine scrubbing solution. The amines used are sterically hindered amines, containing at least one secondary amine group attached to either a secondary or a tertiary carbon atom, or a primary amine group attached to a tertiary carbon atom. The amines are chosen to be at least partially soluble in the solvent used, i.e. water.

USP 4376102 viser at syregasser inneholdende CO2 fjernes fra normalt gassformige blandinger ved absorpsjon av CO2 fra den gassformige blandingen, ved anvendelse av en vandig løsning omfattende et basisk alkalimetallsalt eller -hydroksid som inneholder (1) minst én diaminalkohol av formelen USP 4376102 shows that acid gases containing CO2 are removed from normally gaseous mixtures by absorption of CO2 from the gaseous mixture, using an aqueous solution comprising a basic alkali metal salt or hydroxide containing (1) at least one diamine alcohol of the formula

hvori R og R1 er hver seg uavhengig en C1-C6 alkylgruppe og enten R eller R1 eller både R og R1 har hengende hydroksylgruppe og (2) en aminosyre. Det basiske alkalimetallsaltet eller -hydroksidet velges fra gruppen bestående av alkalimetall bikarbonater, karbonater, hydroksider, borater, fosfater og deres blandinger. Se også USP 4376101; USP 4581209; USP 4217238. wherein R and R1 are each independently a C1-C6 alkyl group and either R or R1 or both R and R1 have a pendant hydroxyl group and (2) an amino acid. The basic alkali metal salt or hydroxide is selected from the group consisting of alkali metal bicarbonates, carbonates, hydroxides, borates, phosphates and mixtures thereof. See also USP 4376101; USP 4581209; USP 4217238.

USP 4525294 er rettet mot aminosyreblandinger, deres alkalimetallsalter og prosesser for deres fremstilling. Prosessene innebærer den reduserende kondensasjon av glysin eller alanin og deres alkalimetallsalter med et keton i nærvær av et reduksjonsmiddel, så som hydrogen, og en katalytisk effektiv mengde av en hydrogeneringskatalysator. Således, en reaksjon som følger vises: USP 4525294 is directed to amino acid mixtures, their alkali metal salts and processes for their preparation. The processes involve the reductive condensation of glycine or alanine and their alkali metal salts with a ketone in the presence of a reducing agent, such as hydrogen, and a catalytically effective amount of a hydrogenation catalyst. Thus, a reaction as follows appears:

hvori R er hydrogen eller metyl, X er hydrogen eller et alkalimetall, så som natrium eller kalium, R’ og R’’ velges fra gruppen bestående av wherein R is hydrogen or methyl, X is hydrogen or an alkali metal such as sodium or potassium, R' and R'' are selected from the group consisting of

a) substituerte eller ikke-substituerte lineære eller forgrenede alkylradikaler som har 1 til 20 karbonatomer; eller a) substituted or unsubstituted linear or branched alkyl radicals having 1 to 20 carbon atoms; or

b) substituerte eller ikke-substituerte alkylenradikaler som hver seg har 3 til 6 karbonatomer og kombineres for å danne en syklisk ring; b) substituted or unsubstituted alkylene radicals each having 3 to 6 carbon atoms and combining to form a cyclic ring;

c) substituerte eller ikke-substituerte sykloalkylradikaler som har fra 4 til 8 ringkarbonatomer; c) substituted or unsubstituted cycloalkyl radicals having from 4 to 8 ring carbon atoms;

d) substituerte eller ikke-substituerte hydroksylalkylradikaler, lineære eller forgrenede, som har 1 til 20 karbonatomer; eller d) substituted or unsubstituted hydroxyl alkyl radicals, linear or branched, having 1 to 20 carbon atoms; or

e) substituerte eller ikke-substituerte arylalkylradikaler som har fra 7 til 20 karbonatomer; e) substituted or unsubstituted arylalkyl radicals having from 7 to 20 carbon atoms;

og R’’’ er hydrogen eller et substituert eller ikke-substituert lineært alkylradikal som har fra 1 til 20 karbonatomer, eller blandinger av hydrogen og slike alkylradikaler. and R''' is hydrogen or a substituted or unsubstituted linear alkyl radical having from 1 to 20 carbon atoms, or mixtures of hydrogen and such alkyl radicals.

USP 4759866 viser primære sterisk hindrede aminosyrer av formelen USP 4759866 discloses primary sterically hindered amino acids of the formula

hvori R1 og R2 er uavhengig valgt fra CH3, C2H5 og C3H7, og R3 og R4 er uavhengig hydrogen og CH3 og n er null, 2 eller 3, for anvendelse som promotorer for alkalimetallsalter i syregasscrubbing. wherein R 1 and R 2 are independently selected from CH 3 , C 2 H 5 and C 3 H 7 , and R 3 and R 4 are independently hydrogen and CH 3 and n are zero, 2 or 3, for use as promoters for alkali metal salts in acid gas scrubbing.

USP 5602279 er rettet mot en gassbehandlingssammensetning fremstilt ved å la 2-amino-2-metyl-1-propanol reagere med KOH, fortynne med vann og tilsette K2CO3 og en vanadiumkorrosjonsinhibitor. Syregasscrubbingløsningen inneholder USP 5602279 is directed to a gas treatment composition prepared by reacting 2-amino-2-methyl-1-propanol with KOH, diluting with water and adding K 2 CO 3 and a vanadium corrosion inhibitor. The acid gas scrubbing solution contains

USP 4618481 er rettet mot en absorbentsammensetning omfattende en sterkt hindret aminforbindelse og et aminsalt for absorpsjon av H2S fra gassformige blandinger. Den sterkt sterisk hindrede aminforbindelsen kan være en sekundær amineteralkohol, en disekundær aminoeter og blandinger derav. Aminsalter kan være reaksjonsproduktet til den ovenfornevnte sterkt sterisk hindrede aminforbindelsen, en tertiær aminforbindelse, så som tertiære alkanolaminer, trietanolaminer og blandinger derav og en sterk syre, eller et termisk dekomponerbart salt av en sterk syre, dvs. ammoniumsalt eller en komponent som er i stand til å danne en sterk syre og blandinger derav. Egnede sterke syrer inkluderer uorganiske syrer så som svovelsyre, svovelsyrling, fosforsyre, fosforsyrling, pyrofosforsyre, en organisk syre, så som eddiksyre, maursyre, adipinsyre, benzosyre, etc. Egnede salter for disse syrene inkluderer ammoniumsalter, f.eks. ammoniumsulfat, ammoniumsulfitt, ammoniumfosfat og blandinger derav. Fortrinnsvis anvendes ammoniumsulfat (et salt) eller SO2 (en forløper av en syre) som reaktant med aminet. Egnede aminsalter er de som er ikke-flyktige ved betingelser som anvendes for å regenerere absorbentsammensetningen. USP 4618481 is directed to an absorbent composition comprising a highly hindered amine compound and an amine salt for the absorption of H 2 S from gaseous mixtures. The highly sterically hindered amine compound can be a secondary amine ether alcohol, a disecondary amino ether and mixtures thereof. Amine salts may be the reaction product of the above-mentioned strongly sterically hindered amine compound, a tertiary amine compound, such as tertiary alkanolamines, triethanolamines and mixtures thereof and a strong acid, or a thermally decomposable salt of a strong acid, i.e. ammonium salt or a component capable of to form a strong acid and mixtures thereof. Suitable strong acids include inorganic acids such as sulfuric acid, sulfuric acid, phosphoric acid, phosphoric acid, pyrophosphoric acid, an organic acid such as acetic acid, formic acid, adipic acid, benzoic acid, etc. Suitable salts for these acids include ammonium salts, e.g. ammonium sulphate, ammonium sulphite, ammonium phosphate and mixtures thereof. Preferably, ammonium sulphate (a salt) or SO2 (a precursor of an acid) is used as reactant with the amine. Suitable amine salts are those which are non-volatile under conditions used to regenerate the absorbent composition.

USP 4892674 er rettet mot en absorbentsammensetning omfattende en alkalisk absorbentløsning inneholdende et ikke-hindret amin og et additiv av et sterkt hindret aminsalt og/eller en sterkt hindret aminosyre og anvendelsen av absorbenten for den selektive fjerningen av H2S fra gassformige strømmer. Aminsaltet er reaksjonsproduktet av en alkalisk sterkt hindret aminforbindelse og en sterk syre eller et termisk dekomponerbart salt av en sterk syre, dvs. ammoniumsalt. Egnede sterke syrer inkluderer uorganiske syrer så som svovelsyre, svovelsyrling, fosforsyre, fosforsyrling, pyrofosforsyre; organiske syrer så som eddiksyre, maursyre, adipinsyre, benzosyre, etc. Egnede salter inkluderer ammoniumsaltene, f.eks. ammoniumsulfat, ammoniumsulfitt, ammoniumfosfat og blandinger derav. USP 4892674 is directed to an absorbent composition comprising an alkaline absorbent solution containing a non-hindered amine and an additive of a strongly hindered amine salt and/or a strongly hindered amino acid and the use of the absorbent for the selective removal of H2S from gaseous streams. The amine salt is the reaction product of an alkaline highly hindered amine compound and a strong acid or a thermally decomposable salt of a strong acid, i.e. ammonium salt. Suitable strong acids include inorganic acids such as sulfuric acid, sulfuric acid, phosphoric acid, phosphoric acid, pyrophosphoric acid; organic acids such as acetic acid, formic acid, adipic acid, benzoic acid, etc. Suitable salts include the ammonium salts, e.g. ammonium sulphate, ammonium sulphite, ammonium phosphate and mixtures thereof.

BESKRIVELSE AV FIGUREN DESCRIPTION OF THE FIGURE

Figur 1 er et diagrammatisk flytskjema som illustrerer en absorpsjonsregenereringsenhet for den selektive fjerningen av H2S fra gassformige strømmer inneholdende H2S og CO2. Figure 1 is a diagrammatic flow diagram illustrating an absorption regeneration unit for the selective removal of H 2 S from gaseous streams containing H 2 S and CO 2 .

OPPSUMMERING AV OPPFINNELSEN SUMMARY OF THE INVENTION

Den foreliggende oppfinnelsen er rettet mot en absorbent som omfatter et metallsulfonat, metallfosfonat eller metallkarboksylat av hindrede aminer og mot en fremgangsmåte for å fjerne H2S fra gassformige blandinger inneholdende H2S, ved anvendelse av nevnte absorbenter. The present invention is directed to an absorbent comprising a metal sulphonate, metal phosphonate or metal carboxylate of hindered amines and to a method for removing H2S from gaseous mixtures containing H2S, using said absorbents.

DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION

En absorbentsammensetning omfattende minst ett av metallsulfonat, metallfosfonat, metallfosfat, metallsulfamat, metallfosforamidat eller metallkarboksylat, av minst ett hindret sekundært eller tertiært amin, hvori metallsulfonatet, -sulfomatet, -fosfonatet, -fosfatet, eller -fosforamidatet er festet til aminets nitrogen gjennom en gruppe inneholdende minst én kjedet karbon, fortrinnsvis 1 til 4 kjedete karboner, mer foretrukket alkylengruppe med to til fire kjedete karboner, og metallkarboksylatet festes til aminets nitrogen gjennom en alkylengruppe inneholdende 2 eller flere kjedete karboner. An absorbent composition comprising at least one of metal sulfonate, metal phosphonate, metal phosphate, metal sulfamate, metal phosphoramidate, or metal carboxylate, of at least one hindered secondary or tertiary amine, wherein the metal sulfonate, sulfomate, phosphonate, phosphate, or phosphoramidate is attached to the nitrogen of the amine through a group containing at least one chained carbon, preferably 1 to 4 chained carbons, more preferably alkylene group with two to four chained carbons, and the metal carboxylate is attached to the nitrogen of the amine through an alkylene group containing 2 or more chained carbons.

Absorbentene representeres generelt ved de følgende formlene: The absorbents are generally represented by the following formulas:

hvori R1, R2, R3 og R4 er like eller forskjellige og velges fra H, C1-C9 substituert eller ikke-substituert rett eller C3-C9 substituert eller ikke-substituert forgrenet kjede alkyl, C3-C9 sykloalkyl, C6-C9 aryl, alkylaryl, arylalkyl, C2-C9 rett eller forgrenet hydroksyalkyl, sykloalkyl og blandinger derav forutsatt at både R1 og R2 ikke er hydrogen, og hvori når n er 2 eller mer, kan R3 og R4 på sidestilte karbon eller karboner separert av én eller flere karboner være en sykloalkyl eller arylring, og hvori når substituert er substituentene heteroatominneholdende substituenter, fortrinnsvis wherein R1, R2, R3 and R4 are the same or different and selected from H, C1-C9 substituted or unsubstituted straight or C3-C9 substituted or unsubstituted branched chain alkyl, C3-C9 cycloalkyl, C6-C9 aryl, alkylaryl , arylalkyl, C2-C9 straight or branched hydroxyalkyl, cycloalkyl and mixtures thereof provided that both R1 and R2 are not hydrogen, and wherein when n is 2 or more, R3 and R4 on adjacent carbon or carbons separated by one or more carbons may be a cycloalkyl or aryl ring, and wherein when substituted the substituents are heteroatom-containing substituents, preferably

gruppe hvori R5 og R6 er like eller forskjellige og velges fra H, C1-C9 rett eller C3-C9 forgrenet kjedet alkyl, C3-C9 sykloalkyl, C6-C9 aryl, alkylaryl, arylalkyl, C2 til C9 rett eller forgrenet kjedet hydroksyalkyl, sykloalkyl og blandinger derav, forutsatt at R5 og R6 ikke begge er H, og videre hvori eventuelt når R1 er H, og n er 2 eller mer, kan R2 og R3 eller R4 på karbonet i det minste ett karbon fjernet fra aminets nitrogen danne en ring, group wherein R5 and R6 are the same or different and selected from H, C1-C9 straight or C3-C9 branched chain alkyl, C3-C9 cycloalkyl, C6-C9 aryl, alkylaryl, arylalkyl, C2 to C9 straight or branched chain hydroxyalkyl, cycloalkyl and mixtures thereof, provided that R5 and R6 are not both H, and further wherein optionally when R1 is H, and n is 2 or more, R2 and R3 or R4 on the carbon at least one carbon removed from the nitrogen of the amine may form a ring ,

n er et heltall på 1 eller mer, fortrinnsvis 1 til 4, mer foretrukket 2 til 4, og hvori, når n er minst 2, kan absorberingsmidlet være et metallkarboksylat fra aminet, n is an integer of 1 or more, preferably 1 to 4, more preferably 2 to 4, and wherein, when n is at least 2, the absorbent may be a metal carboxylate of the amine,

metallkation er ett eller flere monovalente, divalente eller trivalente metallkationer tilstrekkelig for å tilfredsstille valenskravene for anionet eller anionklyngen, fortrinnsvis magnesium, barium, aluminium, jern, litium, kalium, kalsium, nikkel, kobolt. Salter dannet fra divalente kationer kan være halvsalter eller fullsalter. Salter dannet fra trivalente kationer kan være en tredjedel, to tredjedeler eller fullsalter. Med anionklynge menes to eller flere anioner hvor valenskravene tilfredsstilles ved f.eks. et enkelt divalent eller trivalent metallkation. metal cation is one or more monovalent, divalent or trivalent metal cations sufficient to satisfy the valence requirements for the anion or anion cluster, preferably magnesium, barium, aluminium, iron, lithium, potassium, calcium, nickel, cobalt. Salts formed from divalent cations can be half salts or full salts. Salts formed from trivalent cations can be one-third, two-thirds or full salts. By anion cluster is meant two or more anions where the valence requirements are satisfied by e.g. a single divalent or trivalent metal cation.

Fortrinnsvis er R1 og R2 like eller forskjellige og velges fra H, C4-C6 substituert eller ikke-substituert rett eller forgrenet kjedet alkyl, syklisk alkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 rett eller forgrenet kjedet hydroksyalkyl, sykloalkyl og blandinger derav, mer foretrukket C4 til C6 rett eller forgrenet kjedet alkyl, mest foretrukket tertiærbutyl, forutsatt at både R1 og R2 ikke er hydrogen. Preferably, R1 and R2 are the same or different and selected from H, C4-C6 substituted or unsubstituted straight or branched chain alkyl, cyclic alkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 straight or branched chain hydroxyalkyl, cycloalkyl and mixtures thereof, more preferably C4 to C6 straight or branched chain alkyl, most preferably tertiary butyl, provided that both R1 and R2 are not hydrogen.

Eksempler på foretrukne materialer er av formelen: Examples of preferred materials are of the formula:

Absorbentene beskrevet ovenfor utviser høy selektivitet for H2S og andre gassformige syrekomponent(er)s fjerning fra blandinger av nevnte gassformige syrekomponenter, ikke-syrekomponenter, og CO2 og holder på sin høye selektivitets- og lastkapasitet, selv etter regenerering. The absorbents described above exhibit high selectivity for H2S and other gaseous acid component(s) removal from mixtures of said gaseous acid components, non-acid components, and CO2 and retain their high selectivity and load capacity, even after regeneration.

Fremgangsmåten som spesielt benyttes for den selektive absorpsjonen av gassformige syrekomponenter, f.eks. H2S fra en normalt gassformig blanding inneholdende gassformige syrekomponenter, f.eks. H2S, og ikke-syrekomponenter og CO2, omfatter å: The method used in particular for the selective absorption of gaseous acid components, e.g. H2S from a normally gaseous mixture containing gaseous acid components, e.g. H2S, and non-acid components and CO2, include to:

a) sette nevnte normalt gassformige blanding i kontakt med en amininneholdende absorbentløsning som angitt i krav 1, karakterisert til å være i stand til selektiv absorpsjon av én eller flere gassformige syrekomponenter, f.eks. H2S fra nevnte blanding; a) put said normally gaseous mixture in contact with an amine-containing absorbent solution as stated in claim 1, characterized as being capable of selective absorption of one or more gaseous acid components, e.g. H2S from said mixture;

b) regenerere, i det minste delvis, nevnte absorbentløsning inneholdende absorbentgassformige syrekomponenter, f.eks. H2S; og b) regenerating, at least partially, said absorbent solution containing absorbent gaseous acid components, e.g. H2S; and

c) resirkulere den regenererte løsningen for den selektive absorpsjonen av én eller flere gassformige syrekomponenter, f.eks. H2S ved kontaktering som i trinn (a). c) recirculating the regenerated solution for the selective absorption of one or more gaseous acid components, e.g. H2S by contacting as in step (a).

Fortrinnsvis utføres regenereringstrinnet ved å varme opp og strippe, og mer foretrukket ved å varme opp og strippe med damp. Preferably, the regeneration step is carried out by heating and stripping, and more preferably by heating and stripping with steam.

Uttrykket ”absorbentløsning” som brukt heri inkluderer, men er ikke begrenset til løsninger hvori aminforbindelsen oppløses i et løsningsmiddel valgt fra vann eller en fysikalsk absorbent, eller blandinger derav. Løsningsmidler som er fysikalske absorbenter (i motsetning til aminforbindelsene, som er kjemiske absorbenter) er f.eks. beskrevet i USP 4112051, inkluderer f.eks. alifatiske syreamider, N-alkylerte pyrrolidoner, sulfoner, sulfoksider, glykoler og mono- og dietere derav. De foretrukne fysikalske absorbentene heri er sulfoner, og mest spesielt sulfolan. Det foretrukne flytende medium omfatter vann. The term "absorbent solution" as used herein includes, but is not limited to solutions in which the amine compound is dissolved in a solvent selected from water or a physical absorbent, or mixtures thereof. Solvents which are physical absorbents (as opposed to the amine compounds, which are chemical absorbents) are e.g. described in USP 4112051, includes e.g. aliphatic acid amides, N-alkylated pyrrolidones, sulphones, sulphoxides, glycols and mono- and dieters thereof. The preferred physical absorbents herein are sulfones, and most especially sulfolane. The preferred liquid medium comprises water.

Absorbentløsningen har ordinært en konsentrasjon av aminforbindelsen på omtrent 0,1 til 6 mol/liter av den totale løsningen, og fortrinnsvis 1 til 4 mol/liter, primært avhengig av den spesifikke aminforbindelsen som brukes og løsningsmiddelsystemet som benyttes. Dersom løsningsmiddelsystemet er en blanding av vann og en fysikalsk absorbent, kan den typiske effektive mengden av den fysikalske absorbenten som brukes, variere fra 0,1 til 5 mol/liter av total løsning, og fortrinnsvis fra 0,5 til 3 mol/liter, hovedsakelig avhengig av typen aminforbindelse som benyttes. Avhengigheten av konsentrasjonen for aminforbindelsen for den særskilte forbindelsen som benyttes er signifikant, pga. at økning i konsentrasjonen for aminforbindelsen kan redusere basisiteten for absorbentløsningen, og derved på en ugunstig måte påvirke dens selektivitet for H2S-fjerning, spesielt dersom aminforbindelsen har en spesifikk vandig løselighetsgrense som vil bestemme maksimale konsentrasjonsnivåer innenfor området gitt ovenfor. Det er derfor viktig at det riktige konsentrasjonsnivået som passer for hver særskilte aminforbindelse, opprettholdes for å sikre tilfredsstillende resultater. The absorbent solution ordinarily has a concentration of the amine compound of about 0.1 to 6 mol/liter of the total solution, and preferably 1 to 4 mol/liter, depending primarily on the specific amine compound used and the solvent system used. If the solvent system is a mixture of water and a physical absorbent, the typical effective amount of the physical absorbent used may vary from 0.1 to 5 mol/liter of total solution, and preferably from 0.5 to 3 mol/liter, mainly depending on the type of amine compound used. The dependence on the concentration of the amine compound for the particular compound used is significant, because that increasing the concentration of the amine compound may reduce the basicity of the absorbent solution, thereby adversely affecting its selectivity for H2S removal, especially if the amine compound has a specific aqueous solubility limit which will determine maximum concentration levels within the range given above. It is therefore important that the correct concentration level suitable for each particular amine compound is maintained to ensure satisfactory results.

Løsningen ved denne oppfinnelsen kan inkludere en rekke additiver som typisk brukes i selektiv gassfjerningsprosesser, f.eks. antiskummingsmidler, antioksidanter, korrosjonsinhibitorer, o.l. Mengden av disse additivene vil typisk være i området slik at de er effektive, dvs. en effektiv mengde. The solution of this invention can include a number of additives that are typically used in selective gas removal processes, e.g. anti-foaming agents, antioxidants, corrosion inhibitors, etc. The amount of these additives will typically be in the range so that they are effective, i.e. an effective amount.

Dessuten, aminoforbindelsene beskrevet her kan sammenblandes med andre aminforbindelser som en blanding. Forholdet av de respektive aminforbindelsene kan variere bredt, f.eks. fra 1 til 99 vektprosent av aminforbindelsene beskrevet her. Also, the amino compounds described herein can be combined with other amine compounds as a mixture. The ratio of the respective amine compounds can vary widely, e.g. from 1 to 99 percent by weight of the amine compounds described herein.

Tre karakteristikker, som er av ytterste betydning i bestemmelse av effektiviteten for aminforbindelsene her for H2S-fjerning, er ”selektivitet”, ”lasting” og ”kapasitet”. Uttrykket ”selektivitet” som brukt gjennom hele beskrivelsen er definert som den følgende molforholdsfraksjonen: Three characteristics, which are of utmost importance in determining the effectiveness of the amine compounds here for H2S removal, are "selectivity", "loading" and "capacity". The term "selectivity" as used throughout the specification is defined as the following molar ratio fraction:

Jo høyere denne fraksjonen er jo større er selektiviteten for absorbentløsningen for H2S i gassblandingen. The higher this fraction, the greater the selectivity of the absorbent solution for H2S in the gas mixture.

Med uttrykket ”lasting” menes konsentrasjonen av H2S- og CO2-gasser som fysikalsk oppløses og kjemisk kombineres i absorbentløsningen som uttrykt i mol gass per mol amin. De beste aminforbindelsene er de som utviser god selektivitet, opp til et relativt høyt lastingsnivå. Aminforbindelsene anvendt i praktisering av den foreliggende oppfinnelsen har typisk en ”selektivitet” på ikke vesentlig mindre enn 10 ved en ”lasting” på 0,1 mol, fortrinnsvis en ”selektivitet” på ikke vesentlig mindre enn 10 ved en lasting på 0,2 eller flere mol av H2S og CO2 per mol av aminforbindelsen. The term "loading" means the concentration of H2S and CO2 gases that are physically dissolved and chemically combined in the absorbent solution as expressed in moles of gas per mole of amine. The best amine compounds are those that exhibit good selectivity, up to a relatively high loading level. The amine compounds used in the practice of the present invention typically have a "selectivity" of not significantly less than 10 at a "loading" of 0.1 mol, preferably a "selectivity" of not significantly less than 10 at a loading of 0.2 or several moles of H2S and CO2 per mole of the amine compound.

”Kapasitet” defineres som mol H2S lastet i absorbentløsningen i slutten av absorpsjonstrinnet minus mol H2S lastet i absorbentløsningen ved slutten av desorpsjonstrinnet. Høy kapasitet gjør det mulig å redusere mengden av aminløsning som skal sirkuleres og bruke mindre varme eller damp under regenerering. "Capacity" is defined as moles of H2S loaded in the absorbent solution at the end of the absorption step minus moles of H2S loaded in the absorbent solution at the end of the desorption step. High capacity makes it possible to reduce the amount of amine solution to be circulated and use less heat or steam during regeneration.

Syregassblandingen her inkluderer nødvendigvis H2S, og kan eventuelt inkludere andre gasser, så som CO2, N2, CO4, H2, CO, H2O, COS, HCN, C2H4, NH3 o.l. Ofte finnes slike gassblandinger i forbrenningsgasser, raffinerigasser, bygass, naturgass, syngass, vanngass, propan, propylen, tunge hydrokarbongasser, etc. Absorbentløsningen her er spesielt effektiv når gassblandingen er en gass, f.eks. fått fra skiferoljeretorte, kullkondensering eller -gassifisering, gassifisering av tungolje med damp, luft/damp eller oksygen/damp, termisk omdanning av tung restolje til væsker og gasser med lavere molekylvekt, f.eks. fluidkoksanlegg, fleksikoksanlegg eller forsinket koksanlegg eller i renseoperasjoner for halegass fra svovelanlegg. The acid gas mixture here necessarily includes H2S, and may optionally include other gases, such as CO2, N2, CO4, H2, CO, H2O, COS, HCN, C2H4, NH3 etc. Such gas mixtures are often found in combustion gases, refinery gases, city gas, natural gas, syngas, water gas, propane, propylene, heavy hydrocarbon gases, etc. The absorbent solution here is particularly effective when the gas mixture is a gas, e.g. obtained from shale oil retorts, coal condensation or gasification, gasification of heavy oil with steam, air/steam or oxygen/steam, thermal conversion of heavy residual oil to lower molecular weight liquids and gases, e.g. fluid coking plant, flexic coking plant or delayed coking plant or in cleaning operations for tail gas from sulfur plants.

Absorpsjonstrinnet av denne oppfinnelsen innebærer generelt å sette den normalt gassformige strømmen i kontakt med absorbentløsningen i en hvilken som helst egnet kontakteringsbeholder. I slike prosesser kan denne normalt gassformige blandingen inneholdende H2S og CO2, hvorfra H2S så vel som andre syrekomponenter så som karbondisulfid, karbonylsulfid og oksygen- og svovelderivater av C1-C4 hydrokarboner, selektivt fjernes ved å bringes i intim kontakt med absorbentløsningen ved anvendelse av konvensjonelle midler så som et tårn eller en beholder pakket med f.eks. ringer eller siktplater eller en boblereaktor. Andre syregasskomponenter vil også bli fjernet. The absorption step of this invention generally involves contacting the normally gaseous stream with the absorbent solution in any suitable contacting container. In such processes, this normally gaseous mixture containing H 2 S and CO 2 , from which H 2 S as well as other acid components such as carbon disulphide, carbonyl sulphide and oxygen and sulfur derivatives of C1-C4 hydrocarbons, can be selectively removed by bringing into intimate contact with the absorbent solution using conventional means such as a tower or a container packed with e.g. rings or sieve plates or a bubble reactor. Other acid gas components will also be removed.

I en typisk modus for å praktisere oppfinnelsen utføres absorpsjonstrinnet ved å mate den normalt gassformige blandingen inn i den lavere delen av absorpsjonstårnet, mens fersk absorbentløsning mates til det øvre området av tårnet. Den gassformige blandingen, hovedsakelig frigjort for H2S, går ut fra den øvre delen av tårnet, og den lastede absorbentløsnigen, som inneholder det selektivt absorberte H2S, forlater tårnet i nærheten av eller ved dets bunn. Fortrinnsvis er innløpstemperaturen for absorbentløsningen under absorpsjonstrinnet i området fra omtrent 20 °C til omtrent 100 °C, og mer foretrukket fra 30 °C til omtrent 60 °C. Trykk kan variere bredt; akseptable trykk er på mellom 5 og 2000 psia, fortrinnsvis 20 til 1500 psia, og mest foretrukket 25 til 1000 psia i absorpsjonsenheten. Kontakten finner sted under betingelser slik at H2S selektivt absorberes av løsningen. Absorpsjonsbetingelsene og -apparaturen konstrueres for å minimere oppholdstiden for væsken i absorpsjonsenheten for å redusere CO2-opptak, mens det samtidig opprettholdes tilstrekkelig oppholdstid for gassblandingen med væske for å absorbere en maksimal mengde av H2S-gassen. Væskemengden som er nødvendig å sirkulere for å oppnå en gitt grad av H2S-fjerning vil avhenge av den kjemiske strukturen og basisiteten for aminforbindelsen, og av partialtrykket for H2S i fødegassen. Gassblandinger med lave partialtrykk, slik som de man møter i termiske omdanningsprosesser, vil kreve mer væske under de samme absorpsjonsbetingelsene enn gasser med høyere partialtrykk, så som skiferoljeretortegasser. In a typical mode of practicing the invention, the absorption step is carried out by feeding the normally gaseous mixture into the lower part of the absorption tower, while fresh absorbent solution is fed to the upper region of the tower. The gaseous mixture, mainly freed of H 2 S, exits from the upper part of the tower, and the loaded absorbent solution, containing the selectively absorbed H 2 S, leaves the tower near or at its bottom. Preferably, the inlet temperature of the absorbent solution during the absorption step is in the range of from about 20°C to about 100°C, and more preferably from 30°C to about 60°C. Pressure can vary widely; acceptable pressures are between 5 and 2000 psia, preferably 20 to 1500 psia, and most preferably 25 to 1000 psia in the absorption unit. The contact takes place under conditions such that H2S is selectively absorbed by the solution. The absorption conditions and equipment are designed to minimize the residence time of the liquid in the absorption unit to reduce CO2 uptake, while at the same time maintaining sufficient residence time for the gas-liquid mixture to absorb a maximum amount of the H2S gas. The amount of liquid required to circulate to achieve a given degree of H2S removal will depend on the chemical structure and basicity of the amine compound, and on the partial pressure of H2S in the feed gas. Gas mixtures with low partial pressures, such as those encountered in thermal conversion processes, will require more liquid under the same absorption conditions than gases with higher partial pressures, such as shale oil retort gases.

En typisk prosedyre for den selektive H2S-fjerningsfasen i prosessen omfatter selektiv absorpsjon av H2S via en motstrømskontaktering av den gassformige blandingen, inneholdende H2S og CO2, med løsningen av aminforbindelsen i en kolonne som inneholder flere brett ved en lav temperatur, f.eks. under 45 °C, og ved en gasshastighet på minst omtrent 9,144 cm/sek (basert på ”aktiv” eller ventilert brettflate), avhengig av driftstrykket for gassen, nevnte brettkolonne som har færre enn 20 kontakterende brett, f.eks. med 4 til 16 brett som typisk anvendes. A typical procedure for the selective H2S removal phase of the process comprises selective absorption of H2S via a countercurrent contacting of the gaseous mixture, containing H2S and CO2, with the solution of the amine compound in a column containing several trays at a low temperature, e.g. below 45 °C, and at a gas velocity of at least about 9.144 cm/sec (based on "active" or vented tray surface), depending on the operating pressure of the gas, said tray column having fewer than 20 contacting trays, e.g. with 4 to 16 trays typically used.

Etter kontaktering av den normalt gassformige blandingen med absorbentløsnigen, som blir mettet eller delvis mettet med H2S, kan løsningen i det minste delvis regenereres, slik at den kan resirkuleres tilbake til absorpsjonsenheten. Som med absorpsjon, kan regenereringen finne sted i en enkel væskefase. Regenerering eller desorpsjon av absorbentløsningen kan utføres på konvensjonelle måter, så som trykkreduksjon for løsningen eller temperaturøkning til et punkt hvor den absorbere H2S avgasses, eller ved å bypasse løsningen i en beholder av tilsvarende konstruksjon som den som brukes i absorpsjonstrinnet, i den øvre delen av beholderen, og føre en inert gass så som luft eller nitrogen, eller fortrinnsvis damp oppover gjennom beholderen. Løsningens temperatur under regenereringstrinnet bør være i området fra omtrent 50 °C til omtrent 170 °C, og fortrinnsvis fra omtrent 80 °C til 120 °C, og trykket på løsningen ved regenerering bør strekke seg fra omtrent 0,5 til omtrent 100 psia, fortrinnsvis 1 til omtrent 50 psia. Absorbentløsningen, etter å ha blitt renset av minst en del av H2S-gassen, kan resirkuleres tilbake til absorpsjonsbeholderen. Påfyllingsabsorbent kan tilsettes ved behov. After contacting the normally gaseous mixture with the absorbent solution, which becomes saturated or partially saturated with H2S, the solution can be at least partially regenerated, so that it can be recycled back to the absorption unit. As with absorption, the regeneration can take place in a single liquid phase. Regeneration or desorption of the absorbent solution can be carried out in conventional ways, such as reducing the pressure of the solution or increasing the temperature to a point where the absorbent H2S is degassed, or by bypassing the solution in a vessel of similar construction to that used in the absorption step, in the upper part of the container, and pass an inert gas such as air or nitrogen, or preferably steam upwards through the container. The temperature of the solution during the regeneration step should range from about 50°C to about 170°C, and preferably from about 80°C to 120°C, and the pressure of the solution during regeneration should range from about 0.5 to about 100 psia, preferably 1 to about 50 psia. The absorbent solution, after being purged of at least a portion of the H 2 S gas, can be recycled back to the absorption vessel. Refill absorbent can be added if required.

I den foretrukne regenereringsteknikken sendes den H2S-rike løsningen til regeneratoren, hvori de absorberte komponentene strippes med damp, som genereres ved gjentatt koking av løsningen. Trykk i avgassingsbeholderen og stripperen er vanligvis 1 til omtrent 50 psia, fortrinnsvis 15 til omtrent 30 psia, og temperaturen er typisk i området fra omtrent 50 °C til 170 °C, fortrinnsvis omtrent 80 °C til 120 °C, stripper- og avgassingstemperaturer vil selvsagt avhenge av strippertrykket, således ved omtrent 15 til 30 psia strippertrykk, vil temperaturen være omtrent 80 °C til omtrent 120 °C under desorpsjon. Oppvarming av løsningen som skal regenereres kan på en meget egnet måte effektueres ved hjelp av indirekte oppvarming med lavtrykksdamp. Det er imidlertid også mulig å benytte direkte injeksjon av damp. In the preferred regeneration technique, the H2S-rich solution is sent to the regenerator, where the absorbed components are stripped with steam, which is generated by repeated boiling of the solution. Pressure in the degassing vessel and stripper is typically 1 to about 50 psia, preferably 15 to about 30 psia, and the temperature is typically in the range of about 50°C to 170°C, preferably about 80°C to 120°C, stripper and degassing temperatures will of course depend on the stripper pressure, thus at about 15 to 30 psia stripper pressure, the temperature will be about 80°C to about 120°C during desorption. Heating of the solution to be regenerated can be effected in a very suitable way by means of indirect heating with low-pressure steam. However, it is also possible to use direct injection of steam.

I en utførelsesform for praktisering av hele prosessen her, som illustrert i figur 1, tilføres gassblandingen som skal renses gjennom ledning 1 gjennom den nedre delen av en kontakteringskolonne 2 med gass-væske i motstrøm, kontakteringskolonnen har en nedre seksjon 3 og en øvre seksjon 4. Den øvre og nedre seksjonen kan være atskilt med ett eller flere pakkede sjikt etter behov. Absorbentløsningen som beskrevet ovenfor tilføres den øvre delen av kolonnen gjennom en rørledning 5. Løsningen som strømmer til bunnen av kolonnen møter gassen som strømmer motstrøms og løser opp H2S preferensielt. Gassen frigjort for det meste av H2S går ut gjennom rørledning 6, for endelig bruk. Løsningen, hovedsakelig inneholdende H2S og noe CO2 strømmer mot den nedre delen av kolonnen, hvorfra den slippes ut gjennom rør 7. Løsningen pumpes deretter via valgfri pumpe 8 gjennom en valgfri varmeveksler og en kjøler 9 avsatt i rør 7, som tillater den varme løsningen fra regeneratoren 12 å veksle varme med kjøleløsningen fra absorpsjonskolonnen 2 for energibesparelse. Løsningen går inn via rør 7 til en avgassingsbeholder 10, utstyrt med en ledning (ikke vist) som ventilerer til ledning 13 og blir deretter tilført med ledning 11 inn i den øvre delen av regeneratoren 12, som er utstyrt med flere plater og effektuerer desorpsjonen av H2S- og CO2-gasser båret sammen i løsningen. Denne syregassen føres gjennom et rør 13 inn i en kondensator 14, hvori avkjøling og kondensasjon av vann og aminløsningen fra gassen skjer. Gassen går deretter inn i en separator 15, hvor ytterligere kondensasjon effektueres. Den kondenserte løsningen returneres gjennom rør 16 til den øvre delen av regeneratoren 12. Gassen som blir igjen fra kondensasjonen, som innholder H2S og noe CO2, fjernes gjennom rør 17 for endelig avhending (f.eks. til en lufting eller forbrenningsenhet eller til en apparatur som omdanner H2S til svovel, så som en Claus-enhet eller en Stretford omdanningsenhet (ikke vist)). In an embodiment for practicing the whole process here, as illustrated in figure 1, the gas mixture to be purified is supplied through line 1 through the lower part of a contacting column 2 with gas-liquid in countercurrent, the contacting column has a lower section 3 and an upper section 4 .The upper and lower sections may be separated by one or more packed layers as required. The absorbent solution as described above is supplied to the upper part of the column through a pipeline 5. The solution flowing to the bottom of the column meets the gas flowing countercurrently and dissolves H2S preferentially. The gas freed of most of the H2S exits through pipeline 6, for final use. The solution, mainly containing H2S and some CO2 flows towards the lower part of the column, from where it is discharged through pipe 7. The solution is then pumped via optional pump 8 through an optional heat exchanger and a cooler 9 deposited in pipe 7, which allows the hot solution from the regenerator 12 to exchange heat with the cooling solution from the absorption column 2 for energy saving. The solution enters via pipe 7 to a degassing container 10, equipped with a line (not shown) which vents to line 13 and is then supplied by line 11 into the upper part of the regenerator 12, which is equipped with several plates and effects the desorption of H2S and CO2 gases carried together in the solution. This acid gas is led through a pipe 13 into a condenser 14, in which cooling and condensation of water and the amine solution from the gas takes place. The gas then enters a separator 15, where further condensation is effected. The condensed solution is returned through pipe 16 to the upper part of the regenerator 12. The gas remaining from the condensation, which contains H2S and some CO2, is removed through pipe 17 for final disposal (e.g. to an aeration or combustion unit or to an apparatus which converts H2S to sulphur, such as a Claus unit or a Stretford conversion unit (not shown)).

Løsningen frigjøres for det meste av gassen som den inneholder mens den strømmer nedover gjennom regeneratoren 12, og går ut gjennom rør 18 i bunnen av regeneratoren for overføring til en kjel 19. Kjelen 19, utstyrt med en ekstern varmekilde (f.eks. damp injisert gjennom rør 20 og kondensatet går ut gjennom et andre rør (ikke vist)), fordamper en del av denne løsningen (hovedsakelig vann) for å drive ytterligere H2S ut derfra. H2S og dampen som drives ut, returneres via rør 21 til den lavere seksjonen av regeneratoren 12 og slippes ut gjennom rør 13 for å gå inn i kondensasjonstrinnene for gassbehandling. Løsningen som forblir i kjelen 19, trekkes ut gjennom rør 22, avkjøles i varmeveksleren 9, og tilføres via virkningen av pumpe 23 (valgfritt dersom trykket er tilstrekkelig høyt) gjennom rør 5 inn i absorpsjonskolonnen 2. The solution releases most of the gas it contains as it flows downward through the regenerator 12, exiting through pipe 18 at the bottom of the regenerator for transfer to a boiler 19. The boiler 19, equipped with an external heat source (e.g. steam injected through pipe 20 and the condensate exits through a second pipe (not shown)), some of this solution (mainly water) evaporates to drive further H 2 S out there. The H 2 S and the steam expelled are returned via pipe 21 to the lower section of the regenerator 12 and discharged through pipe 13 to enter the condensing stages for gas treatment. The solution that remains in the boiler 19 is withdrawn through pipe 22, cooled in the heat exchanger 9, and supplied via the action of pump 23 (optional if the pressure is sufficiently high) through pipe 5 into the absorption column 2.

Typisk vil en gassformig strøm som skal behandles og som har et 1:10 molforhold av H2S:CO2 fra en apparatur for termisk omdanning av tung restolje, eller en Lurgikullgass som har et molforhold av H2S:CO2 på mindre enn 1:10, gi en syregass som har et molforhold av H2S:CO2 på omtrent 1:1, etter behandling med fremgangsmåten ifølge den foreliggende oppfinnelsen. Fremgangsmåten her kan anvendes sammen med en annen H2S-selektiv fjerningsprosess: imidlertid er det foretrukket å utføre prosessen av denne oppfinnelsen for seg selv, siden aminforbindelsene er ekstremt effektive for seg selv i preferensiell absorpsjon av H2S. Typically, a gaseous stream to be treated that has a 1:10 molar ratio of H2S:CO2 from a heavy residual oil thermal reformer, or a Lurgic coal gas that has a molar ratio of H2S:CO2 of less than 1:10, will give a acid gas having a molar ratio of H2S:CO2 of approximately 1:1, after treatment with the method of the present invention. The process herein can be used in conjunction with another H 2 S selective removal process: however, it is preferred to carry out the process of this invention by itself, since the amine compounds are extremely effective by themselves in the preferential absorption of H 2 S.

FREMSTILLING AV PRØVETAKINGER PREPARATION OF SAMPLES

Fremstilling av natrium tert-butylaminmetylsulfonat Preparation of sodium tert-butylamine methylsulfonate

37 % formaldehydløsning (18 g, 0,22 mol) ble tilsatt en suspensjon av natriumbisulfitt (22 g, 0,2 mol) i vann (25 ml). Til denne blandingen ble det tilsatt tertbutylamin (28 ml, 19,4 g, 0,26 mol) ved en slik hastighet at temperaturen i reaksjonsblandingen ikke overskred 30 °C. Når tilsatsen var fullført, ble et destillasjonsapparat innstilt og blandingen ble omrørt ved 70 til 75 °C i 10 minutter (overskudd av tert-butylamin ble destillert av) og avkjølt til 10-15 °C. Den dannede utfellingen ble filtrert, vasket med metanol og tørket ved 20 til 25 °C for å gi natrium tertbutylaminmetylsulfonat (30 g, 80 %) som hvite plater, dekomponering uten smelting over 180 til 190 °C (amin-lukt), 1H NMR (DMSO-d6) δ 1,02 (s, 9H), 3,32 (s, 2H); 13C NMR δ 28,9, 49,9, 60,8. 37% formaldehyde solution (18 g, 0.22 mol) was added to a suspension of sodium bisulfite (22 g, 0.2 mol) in water (25 mL). To this mixture was added tert-butylamine (28 ml, 19.4 g, 0.26 mol) at such a rate that the temperature of the reaction mixture did not exceed 30 °C. When the addition was complete, a still was set up and the mixture was stirred at 70 to 75°C for 10 minutes (excess tert-butylamine was distilled off) and cooled to 10-15°C. The precipitate formed was filtered, washed with methanol and dried at 20 to 25 °C to give sodium tert-butylamine methylsulfonate (30 g, 80%) as white plates, decomposing without melting above 180 to 190 °C (amine odor), 1 H NMR (DMSO-d 6 ) δ 1.02 (s, 9H), 3.32 (s, 2H); 13 C NMR δ 28.9, 49.9, 60.8.

Natrium 2-(tert-butylamin) etylsulfonat Sodium 2-(tert-butylamine) ethylsulfonate

tert-butylamin (127 ml, 88 g, 1,2 mol) ble tilsatt en løsning av natrium 2-hydroksyetylsulfonat) (29,6 g, 0,2 mol) og dinatriumfosfat (1,1 g, 8 mmol) i vann (50ml). Blandingen ble omrørt ved 240 til 245 °C (6,5 MPa) i en autoklav i 3 timer. Blandingen ble deretter avkjølt til 50-60 °C og oppkonsentrert til 50 ml under normalt trykk. Etter avkjøling til 10 til 15 °C ble den dannede utfellingen filtrert, vasket med metanol og tørket ved 20 til 25 °C. Utbytte 10 g. Filtratet ble konsentrert under normalt trykk til omtrent 25 til 30 ml, som gir ytterligere 5,6 g av produkt. Totalt utbytte av natrium 2-(tert-butylamin)etylsulfonat er 15,6 g, 38 %, som hvite plater, dekomponering 145 til 150 °C (blir semi-fluid), 1H NMR (DMSO-d6) δ 1,00 (s, 9H), 2,56 (t, J = 6,6 Hz, 2H), 2,72 (t, J = 6,6 Hz, 2H); 13C NMR δ 28,9, 38,6, 49,6, 52,2. tert-butylamine (127 mL, 88 g, 1.2 mol) was added to a solution of sodium 2-hydroxyethyl sulfonate) (29.6 g, 0.2 mol) and disodium phosphate (1.1 g, 8 mmol) in water ( 50ml). The mixture was stirred at 240 to 245 °C (6.5 MPa) in an autoclave for 3 hours. The mixture was then cooled to 50-60 °C and concentrated to 50 ml under normal pressure. After cooling to 10 to 15 °C, the precipitate formed was filtered, washed with methanol and dried at 20 to 25 °C. Yield 10 g. The filtrate was concentrated under normal pressure to about 25 to 30 ml, which gives an additional 5.6 g of product. Total yield of sodium 2-(tert-butylamine)ethylsulfonate is 15.6 g, 38%, as white plates, dec 145 to 150 °C (becomes semi-fluid), 1H NMR (DMSO-d6) δ 1.00 ( s, 9H), 2.56 (t, J = 6.6 Hz, 2H), 2.72 (t, J = 6.6 Hz, 2H); 13 C NMR δ 28.9, 38.6, 49.6, 52.2.

3-(tert-butylamin)propylsulfonsyre 3-(tert-butylamine)propylsulfonic acid

Til en løsning av 1,3-propansulfon (20 g, 0,164 g) i toluen (100 ml) ble det tilsatt tert-butylamin (90 ml, 62,1 g, 0,85 mol). Blandingen ble omrørt under forsiktig tilbakeføring i 1 time. Utfellingen ble filtrert, vasket med dietyleter og tørket med 20 til 25 °C. Utbyttet av 3-(tert-butylamin)propylsulfonsyre 32 g (omtrent 100 %), som hvite mikrokrystaller, smeltepunkt over 280 °C, 1H NMR (D2O) δ 1,33 (s, 9H), 2,07 (p, J = 7,6 Hz, 2H), 2,99 (t, J = 7,6 Hz, 2H), 3,15 (t, J = 7,7 Hz, 2H); 13C NMR δ 21,3, 24,3, 39,4, 47,4, 56,5. To a solution of 1,3-propanesulfone (20 g, 0.164 g) in toluene (100 mL) was added tert-butylamine (90 mL, 62.1 g, 0.85 mol). The mixture was stirred under gentle reflux for 1 hour. The precipitate was filtered, washed with diethyl ether and dried at 20 to 25 °C. The yield of 3-(tert-butylamine)propylsulfonic acid 32 g (approx. 100%), as white microcrystals, mp above 280 °C, 1H NMR (D2O) δ 1.33 (s, 9H), 2.07 (p, J = 7.6 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 3.15 (t, J = 7.7 Hz, 2H); 13 C NMR δ 21.3, 24.3, 39.4, 47.4, 56.5.

Natrium 3-(tert-butylamin)propylsulfonat Sodium 3-(tert-butylamine)propylsulfonate

3-(tert-butylamin)propylsulfonsyre (18 g) ble tilsatt en løsning av natriumhydroksid (3,69 g, 0,092 mol) i metanol (300 ml). Blandingen ble omrørt til den ble klar. Løsningen ble fjernet og den faste resten ble tørket i vakuum for å gi natrium 3-(tertbutylamin)propylsulfonat (18,7 g), som hvite mikrokrystaller, dekomponering ved 170 °C, 1H NMR (D2O) δ 1,08 (s, 9H), 1,80-1,90 (m, 2H), 2,64 (t, J = 7,6 Hz, 2H), 2,91-2,96(m, 2H); 13C NMR δ 24,4, 26,9, 39,8, 48,7, 49,6. 3-(tert-butylamine)propylsulfonic acid (18 g) was added to a solution of sodium hydroxide (3.69 g, 0.092 mol) in methanol (300 mL). The mixture was stirred until clear. The solution was removed and the solid residue was dried in vacuo to give sodium 3-(tertbutylamine)propylsulfonate (18.7 g), as white microcrystals, dec at 170 °C, 1H NMR (D2O) δ 1.08 (s, 9H), 1.80-1.90 (m, 2H), 2.64 (t, J = 7.6 Hz, 2H), 2.91-2.96(m, 2H); 13 C NMR δ 24.4, 26.9, 39.8, 48.7, 49.6.

Fremstilling av dinatrium tert-butylaminmetylfosfonat Preparation of disodium tert-butylamine methylphosphonate

N-metylen-tert-butylamin ble fremstilt ifølge publisert prosedyre [USP 2750416] med noen modifikasjoner som følger: N-methylene-tert-butylamine was prepared according to the published procedure [USP 2750416] with some modifications as follows:

37 % vandig formaldehyd (89 g løsning, 33 g, 1,1 mol) ble tilsatt dråpevis med omrøring til tert-butylamin (73 g, 1mol) og i løpet av 20 minutter og temperaturen holdt ved under 20 °C (kjøling i isbad). Reaksjonsblandingen ble omrørt i 30 minutter ved 20 til 22 °C, avkjølt til 5 til 10 °C, og kaliumhydroksid (30 g) ble tilsatt porsjonsvis ved avkjøling ved 15 til 20 °C. Det organiske laget ble separert og tørket over pellets med kaliumhydroksid. Den rensingen som ble forsøkt ved destillasjon ga utilfredsstillende resultater pga. trimerisering av N-metylen-tert-butylamin ved elevert temperatur. Rensing av råproduktet ble oppnådd ved destillasjon i nærvær av katalytisk p-toluensulfonsyre (på 10 cm kolonne, oljebad 115 til 120 °C) for å gi rent N-metylen-tert-butylamin i 87 % utbytte (74 g), kokepunkt 66 til 67 °C (lit. [USP 2750416] 64-65 °C); 1H NMR (CDCl3) 1,20 (s, 9H) 7,26 (d, J = 16,0 Hz, 1H), 7,41 (d,J = 16,0 Hz, 1H). 37% aqueous formaldehyde (89 g solution, 33 g, 1.1 mol) was added dropwise with stirring to tert-butylamine (73 g, 1 mol) and over 20 minutes and the temperature was kept below 20 °C (cooling in an ice bath ). The reaction mixture was stirred for 30 minutes at 20 to 22 °C, cooled to 5 to 10 °C, and potassium hydroxide (30 g) was added portionwise upon cooling at 15 to 20 °C. The organic layer was separated and dried over potassium hydroxide pellets. The purification that was attempted by distillation gave unsatisfactory results due to trimerization of N-methylene-tert-butylamine at elevated temperature. Purification of the crude product was achieved by distillation in the presence of catalytic p-toluenesulfonic acid (on 10 cm column, oil bath 115 to 120 °C) to give pure N-methylene-tert-butylamine in 87% yield (74 g), bp 66 to 67 °C (lit. [USP 2750416] 64-65 °C); 1 H NMR (CDCl 3 ) 1.20 (s, 9H) 7.26 (d, J = 16.0 Hz, 1H), 7.41 (d, J = 16.0 Hz, 1H).

Dietyl tert-butylaminmetylfosfonat Diethyl tert-butylamine methylphosphonate

Dietylfosfitt (41,4 g, 0,3 mol) ble tilsatt N-metylen-tert-butylamin (25,6 g, 0,3 mol) i nitrogenatmosfære. Innen 1-2 minutter steg temperaturen i blandingen spontant opp til 60-70 °C. Blandingen ble omrørt ved 80 °C i 30 minutter og deretter ved 20 til 25 °C i 12 timer. NMR-testen for blandingen viste ren dietyl tert-butylaminmetylfosfonat, som en fargeløs olje, 1H NMR (CDCl3) δ 1,08 (s, 9H), 1,34 (t, J = 7,0 Hz, 6H), 2,93 (d, J = 15,1 Hz, 2H), 4,11-4,22 (m,4H); 13-c NMR δ 16,4 (d, J = 5,7 Hz), 28,4, 38,6 (d, J = 159,2 Hz), 50,8 (d, J =17,8 Hz) 62,1 (d, J = 6,9 Hz). ”Novel Synthesis of Aminometythyl Phosphoric Acid”, Moedritzer, K., Synthesis in Inorganic and Metal-Organic Chemistry, 1972, 2, 317. Diethyl phosphite (41.4 g, 0.3 mol) was added to N-methylene-tert-butylamine (25.6 g, 0.3 mol) under a nitrogen atmosphere. Within 1-2 minutes the temperature in the mixture rose spontaneously up to 60-70 °C. The mixture was stirred at 80°C for 30 minutes and then at 20 to 25°C for 12 hours. The NMR test of the mixture showed pure diethyl tert-butylamine methylphosphonate, as a colorless oil, 1H NMR (CDCl3) δ 1.08 (s, 9H), 1.34 (t, J = 7.0 Hz, 6H), 2, 93 (d, J = 15.1 Hz, 2H), 4.11-4.22 (m, 4H); 13-c NMR δ 16.4 (d, J = 5.7 Hz), 28.4, 38.6 (d, J = 159.2 Hz), 50.8 (d, J = 17.8 Hz) 62.1 (d, J = 6.9 Hz). "Novel Synthesis of Aminomethythyl Phosphoric Acid", Moedritzer, K., Synthesis in Inorganic and Metal-Organic Chemistry, 1972, 2, 317.

Tert-butylaminmetylfosfonsyre Tert-butylamine methylphosphonic acid

Ovenstående råester (65 g) ble tilsatt dråpevis til konsentrert saltsyre (200 ml). Blandingen ble omrørt ved 90 °C i 20 timer. Blandingen ble konsentrert i vakuum til den ble fast, og etanol (300 ml) ble tilsatt residuet. Blandingen ble avkjølt til -5 °C i 30 minutter. Utfellingen ble filtrert og vasket med dietyleter for å gi 44 g (90 %) av råsyre (kontaminert med adsorbert saltsyre). The above crude ester (65 g) was added dropwise to concentrated hydrochloric acid (200 ml). The mixture was stirred at 90 °C for 20 hours. The mixture was concentrated in vacuo until solid, and ethanol (300 mL) was added to the residue. The mixture was cooled to -5°C for 30 minutes. The precipitate was filtered and washed with diethyl ether to give 44 g (90%) of crude acid (contaminated with adsorbed hydrochloric acid).

Råsyren ble oppløst i kokende vann (60 ml) etterfulgt ved tilsats av metanol (500 ml) og, umiddelbart, propylenoksid (20 ml). Blandingen ble avkjølt i -5 °C i 1 time, og utfellingen ble filtrert og vasket med metanol og dietyleter for å gi 40,5 g av tert-butylaminmetylfosfonsyre, hvite nåler, smeltepunkt, 295 °C dekomponering (Moedritzer, K., op. Cit.) 289 °C dekomponering); 1H NMR (D2O) δ 1,31 (s, 9H), 3,03 (d, J = 13,9 Hz, 2H); 13C NMR δ 23,9, 37,6 (d, J = 137,4 Hz), 58,1 (d, J = 7,4 Hz). The crude acid was dissolved in boiling water (60 mL) followed by the addition of methanol (500 mL) and, immediately, propylene oxide (20 mL). The mixture was cooled to -5°C for 1 hour, and the precipitate was filtered and washed with methanol and diethyl ether to give 40.5 g of tert-butylaminemethylphosphonic acid, white needles, mp, 295°C dec (Moedritzer, K., op .Cit.) 289 °C decomposition); 1 H NMR (D 2 O) δ 1.31 (s, 9H), 3.03 (d, J = 13.9 Hz, 2H); 13 C NMR δ 23.9, 37.6 (d, J = 137.4 Hz), 58.1 (d, J = 7.4 Hz).

Dinatrium tert-butylaminmetylfosfonat Disodium tert-butylamine methylphosphonate

Tert-butylaminmetylfosfonsyre (18,4 g, 0,11 mol) ble tilsatt natriumhydroksid (8,8 g, 0,22 mol-løsning i metanol (100 ml). Blandingen ble omrørt under tilbakeføring i 2 timer. Blandingen ble konsentrert i vakuum inntil den ble fast (omtrent 1/3 av volumet) og dietyleter ble tilsatt (200 ml). Utfellingen ble filtrert og vasket med dietyleter for å gi dinatriumtert-butylaminmetylfosfonat (20 g, 86 %), hvite mikrokrystaller, dekomponering 350 °C; 1H NMR (D2O) δ 1,02 (s, 9H), 2,47 (d, J = 15,0 Hz, 2H); 13C NMR δ 26,4, 40,1 (d, J = 136,3 Hz), 50,6 (d, J = 12,0 Hz). Tert-butylamine methylphosphonic acid (18.4 g, 0.11 mol) was added sodium hydroxide (8.8 g, 0.22 mol solution in methanol (100 mL). The mixture was stirred at reflux for 2 hours. The mixture was concentrated in vacuo until solid (about 1/3 volume) and diethyl ether was added (200 mL).The precipitate was filtered and washed with diethyl ether to give disodium tert-butylamine methylphosphonate (20 g, 86%), white microcrystals, dec 350 °C; 1H NMR (D2O) δ 1.02 (s, 9H), 2.47 (d, J = 15.0 Hz, 2H); 13C NMR δ 26.4, 40.1 (d, J = 136.3 Hz ), 50.6 (d, J = 12.0 Hz).

EKSPERIMENTELL PROSEDYRE EXPERIMENTAL PROCEDURE

1. Absorpsjonstester ble utført ved 35 °C på 0,15 molar vandige løsninger av absorbent ved anvendelse av en gassblanding av nitrogen:karbondioksid:hydrogensulfid på 89:10:1 i 2 timer. 1. Absorption tests were performed at 35°C on 0.15 molar aqueous solutions of absorbent using a nitrogen:carbon dioxide:hydrogen sulfide gas mixture of 89:10:1 for 2 hours.

2. Desorpsjonseksperimenter ble utført ved 85 °C i strømmende nitrogen i 2 timer ved den samme strømningshastigheten som testgassblandingen. 2. Desorption experiments were performed at 85 °C in flowing nitrogen for 2 h at the same flow rate as the test gas mixture.

Absorbentene testet og absorpsjonsresultatene for både fersk absorbent og regenerert absorbent er presentert i tabell 1 The absorbents tested and the absorption results for both fresh absorbent and regenerated absorbent are presented in Table 1

TABELL 1 TABLE 1

Selektivitet = (H2S/CO2) i løsning/(H2S/CO2) i fødegass Belastning = mol H2S/mol absorbentforbindelse Kapasitet = Selectivity = (H2S/CO2) in solution/(H2S/CO2) in feed gas Load = mol H2S/mol absorbent compound Capacity =

Claims (14)

Patentkrav 1. Fremgangsmåte for selektiv absorpsjon av H2S fra gassformige blandinger av nevnte H2S, ikke-syrekomponenter og CO2 ved å kontakte nevnte blanding med en amininneholdende absorbentløsning omfattende: et metallsulfonat av minst et blokkert sekundært eller tertiært amin, hvori metallsulfonatet er bundet til aminonitrogenet gjennom en alkylengruppe inneholdende minst ett karbonatom og hvor aminonitrogenet er substituert med minst en C4-C6 rett eller forgrenet alkylkjede, under forhold hvorved H2S selektivt absorberes fra nevnte blanding. Patent claims 1. Process for the selective absorption of H2S from gaseous mixtures of said H2S, non-acidic components and CO2 by contacting said mixture with an amine-containing absorbent solution comprising: a metal sulfonate of at least one blocked secondary or tertiary amine, wherein the metal sulfonate is bound to the amino nitrogen through an alkylene group containing at least one carbon atom and where the amino nitrogen is substituted with at least one C4-C6 straight or branched alkyl chain, under conditions whereby H2S is selectively absorbed from said mixture. 2. Fremgangsmåte ifølge krav 1, hvori absorbentløsningen omfatter en absorbent som har formelen: 2. Method according to claim 1, in which the absorbent solution comprises an absorbent having the formula: hvori R1er en C4-C6 rett eller forgrenet alkylkjede; R2, R3 og R4 er like eller forskjellige, og velges fra hydrogen, C1-C9 substituert eller ikke-substituert alkyl, C3-C9 substituert eller ikke-substituert forgrenet alkyl, C3-C9 cykloalkyl, C6-C9 aryl, alkylaryl eller arylalkyl, C2-C9 rett eller forgrenet hydroksyalkyl, hydroksycykloalkyl og blandinger derav; og hvori når n er 2 eller mer, kan R3 og R4 på et sidestilt karbonatom eller karbonatomer som er separert med én eller flere karbonatomer, være en cykloalkyl- eller arylring, og hvori, når substituert, så er substituentene heteroatominneholdende substituenter, n er et heltall på 1 eller mer, og metallkationet er et monovalent, divalent eller trivalent metallkation tilstrekkelig til å tilfredsstille valenskravet for anionene eller anionklyngen. wherein R 1 is a C 4 -C 6 straight or branched alkyl chain; R2, R3 and R4 are the same or different, and are selected from hydrogen, C1-C9 substituted or unsubstituted alkyl, C3-C9 substituted or unsubstituted branched alkyl, C3-C9 cycloalkyl, C6-C9 aryl, alkylaryl or arylalkyl, C2-C9 straight or branched hydroxyalkyl, hydroxycycloalkyl and mixtures thereof; and wherein when n is 2 or more, R 3 and R 4 on an adjacent carbon atom or carbon atoms separated by one or more carbon atoms may be a cycloalkyl or aryl ring, and wherein, when substituted, the substituents are heteroatom-containing substituents, n is an integer of 1 or more, and the metal cation is a monovalent, divalent or trivalent metal cation sufficient to satisfy the valence requirement for the anions or anion cluster. 3. Fremgangsmåte ifølge krav 2, hvor R2 er valgt fra H, C4-C6 substituert eller ikke-substituert rett eller forgrenet alkyl, cykloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 rett eller forgrenet hydroksylalkyl, cykloalkyl og blandinger derav, foretrukket C4-C6 rett eller forgrenet alkyl, mer foretrukket tertiær-butyl. 3. Process according to claim 2, where R2 is selected from H, C4-C6 substituted or unsubstituted straight or branched alkyl, cycloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 straight or branched hydroxylalkyl, cycloalkyl and mixtures thereof , preferably C4-C6 straight or branched alkyl, more preferably tertiary butyl. 4. Fremgangsmåte ifølge krav 2, hvor n er 2 til 4. 4. Method according to claim 2, where n is 2 to 4. 5. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 4, hvor R1 er en tertiær-butyl. 5. A method according to any one of claims 1 to 4, wherein R 1 is a tertiary butyl. 6. Anvendelse av selektiv absorpsjon av H2S fra gassformige blandinger av nevnte H2S, ikke-syrekomponenter og CO2 av en absorbant omfattende et metallsulfonat av minst ett blokkert sekundært eller tertiært amin, hvori metallsulfonatet er bundet til aminonitrogenet gjennom en alkylengruppe inneholdende minst ett karbonatom og hvor aminonitrogenet er substituert med minst en C4-C6 rett eller forgrenet alkylkjede. 6. Use of selective absorption of H2S from gaseous mixtures of said H2S, non-acid components and CO2 by an absorbent comprising a metal sulfonate of at least one blocked secondary or tertiary amine, wherein the metal sulfonate is bound to the amino nitrogen through an alkylene group containing at least one carbon atom and where the amino nitrogen is substituted with at least one C4-C6 straight or branched alkyl chain. 7. Anvendelse ifølge krav 6, hvori absorbenten har formelen: 7. Use according to claim 6, in which the absorbent has the formula: hvori R1er en C4-C6 rett eller forgrenet alkylkjede; R2, R3 og R4 er like eller forskjellige, og velges fra hydrogen, C1-C9 substituert eller ikke-substituert alkyl, C3-C9 substituert eller ikke-substituert forgrenet alkyl, C3-C9 cykloalkyl, C6-C9 aryl, alkylaryl eller arylalkyl, C2-C9 rett eller forgrenet hydroksyalkyl, hydroksycykloalkyl og blandinger derav; og hvori, når n er 2 eller mer, kan R3 og R4 på sidestilt karbonatom eller karbonatomer separert med én eller flere karbonatomer, være en cykloalkyl- eller arylring, og hvori, når substituert, så er substituentene heteroatominneholdende substituenter, n er et heltall på 1 eller mer, og metallkationet er et monovalent, divalent eller trivalent metallkation tilstrekkelig til å tilfredsstille valenskravet for anionene eller anionklyngen. wherein R 1 is a C 4 -C 6 straight or branched alkyl chain; R2, R3 and R4 are the same or different, and are selected from hydrogen, C1-C9 substituted or unsubstituted alkyl, C3-C9 substituted or unsubstituted branched alkyl, C3-C9 cycloalkyl, C6-C9 aryl, alkylaryl or arylalkyl, C2-C9 straight or branched hydroxyalkyl, hydroxycycloalkyl and mixtures thereof; and wherein, when n is 2 or more, R 3 and R 4 on adjacent carbon atom or carbon atoms separated by one or more carbon atoms, may be a cycloalkyl or aryl ring, and wherein, when substituted, the substituents are heteroatom-containing substituents, n is an integer of 1 or more, and the metal cation is a monovalent, divalent or trivalent metal cation sufficient to satisfy the valence requirement for the anions or anion cluster. 8. Anvendelse ifølge krav 7, hvor R2 er valgt fra H, C4-C6 substituert eller ikkesubstituert rett eller forgrenet alkyl, cykloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 rett eller forgrenet hydroksylalkyl, cykloalkyl og blandinger derav, foretrukket C4-C6 rett eller forgrenet alkyl, mer foretrukket tertiær-butyl. 8. Use according to claim 7, where R2 is selected from H, C4-C6 substituted or unsubstituted straight or branched alkyl, cycloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 straight or branched hydroxylalkyl, cycloalkyl and mixtures thereof, preferred C4-C6 straight or branched alkyl, more preferably tertiary butyl. 9. Anvendelse ifølge krav 7, hvor n er 1 til 4, foretrukket 2 til 4. 9. Use according to claim 7, where n is 1 to 4, preferably 2 to 4. 10. Anvendelse ifølge et hvilket som helst av kravene 6 til 9, hvor R1 er en tertiær-butyl. 10. Use according to any one of claims 6 to 9, wherein R 1 is a tertiary butyl. 11. Absorbenter for selektiv absorpsjon av H2S fra blandinger omfattende nevnte H2S, gassformig ikke-syrekomponenter og CO2, idet nevnte absorbenter omfatter et metallsulfonat av minst ett blokkert sekundært eller tertiært amin, hvori metallsulfonatet er bundet til aminonitrogenet gjennom en alkylengruppe inneholdende minst ett karbonatom og hvor aminonitrogenet er substituert med minst en tertiærbutyl. 11. Absorbents for selective absorption of H2S from mixtures comprising said H2S, gaseous non-acid components and CO2, said absorbents comprising a metal sulfonate of at least one blocked secondary or tertiary amine, wherein the metal sulfonate is bound to the amino nitrogen through an alkylene group containing at least one carbon atom and where the amino nitrogen is substituted with at least one tertiary butyl. 12. Absorbent ifølge krav 11 med formelen: 12. Absorbent according to claim 11 with the formula: hvori R1er en tertiær-butyl; R2, R3 og R4 er like eller forskjellige, og velges fra hydrogen, C1-C9 substituert eller ikke-substituert alkyl, C3-C9 substituert eller ikke-substituert forgrenet alkyl, C3-C9 cykloalkyl, C6-C9 aryl, alkylaryl eller arylalkyl, C2-C9 rett eller forgrenet hydroksyalkyl, hydroksycykloalkyl og blandinger derav; og hvori når n er 2 eller mer, kan R3 og R4 på sidestilt karbonatom eller karbonatomer separert med én eller flere karbonatomer være en cykloalkyl- eller arylring, og hvori, når substituert, så er substituentene heteroatominneholdende substituenter, er n et heltall på 1 eller mer, og metallkation er monovalent, divalent eller trivalent metallkation tilstrekkelig til å tilfredsstille valenskravet for anionene eller anionklyngen. wherein R 1 is a tertiary butyl; R2, R3 and R4 are the same or different, and are selected from hydrogen, C1-C9 substituted or unsubstituted alkyl, C3-C9 substituted or unsubstituted branched alkyl, C3-C9 cycloalkyl, C6-C9 aryl, alkylaryl or arylalkyl, C2-C9 straight or branched hydroxyalkyl, hydroxycycloalkyl and mixtures thereof; and wherein when n is 2 or more, R 3 and R 4 on adjacent carbon atom or carbon atoms separated by one or more carbon atoms may be a cycloalkyl or aryl ring, and wherein, when substituted, the substituents are heteroatom-containing substituents, is n an integer of 1 or more, and metal cation is monovalent, divalent or trivalent metal cation sufficient to satisfy the valence requirement for the anions or anion cluster. 13. Absorbent ifølge krav 12, hvor R2 er valgt fra H, C4-C6 substituert eller ikkesubstituert rett eller forgrenet alkyl, cykloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 rett eller forgrenet hydroksylalkyl, cykloalkyl og blandinger derav, foretrukket C4-C6 rett eller forgrenet alkyl, mer foretrukket tertiær-butyl. 13. Absorbent according to claim 12, where R2 is selected from H, C4-C6 substituted or unsubstituted straight or branched alkyl, cycloalkyl, C6-C7 aryl, alkylaryl, arylalkyl, C4-C6 straight or branched hydroxylalkyl, cycloalkyl and mixtures thereof, preferred C4-C6 straight or branched alkyl, more preferably tertiary butyl. 14. Absorbent ifølge krav 12, hvor n er 1 til 4, foretrukket 2 til 4. 14. Absorbent according to claim 12, where n is 1 to 4, preferably 2 to 4.
NO20081203A 2005-08-09 2008-03-07 Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process NO344828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70661505P 2005-08-09 2005-08-09
PCT/US2006/029894 WO2007021531A1 (en) 2005-08-09 2006-08-01 Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process

Publications (2)

Publication Number Publication Date
NO20081203L NO20081203L (en) 2008-05-06
NO344828B1 true NO344828B1 (en) 2020-05-18

Family

ID=37757876

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20081203A NO344828B1 (en) 2005-08-09 2008-03-07 Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process

Country Status (8)

Country Link
US (1) US8480795B2 (en)
EP (1) EP1922389B1 (en)
JP (1) JP5244595B2 (en)
KR (1) KR101324432B1 (en)
CN (1) CN101263216B (en)
CA (1) CA2618385C (en)
NO (1) NO344828B1 (en)
WO (1) WO2007021531A1 (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
BRPI0911224A2 (en) 2008-04-30 2015-09-29 Exxonmobil Upstream Res Co system and method for treating a gaseous feed stream, and structured adsorbent contactor
EP2127726A1 (en) 2008-05-29 2009-12-02 Shell Internationale Researchmaatschappij B.V. Method of regenerating a loaded sorbent using concentrated solar power and an apparatus therefor
CN102292139B (en) * 2009-01-29 2014-09-03 巴斯夫欧洲公司 Absorption medium for removing acid gases which comprises amino acid and acid promoter
US8221712B2 (en) * 2009-05-12 2012-07-17 Basf Se Absorption medium for the selective removal of hydrogen sulfide from fluid streams
US20110202328A1 (en) * 2009-10-02 2011-08-18 Exxonmobil Research And Engineering Company System for the determination of selective absorbent molecules through predictive correlations
EP2335813A1 (en) 2009-12-01 2011-06-22 Shell Internationale Research Maatschappij B.V. Method and apparatus for the removal of a sorbate component from a process stream with subsequent regeneration of the sorbent using solar energy
CN102078700A (en) * 2009-12-01 2011-06-01 河南宝硕焦油化工有限公司 Negative pressure distillation tower
US8470074B2 (en) * 2009-12-22 2013-06-25 Exxonmobil Research And Engineering Company Carbon dioxide sorbents
CN101766947B (en) * 2010-03-11 2012-09-26 南京信息工程大学 Composite absorber for catching CO2 gas of membrane contactor
CA2804930C (en) 2010-05-28 2016-09-06 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
TWI495501B (en) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US8911539B2 (en) 2010-12-30 2014-12-16 Chevron U.S.A. Inc. Process for the separation of carbon dioxide from flue gas
US9180403B2 (en) * 2010-12-30 2015-11-10 Chevron U.S.A. Inc. Aqueous solutions of amine functionalized ionic compounds for carbon capture processes
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
CN103429339B (en) 2011-03-01 2015-06-10 埃克森美孚上游研究公司 Apparatus and system having encased adsorbent contractor and swing adsorption processes related thereto
SG192603A1 (en) * 2011-03-01 2013-09-30 Exxonmobil Res & Eng Co Temperature swing adsorption process for the separation of target species from a gas mixture
CA2825148C (en) 2011-03-01 2017-06-20 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
EA201391249A1 (en) 2011-03-01 2014-02-28 Эксонмобил Апстрим Рисерч Компани DEVICES AND SYSTEMS HAVING A KING VALVE, AND RELATED CYCLIC ADSORPTION PROCESSES
CA2824991C (en) 2011-03-01 2018-02-20 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
WO2012118760A2 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US20130142717A1 (en) 2011-12-02 2013-06-06 Michael Siskin Offshore gas separation process
JP5868741B2 (en) * 2012-03-09 2016-02-24 三菱重工業株式会社 Acid gas removal device
US20130243676A1 (en) 2012-03-14 2013-09-19 Exxonmobil Research And Engineering Company Amine treating process for acid gas separation using blends of amines and alkyloxyamines
US9458367B2 (en) 2012-03-14 2016-10-04 Exxonmobil Research And Engineering Company Low temperature transport and storage of amine gas treatment solutions
US8808426B2 (en) 2012-09-04 2014-08-19 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US20150027055A1 (en) * 2013-07-29 2015-01-29 Exxonmobil Research And Engineering Company Separation of hydrogen sulfide from natural gas
AU2015294518B2 (en) 2014-07-25 2019-06-27 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
AU2015347232B2 (en) 2014-11-11 2018-02-01 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
DE102014118345A1 (en) * 2014-12-10 2016-06-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and installation for the purification of raw synthesis gas
CA2970286C (en) 2014-12-10 2019-08-13 Exxonmobil Research And Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
KR20170140153A (en) 2014-12-23 2017-12-20 엑손모빌 업스트림 리서치 캄파니 Structured adsorbent beds, methods for their preparation and uses thereof
WO2016186726A1 (en) 2015-05-15 2016-11-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA2979869C (en) 2015-05-15 2019-12-03 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3344369B1 (en) 2015-09-02 2022-03-23 ExxonMobil Upstream Research Company Apparatus and system for rapid cycle swing adsorption processes related thereto
EP3344371B1 (en) 2015-09-02 2021-09-15 ExxonMobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
AU2016346798B2 (en) 2015-10-27 2019-11-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
CA3001336A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
AU2016357289A1 (en) 2015-11-16 2018-06-14 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
CA3017612C (en) 2016-03-18 2021-06-22 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN109195685A (en) 2016-05-31 2019-01-11 埃克森美孚上游研究公司 For becoming the device and system of adsorption method
AU2017274288B2 (en) 2016-05-31 2020-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10449479B2 (en) 2016-08-04 2019-10-22 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN109922872A (en) 2016-09-01 2019-06-21 埃克森美孚上游研究公司 Use the zeolite structured variation adsorption treatment for removing water of 3A
CA3035598A1 (en) * 2016-09-14 2018-03-22 Exxonmobil Upstream Research Company Apparatus and system for enhanced selective contaminant removal processes related thereto
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
CN110087755A (en) 2016-12-21 2019-08-02 埃克森美孚上游研究公司 The self-supporting structure of active material
WO2018118361A1 (en) 2016-12-21 2018-06-28 Exxonmobil Upstream Research Company Self-supporting structures having foam-geometry structure and active materials
EP3623034A4 (en) * 2017-05-12 2021-01-13 Kuraray Co., Ltd. Device for removing sulfur-containing compound and method for removing sulfur-containing compound
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11407667B1 (en) 2021-06-06 2022-08-09 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater
US11685673B2 (en) 2021-06-06 2023-06-27 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042483A (en) * 1958-07-29 1962-07-03 Hoechst Ag Process for separating carbon dioxide from gas mixtures
US3532637A (en) * 1967-04-05 1970-10-06 Gen Am Transport Solid regenerable absorber for acid gases

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990217A (en) * 1931-06-20 1935-02-05 Ig Farbenindustrie Ag Separation of hydrogen sulphide from gaseous mixturfs containing the same
GB457343A (en) * 1935-04-04 1936-11-26 Ig Farbenindustrie Ag Improvements in washing out gaseous weak acids from gases
US2288749A (en) * 1940-03-28 1942-07-07 Phillips Petroleum Co Purification of hydrocarbons
BE668916A (en) * 1957-12-06
US3065104A (en) * 1959-09-10 1962-11-20 Du Pont Film coating process
US3133950A (en) * 1959-09-18 1964-05-19 Interchem Corp Method of preparing amino alkyl sulfates
US3265710A (en) * 1961-12-26 1966-08-09 Union Oil Co Solvents extracts containing thiophene groups
US3296170A (en) * 1963-04-03 1967-01-03 Union Carbide Corp Emulsion polymerization of ethylene
US3321273A (en) * 1963-08-14 1967-05-23 Tenneco Chem Process for the preparation of metal sulfamates
GB1058304A (en) * 1964-03-12 1967-02-08 Shell Int Research Process for the purification of fluids
DE1794149C3 (en) * 1967-12-15 1980-08-21 Basf Ag, 6700 Ludwigshafen Process for removing CO2 and / or H2 S from gases containing olefins and acetylenes
US3574551A (en) * 1968-12-09 1971-04-13 Betz Laboratories Method for determining phosphate content of liquids containing polyphosphate compounds
AU506199B2 (en) * 1975-06-26 1979-12-20 Exxon Research And Engineering Company Absorbtion of co2 from gaseous feeds
US4094957A (en) * 1976-12-14 1978-06-13 Exxon Research & Engineering Co. Process for removing acid gases with hindered amines and amino acids
US4240922A (en) * 1977-09-22 1980-12-23 Exxon Research & Engineering Co. Process and amine-solvent absorbent for removing acidic gases from gaseous mixtures
NL190316C (en) 1978-03-22 1994-01-17 Shell Int Research METHOD FOR REMOVING ACID GASES FROM A GAS MIX
US4405579A (en) * 1981-11-13 1983-09-20 Exxon Research And Engineering Co. Sterically hindered amino acids and tertiary amino acids as promoters in acid gas scrubbing processes
US4525294A (en) * 1981-11-13 1985-06-25 Exxon Research And Engineering Co. Amino acid mixtures, their alkali metal salts and process for preparing same
US4376101A (en) * 1981-11-13 1983-03-08 Exxon Research And Engineering Co. Process for removing acid gases using a basic salt activated with a non-sterically hindered diamine
US4376102A (en) 1981-12-02 1983-03-08 Exxon Research And Engineering Co. Process for removing acid gases using a basic salt activated with a diaminoalcohol
US4405581A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for the selective removal of hydrogen sulfide from gaseous mixtures with severely sterically hindered secondary amino compounds
US4405585A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for the selective removal of hydrogen sulfide from gaseous mixtures with severely sterically hindered secondary aminoether alcohols
US4405583A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for selective removal of H2 S from mixtures containing H22 using di-severely sterically hindered secondary aminoethers
GB2129330B (en) * 1982-10-27 1986-08-20 Exxon Research Engineering Co N-aminoalkyl alkylpiperazine promoted acid gas scrubbing process
US4519994A (en) * 1984-02-27 1985-05-28 Stauffer Chemical Company Process for absorption of SO2 into phosphate absorbent
US4618481A (en) * 1985-08-30 1986-10-21 Exxon Research And Engineering Co. Absorbent composition containing a severely hindered amino compound and an amine salt and process for the absorption of H2 S using the same
US4759866A (en) * 1986-04-15 1988-07-26 Exxon Research And Engineering Company Primary hindered aminoacids for promoted acid gas scrubbing process
US5602279A (en) * 1986-04-15 1997-02-11 Exxon Research And Engineering Company Primary hindered aminoacids for promoted acid gas scrubbing process
JPS62256828A (en) * 1986-04-30 1987-11-09 Toshiba Silicone Co Ltd Polyester having terminal blocked with hydrolyzable silyl group and production thereof
US4892674A (en) * 1987-10-13 1990-01-09 Exxon Research And Engineering Company Addition of severely-hindered amine salts and/or aminoacids to non-hindered amine solutions for the absorption of H2 S
US5143585A (en) * 1988-09-20 1992-09-01 Konica Corporation Method of removing organic solvents
CA2049151C (en) * 1990-08-16 2001-08-14 Dane Chang Process for absorption of sulfur compounds from fluids using certain piperidines, piperazines, or anhydrides of monocarboxylic amino acids
NL9401233A (en) * 1994-03-25 1995-11-01 Tno Membrane gas absorption method.
US5622682A (en) * 1994-04-06 1997-04-22 Atmi Ecosys Corporation Method for concentration and recovery of halocarbons from effluent gas streams
JP3543460B2 (en) * 1995-12-08 2004-07-14 Nok株式会社 Active halogen-containing acrylic rubber composition for molding oil filter gaskets
IT1291632B1 (en) * 1997-04-22 1999-01-11 Univ Degli Studi Milano DERIVATIVES OF 9.10-DIAZATRICICLO (4.2.1.1 TO 2.5) DECAN AND OF 9.10- DIAZATRICICLO (3.3.1.1 TO 2.6) DAN WITH ANALGESIC ACTIVITY
DE19828977A1 (en) * 1998-06-29 1999-12-30 Basf Ag Absorbent for removing acidic components from gases
CA2315544A1 (en) * 2000-08-08 2002-02-08 Alan K. Olson Fracturing method using aqueous or acid based fluids
JP4093524B2 (en) * 2001-02-20 2008-06-04 Hoya株式会社 Optical glass, press-molding preform and optical parts
ES2579402T3 (en) * 2001-07-12 2016-08-11 Reaxa Limited Microencapsulated catalyst, preparation methods and methods of use of this
EP1414550A1 (en) * 2001-08-06 2004-05-06 Cansolv Technologies Inc. Method and apparatus for no x? and so 2? removal
NL1020560C2 (en) * 2002-05-08 2003-11-11 Tno Method for absorption of acid gases.
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042483A (en) * 1958-07-29 1962-07-03 Hoechst Ag Process for separating carbon dioxide from gas mixtures
US3532637A (en) * 1967-04-05 1970-10-06 Gen Am Transport Solid regenerable absorber for acid gases

Also Published As

Publication number Publication date
CA2618385C (en) 2013-12-24
CA2618385A1 (en) 2007-02-22
US20090308248A1 (en) 2009-12-17
US8480795B2 (en) 2013-07-09
KR20080036142A (en) 2008-04-24
EP1922389B1 (en) 2019-02-20
KR101324432B1 (en) 2013-10-31
WO2007021531A1 (en) 2007-02-22
CN101263216A (en) 2008-09-10
JP5244595B2 (en) 2013-07-24
EP1922389A1 (en) 2008-05-21
CN101263216B (en) 2012-09-05
EP1922389A4 (en) 2012-02-01
NO20081203L (en) 2008-05-06
JP2009504378A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
NO344828B1 (en) Absorbent composition containing molecules with a hindered amine and a metal sulfonate, phosphonate or carboxylate structure for acid gas scrubbing process
US4405583A (en) Process for selective removal of H2 S from mixtures containing H22 using di-severely sterically hindered secondary aminoethers
CA1157841A (en) Process of removing h.sub.2s.sub.1co.sub.2 cos and mercaptans from gases by absorption
NO341954B1 (en) Alkylaminoalkyloxy (alcohol) monoalkyl ether for acid gas scrubbing process
US4417075A (en) Di-(Secondary and tertiaryalkylaminoalkoxy)alkanes
JPS6312648B2 (en)
NO159243B (en) PROCEDURE FOR THE REMOVAL OF HYDROGEN SULFIDE FROM GAS MIXTURES.
US20090220399A1 (en) Tetraorganoammonium and tetraorganophosphonium salts for acid gas scrubbing process
EP0087856B1 (en) A process for the removal of h2s from gaseous mixtures using diaminoethers
KR101283169B1 (en) Polyalkyleneimines and polyalkyleneacrylamide salt for acid gas scrubbing process
CA2618362C (en) Hindered cyclic polyamines and their salts for acid gas scrubbing process
NO172179B (en) DIAMINOETS FOR USE TO REMOVE H2S FROM REGULARLY GASFUL MIXTURES, AND THEIR PREPARATION

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees