NO343666B1 - Tidal powered seawater pump - Google Patents

Tidal powered seawater pump Download PDF

Info

Publication number
NO343666B1
NO343666B1 NO20171846A NO20171846A NO343666B1 NO 343666 B1 NO343666 B1 NO 343666B1 NO 20171846 A NO20171846 A NO 20171846A NO 20171846 A NO20171846 A NO 20171846A NO 343666 B1 NO343666 B1 NO 343666B1
Authority
NO
Norway
Prior art keywords
cylinder
seawater
tidal
outlet
buoyancy
Prior art date
Application number
NO20171846A
Other languages
Norwegian (no)
Other versions
NO20171846A1 (en
Inventor
Frode Reppe
Original Assignee
Frode Reppe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frode Reppe filed Critical Frode Reppe
Priority to NO20171846A priority Critical patent/NO20171846A1/en
Priority to GB2009234.2A priority patent/GB2583251B/en
Priority to PCT/NO2018/050256 priority patent/WO2019098843A1/en
Priority to CA3083084A priority patent/CA3083084A1/en
Publication of NO343666B1 publication Critical patent/NO343666B1/en
Publication of NO20171846A1 publication Critical patent/NO20171846A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/187Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem and the wom directly actuates the piston of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/262Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the relative movement between a tide-operated member and another member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/003Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00 free-piston type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/004Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by floating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Tidevannsdrevet sjøvannspumpe Tidal-driven seawater pump

Oppfinnelsen angår en tidevannsdrevet sjøvannspumpe, slik det framgår av den innledende del av patentkrav 1. The invention relates to a tide-driven seawater pump, as can be seen from the introductory part of patent claim 1.

Bakgrunn Background

Oppfinnelsen er rettet mot en sjøvannspumpe som utnytter energien i tidevann. Høydeforskjellen mellom flo og fjære varierer stort mellom ulike geografiske lokasjoner. I Oslofjorden for eksempel er forskjellen mellom flo og fjære under én meter, mens den i Vadsø er i underkant av fire meter. Andre steder i verden er forskjellen langt større, for eksempel 16 meter i Nova Scotia. Tidevannet representerer en stor energiressurs som er lite utnyttet, men det finnes både kraftverk og sjøvannspumper som utnytter tidevannet. The invention is aimed at a seawater pump that utilizes the energy in tides. The height difference between high tide and low tide varies greatly between different geographical locations. In the Oslofjord, for example, the difference between high and low tide is less than one metre, while in Vadsø it is just under four metres. Elsewhere in the world the difference is far greater, for example 16 meters in Nova Scotia. The tide represents a large energy resource that is little utilised, but there are both power plants and seawater pumps that utilize the tide.

Fra CN patentpublikasjon 103397996 er det kjent en tidevannspumpe arrangert for å pumpe sjøvann til en posisjon høyere enn havnivået ved fallende sjø. Tidevannspumpen omfatter en stor oppdriftstank forankret i havbunnen med tau via koblingsstykker. I den øvre enden er det forsynt en vannfylt hul bøye forbundet med et stempel. Tidevannspumpen virker imidlertid kun på fallende sjø. From CN patent publication 103397996, a tidal pump arranged to pump seawater to a position higher than the sea level at falling seas is known. The tidal pump comprises a large buoyancy tank anchored to the seabed with ropes via connecting pieces. A water-filled hollow buoy connected to a piston is provided at the upper end. However, the tidal pump only works on falling seas.

US patentskrift 8,105,052 beskriver en pumpemekanisme som utnytter bølge- og tidevannsenergi for blant annet å pumpe vann til ørkenområder, produsere strøm og fjerne forurensninger fra havet. Pumpemekanismen omfatter en bøye festet via en kjetting eller kabel til et stempel opptatt inne i en sylinder. Ved fløende sjø fylles rommet i sylinderen under stempelet med sjøvann via innløpstilbakeslagsventil. Ved fallende sjø føres sjøvann i sylinderen ut gjennom utløps-tilbakeslagsventil. Også denne pumpen virker kun på fallende sjø. US patent 8,105,052 describes a pumping mechanism that utilizes wave and tidal energy to, among other things, pump water to desert areas, produce electricity and remove pollutants from the sea. The pumping mechanism comprises a buoy attached via a chain or cable to a piston trapped inside a cylinder. When the sea is flowing, the space in the cylinder below the piston is filled with seawater via the inlet non-return valve. When the sea is falling, seawater in the cylinder is led out through the discharge non-return valve. This pump also only works on falling seas.

WO 2008/090302 A1 beskriver en vannpumpe drevet av bølgeenergi. Vannpumpen består i én utførelsesform av en søyle 22 drevet ned i en vannbunn 31. En rørsylinder 9 er montert på toppen av søylen 22 og oppviser øvre 7 og nedre 14 innløpsventil for å suge vann inn i rørsylinderen med kraft drevet av vertikal oscillerende bevegelse av et flyteorgan 3 med vektorgan 3. Vann drives ut av pumpen 9 gjennom en øvre utløpsventil 8 eller en nedre utløpsventil 13 og ut gjennom utløpsrør 17. I en alternativ utførelsesform er søylen erstattet av en sokkel 29 av metall eller betong med et oppdriftslegeme 21. Arrangementet med de øvre og nedre innløps- og utløpsventilene gjør at pumpen er dobbeltvirkende. Utførelsesformene i figurene 2A-6A viser en søyle festet til sokkel 29 med kjetting 28 eller en sjakkelforbindelse 30. Et slikt arrangement gjør at vannpumpen blir eksponert for store krefter fra bølger og strøm og vil neppe overleve i grov sjø. En annen ulempe er at slaglengden på stemplet 12 i rørsylinderen 9 ikke kan dimensjoneres for optimal drift i områder med store variasjoner i bølgehøyde. En tilsvarende utfordring oppstår dersom vannpumpen skal kunne brukes i ulike områder med varierende tidevannsforskjell. WO 2008/090302 A1 describes a water pump driven by wave energy. The water pump consists in one embodiment of a column 22 driven into a water bed 31. A pipe cylinder 9 is mounted on top of the column 22 and has upper 7 and lower 14 inlet valves for drawing water into the pipe cylinder by force driven by vertical oscillating movement of a floating device 3 with vector gan 3. Water is driven out of the pump 9 through an upper outlet valve 8 or a lower outlet valve 13 and out through outlet pipe 17. In an alternative embodiment, the column is replaced by a base 29 of metal or concrete with a buoyancy body 21. The arrangement with the upper and lower inlet and outlet valves make the pump double-acting. The embodiments in Figures 2A-6A show a column attached to a base 29 with a chain 28 or a shackle connection 30. Such an arrangement means that the water pump is exposed to large forces from waves and currents and will hardly survive in rough seas. Another disadvantage is that the stroke length of the piston 12 in the tubular cylinder 9 cannot be dimensioned for optimal operation in areas with large variations in wave height. A corresponding challenge arises if the water pump is to be used in different areas with varying tides.

Formål Purpose

Et formål med oppfinnelsen er å anvise en forbedret tidevannsdrevet sjøvannspumpe, hvor sjøvannspumpen kan operere i grov sjø med mye bølger. Et annet formål med oppfinnelsen er å anvise en slik sjøvannspumpe som kan tilpasses ulike tidevannsforskjeller. One purpose of the invention is to provide an improved tide-driven seawater pump, where the seawater pump can operate in rough seas with lots of waves. Another purpose of the invention is to provide such a seawater pump which can be adapted to different tidal differences.

Oppfinnelsen The invention

Dette formålet oppnås med en tidevannsdrevet sjøvannspumpe ifølge den karakteriserende del av patentkrav 1. Ytterligere fordelaktige trekk framgår av de uselvstendige kravene. This purpose is achieved with a tide-driven seawater pump according to the characterizing part of patent claim 1. Further advantageous features appear from the independent claims.

Oppfinnelsen angår en tidevannsdrevet sjøvannspumpe med en sokkel arrangert for å hvile på havbunnen. Sjøvannspumpen omfatter: The invention relates to a tidally driven seawater pump with a base arranged to rest on the seabed. The seawater pump includes:

et oppdriftslegeme forbundet med et stempel via et hovedsakelig vertikalt ragende stivt koplingsorgan, hvori a buoyancy body connected to a piston via a substantially vertically projecting rigid coupling member, wherein

stemplet er opptatt glidbart i en lukket sylinder med en toppvegg og definerer et lukket rom, hvori en tetning er forsynt langs stemplets omkrets og veggen av sylinderen, og hvori sylinderen på utsiden oppviser the piston is received slidably in a closed cylinder with a top wall and defines a closed space, in which a seal is provided along the circumference of the piston and the wall of the cylinder, and in which the cylinder on the outside exhibits

et innløp for tilførsel av sjøvann fra omgivelsene til enten en øvre innløpsventil ved toppveggen eller en nedre innløpsventil og videre til det indre lukkede rommet, og et utløp for å tillate at sjøvann opptatt i det indre rommet av sylinderen kan pumpes til et mottak på land eller ved havoverflata via enten en øvre utløpsventil eller en nedre utløpsventil. an inlet for the supply of seawater from the surroundings to either an upper inlet valve at the top wall or a lower inlet valve and on to the inner closed space, and an outlet to allow seawater trapped in the inner space of the cylinder to be pumped to a receptacle on land or at sea level via either an upper discharge valve or a lower discharge valve.

I henhold til oppfinnelsen er oppdriftslegemet opptatt glidbart i et hovedsakelig vertikalt ragende langstrakt beskyttende hus med et øvre kammer med en øvre åpen ende, og med en nedre ende avgrenset av toppveggen av sylinderen. Det beskyttende huset er forsynt med et antall strømningsåpninger for å tillate utveksling av sjøvann mellom omgivelsene og det indre rommet av det beskyttende huset. According to the invention, the buoyant body is held slidably in a mainly vertically projecting elongated protective housing with an upper chamber with an upper open end, and with a lower end bounded by the top wall of the cylinder. The protective housing is provided with a number of flow openings to allow exchange of seawater between the surroundings and the inner space of the protective housing.

Oppdriftsorganet er formet av et fast materiale med negativ oppdrift og med et uttak i undersiden av oppdriftsorganet som definerer et hulrom med midler for å tilføre eller evakuere luft fra hulrommet når oppdriftsorganet er under vann. Oppdriftsorganet er fortrinnsvis formet av betong. The buoyancy element is formed of a solid material with negative buoyancy and with an outlet in the underside of the buoyancy element which defines a cavity with means for supplying or evacuating air from the cavity when the buoyancy element is under water. The buoyancy element is preferably made of concrete.

Toppveggen av sylinderen er fortrinnsvis arrangert bevegelig i aksialretningen inne i sylinderen og oppviser midler for å låse eller frigjøre toppveggen ved ønsket høydenivå inne i sylinderen. The top wall of the cylinder is preferably arranged to be movable in the axial direction inside the cylinder and has means for locking or releasing the top wall at the desired height level inside the cylinder.

Sylinderen oppviser med fordel et antall ekstra innløpsventiler fordelt i innbyrdes avstand i høyderetningen, og et antall ekstra utløpsventiler fordelt i innbyrdes avstand i høyderetningen. The cylinder advantageously exhibits a number of additional inlet valves spaced apart in the height direction, and a number of additional outlet valves spaced apart in the height direction.

Innløpsventilen er fortrinnsvis en tilbakeslagsventil som hindrer sjøvann fra å strømme ut fra det nedre kammeret i sylinderen, og utløpsventilen er fortrinnsvis en tilbakeslagsventil som hindrer sjøvann fra å strømme inn i det nedre kammeret i sylinderen. The inlet valve is preferably a non-return valve which prevents seawater from flowing out from the lower chamber in the cylinder, and the outlet valve is preferably a non-return valve which prevents seawater from flowing into the lower chamber in the cylinder.

Detaljert beskrivelse Detailed description

Oppfinnelsen er i det etterfølgende beskrevet i nærmere detalj med hjelp av figurer, der: The invention is subsequently described in more detail with the help of figures, where:

Fig.1 viser et vertikalt tverrsnitt gjennom en sjøvannspumpe ifølge oppfinnelsen, Fig.1 shows a vertical cross-section through a seawater pump according to the invention,

Fig.2 viser en sideskisse av sjøvannspumpen ifølge oppfinnelsen. Fig.2 shows a side view of the seawater pump according to the invention.

Fig.3 viser et tverrsnitt gjennom sjøvannspumpen ifølge oppfinnelsen i drift ved fallende sjø, og Fig.3 shows a cross-section through the seawater pump according to the invention in operation at falling seas, and

Fig.4 er en skisse tilsvarende figur 3 i drift ved fløende sjø. Fig. 4 is a sketch corresponding to Fig. 3 in operation with flowing seas.

Nå med henvisning til figur 1, er det vist en tidevannsdrevet sjøvannspumpe betegnet generelt ved henvisningstall 100. Sjøvannspumpen omfatter et oppdriftslegeme 101 forbundet med et stempel 102 via et stivt hovedsakelig vertikalt ragende koplingsorgan 103, for eksempel i form av et stag eller rør. Stempelet 102 er opptatt glidbart i en sylinder 108 og ligger tettende an mot sylinderveggen med en tetning 113. Sylinderen 108 er i den øvre enden avgrenset av en toppvegg 112 og er i den nedre enden av grenset av en sokkel 111. Sokkelen er arrangert for å plasseres på havbunnen og er typisk en betongsokkel eller betongplate. Koplingsorganet 103 er ført gjennom toppveggen 112 og er tettet med hjelp av en pakkboks 111. Sylinderen 108 danner på denne måten et nedre kammer 109. En innløpsmanifold 104 er arrangert for å tilføre sjøvann til det nedre kammeret 109 i sylinderen 108 og oppviser en øvre innløpsventil 106A arrangert i øvre del av det nedre kammeret 109 og en nedre innløpsventil 106B arrangert i veggen av sylinderen 108 ved nedre del av samme ved sokkelen 111. Ventilene 106A og 106B er tilbakeslagsventiler som hindrer sjøvann fra å strømme tilbake fra det nedre kammeret 109 til den omgivende sjø. Sjøvannspumpen er videre forsynt med en utløpsmanifold 105 med en øvre utløpsventil 107A arrangert i øvre del av det nedre kammeret 109 og en nedre utløpsventil 107B arrangert i veggen av sylinderen 108 ved nedre del av samme ved sokkelen 111, tilsvarende innløpsventilene. Utløpsmanifolden er forbundet med en ledning i strømningsmessig forbindelse med et mottak på land eller ved havoverflaten. Now with reference to Figure 1, there is shown a tide-driven seawater pump designated generally by the reference number 100. The seawater pump comprises a buoyancy body 101 connected to a piston 102 via a rigid substantially vertically projecting coupling member 103, for example in the form of a rod or tube. The piston 102 is slidably received in a cylinder 108 and rests tightly against the cylinder wall with a seal 113. The cylinder 108 is bounded at the upper end by a top wall 112 and is bounded at the lower end by a base 111. The base is arranged to is placed on the seabed and is typically a concrete plinth or concrete slab. The coupling member 103 is passed through the top wall 112 and is sealed by means of a stuffing box 111. The cylinder 108 thus forms a lower chamber 109. An inlet manifold 104 is arranged to supply seawater to the lower chamber 109 in the cylinder 108 and has an upper inlet valve 106A arranged in the upper part of the lower chamber 109 and a lower inlet valve 106B arranged in the wall of the cylinder 108 at the lower part thereof at the base 111. The valves 106A and 106B are non-return valves which prevent seawater from flowing back from the lower chamber 109 to the surrounding sea. The seawater pump is further provided with an outlet manifold 105 with an upper outlet valve 107A arranged in the upper part of the lower chamber 109 and a lower outlet valve 107B arranged in the wall of the cylinder 108 at the lower part of the same at the base 111, corresponding to the inlet valves. The outlet manifold is connected by a line in flow-wise connection with a reception on land or at the sea surface.

Figur 2 viser den tidevannsdrevne sjøvannspumpen 100 sett fra siden, der stempelet 102, toppveggen 112 med pakkboksen 111, og oppdriftslegemet 101 er indikert med stiplede linjer. Videre er det forsynt et uttak 114 i undersiden av oppdriftslegemet 101 som definerer et hulrom i undersiden som på en regulerbar måte kan forsynes med luft for å justere oppdriften av oppdriftslegemet 101. Et vannspeil inne i uttaket 114 er indikert ved henvisningstall 116 i uttaket 114. Figure 2 shows the tide-driven seawater pump 100 seen from the side, where the piston 102, the top wall 112 with the stuffing box 111, and the buoyancy body 101 are indicated by dashed lines. Furthermore, an outlet 114 is provided in the underside of the buoyancy body 101 which defines a cavity in the underside which can be supplied with air in an adjustable manner to adjust the buoyancy of the buoyancy body 101. A water mirror inside the outlet 114 is indicated by reference number 116 in the outlet 114.

Fortsatt med henvisning til figur 2, er oppdriftslegemet 101 opptatt glidbart i et beskyttende hus 110 forsynt med et antall strømningsåpninger slisser, hull eller liknende 115 og med en åpen topp 110A. Åpningene 115 tillater sjøvann i det øvre kammeret 117 mellom oppdriftslegemet 101 og toppveggen 112 å strømme ut til den omgivende sjø under fallende sjø der oppdriftslegemet 101 som flyter i havoverflaten beveger seg i retning nedover sammen med det fallende vannspeilet 118 i havoverflaten. Tilsvarende vil åpningene 115 tillate sjøvann å strømme fra omgivende sjø og inn til det øvre kammeret 117 i oppdriftslegemet ettersom det skapes et undertrykk av oppdriftslegemet 101 som beveger seg i retning oppover under fløende sjø. Dette arrangementet har den fordel at den tidevannsdrevne sjøvannspumpen 100 kan plasseres selv i områder med mye bølger og kun bli påvirket av tidevann og ikke av bølger. Still referring to Figure 2, the buoyancy body 101 is slidably housed in a protective housing 110 provided with a number of flow openings slots, holes or the like 115 and with an open top 110A. The openings 115 allow seawater in the upper chamber 117 between the buoyancy body 101 and the top wall 112 to flow out to the surrounding sea under falling seas where the buoyancy body 101 floating on the sea surface moves in a downward direction together with the falling water table 118 in the sea surface. Correspondingly, the openings 115 will allow seawater to flow from the surrounding sea into the upper chamber 117 in the buoyancy body as a negative pressure is created by the buoyancy body 101 which moves in an upward direction under flowing sea. This arrangement has the advantage that the tide-driven seawater pump 100 can be placed even in areas with a lot of waves and only be affected by tides and not by waves.

Figur 3 viser den tidevannsdrevne sjøvannspumpen i henhold til oppfinnelsen i drift under fallende sjø. Pilen ved koplingsorganet 103 viser bevegelsesretningen for oppdriftslegemet 101 og stemplet 102 i retning nedover. Sjøvann strømmer inn gjennom øvre innløpsventil 106A inn til det nedre kammeret 109 og ut gjennom nedre utløpsventil 107B til manifold 105 og videre til et (ikke vist) mottak på land eller ved havoverflaten. Figure 3 shows the tide-driven seawater pump according to the invention in operation under falling seas. The arrow at the coupling member 103 shows the direction of movement of the buoyancy body 101 and the piston 102 in the downward direction. Seawater flows in through the upper inlet valve 106A into the lower chamber 109 and out through the lower outlet valve 107B to the manifold 105 and on to a (not shown) reception on land or at the sea surface.

Figur 4 viser den tidevannsdrevne sjøvannspumpen i henhold til oppfinnelsen i drift under fløende sjø. Pilen ved koplingsorganet 103 viser bevegelsesretningen for oppdriftslegemet 101 og stemplet 102 i retning oppover. Sjøvann strømmer inn gjennom nedre innløpsventil 106B inn i det nedre kammeret 109 og ut gjennom øvre utløpsventil 107A til manifold 105 og videre til et ikke vist mottak på land eller ved havoverflaten. Figure 4 shows the tide-driven seawater pump according to the invention in operation under flowing seas. The arrow at the coupling member 103 shows the direction of movement of the buoyancy body 101 and the piston 102 in the upward direction. Seawater flows in through the lower inlet valve 106B into the lower chamber 109 and out through the upper outlet valve 107A to the manifold 105 and on to a not shown reception on land or at the sea surface.

Fortsatt med henvisning til figur 4, er det med stiplede linjer indikert ekstra utløpsventiler ved henvisningstall 107A’ og 107A’’ og ekstra innløpsventiler 106A’ og 106A’’. Videre er toppveggen 112 justerbar i høyderetningen (ikke illustrert). Disse ekstra utløpsventilene og innløpsventilene sammen med den høydejusterbare toppveggen gjør det mulig å regulere volumet av det nedre kammeret mellom sokkelen 111 og toppveggen 112, for med enkle midler å tilpasse den tidevannsdrevne sjøvannspumpen til ulike tidevannsforskjeller. Continuing with reference to figure 4, additional outlet valves at reference numbers 107A' and 107A'' and additional inlet valves 106A' and 106A'' are indicated by dashed lines. Furthermore, the top wall 112 is adjustable in the height direction (not illustrated). These additional outlet valves and inlet valves together with the height-adjustable top wall make it possible to regulate the volume of the lower chamber between the base 111 and the top wall 112, in order to easily adapt the tide-driven seawater pump to different tidal differences.

Sylinderen 108 har fortrinnsvis et lavt forhold H/D mellom høyde H og diameter D, typisk fra omtrent 2/1 til omtrent 1/1. Oppdriftslegemet 101 med sitt uttak 114 må imidlertid dimensjoneres i forhold til forholdet H/D. Et lavt forhold H/D gir stor pumpekapasitet. The cylinder 108 preferably has a low ratio H/D between height H and diameter D, typically from about 2/1 to about 1/1. However, the buoyancy body 101 with its outlet 114 must be dimensioned in relation to the ratio H/D. A low ratio H/D gives a large pumping capacity.

Mens oppfinnelsen har blitt beskrevet med en innløpsmanifold 104 og en utløpsmanifold 105, skal ikke dette tolkes som obligatorisk. De respektive ventilene 106A og 106B samt 107A og 107B kan operere strømningsmessig uavhengig av hverandre. While the invention has been described with an inlet manifold 104 and an outlet manifold 105, this should not be interpreted as mandatory. The respective valves 106A and 106B as well as 107A and 107B can operate flow-wise independently of each other.

Claims (6)

PatentkravPatent claims 1. Tidevannsdrevet sjøvannspumpe (100) med en sokkel (111) arrangert for å hvile på havbunnen, omfatter:1. Tidal-driven seawater pump (100) with a base (111) arranged to rest on the seabed, comprising: et oppdriftslegeme (101) forbundet med et stempel (102) via et hovedsakelig vertikalt ragende stivt koplingsorgan (103), hvoria buoyant body (101) connected to a piston (102) via a substantially vertically projecting rigid coupling member (103), wherein stemplet (102) er opptatt glidbart i en lukket sylinder (108) med en toppvegg (112) og definerer et nedre kammer (109), hvori en tetning (113) er forsynt langs stemplets (102) omkrets og veggen av sylinderen (108), og hvori sylinderen (108) på utsiden oppviserthe piston (102) is slidably received in a closed cylinder (108) with a top wall (112) and defines a lower chamber (109), in which a seal (113) is provided along the circumference of the piston (102) and the wall of the cylinder (108) , and in which the cylinder (108) on the outside exhibits et innløp for tilførsel av sjøvann fra omgivelsene til enten en øvre innløpsventil (106A) ved toppveggen (112) eller en nedre innløpsventil (106B) og videre til det indre lukkede rommet (109), ogan inlet for the supply of seawater from the surroundings to either an upper inlet valve (106A) at the top wall (112) or a lower inlet valve (106B) and on to the inner closed space (109), and et utløp for å tillate at sjøvann opptatt i det nedre kammeret (109) av sylinderen (108) kan pumpes til et mottak på land eller ved havoverflata via enten en øvre utløpsventil (107A) eller en nedre utløpsventil (107B);an outlet to allow seawater trapped in the lower chamber (109) of the cylinder (108) to be pumped to a receptacle on land or at the sea surface via either an upper outlet valve (107A) or a lower outlet valve (107B); karakterisert ved atcharacterized by that oppdriftslegemet (101) er opptatt glidbart i et hovedsakelig vertikalt ragende langstrakt beskyttende hus (110) med et øvre kammer (117) med en øvre åpen ende (110A), og med en nedre ende avgrenset av toppveggen (112) av det nedre kammeret (109), hvori det beskyttende huset (110) er forsynt med et antall strømningsåpninger (115) for å tillate utveksling av sjøvann mellom omgivelsene og det øvre kammeret (117) av det beskyttende huset (110).The buoyancy body (101) is slidably received in a substantially vertically projecting elongated protective housing (110) having an upper chamber (117) with an upper open end (110A), and with a lower end bounded by the top wall (112) of the lower chamber ( 109), wherein the protective housing (110) is provided with a number of flow openings (115) to allow exchange of seawater between the surroundings and the upper chamber (117) of the protective housing (110). 2. Tidevannsdrevet sjøvannspumpe (100) ifølge krav 1, hvori oppdriftsorganet (101) er formet av et fast materiale med negativ oppdrift og med et uttak i undersiden av oppdriftsorganet (101) som definerer et hulrom (114) med midler for å tilføre eller evakuere luft fra hulrommet (114) når oppdriftsorganet (101) er under vann.2. Tidal-driven seawater pump (100) according to claim 1, in which the buoyancy member (101) is formed of a solid material with negative buoyancy and with an outlet in the underside of the buoyancy member (101) which defines a cavity (114) with means for supplying or evacuating air from the cavity (114) when the buoyancy device (101) is under water. 3. Tidevannsdrevet sjøvannspumpe (100) ifølge krav 2, hvori oppdriftsorganet (101) er formet av betong.3. Tidal-driven seawater pump (100) according to claim 2, in which the buoyancy element (101) is formed of concrete. 4. Tidevannsdrevet sjøvannspumpe (100) ifølge krav 1, hvori toppveggen (112) av det nedre kammeret (109) er arrangert bevegelig i aksialretningen inne i sylinderen (108) og oppviser midler for å låse eller frigjøre toppveggen (112) ved ønsket høydenivå inne i sylinderen (108).4. Tidal-driven seawater pump (100) according to claim 1, in which the top wall (112) of the lower chamber (109) is arranged to be movable in the axial direction inside the cylinder (108) and has means for locking or releasing the top wall (112) at the desired height level inside in the cylinder (108). 5. Tidevannsdrevet sjøvannspumpe (100) ifølge krav 4, hvori sylinderen (108) oppviser et antall ekstra innløpsventiler (106A’, 106A’’) fordelt i innbyrdes avstand i høyderetningen, og et antall ekstra utløpsventiler (107A’, 107A’’) fordelt i innbyrdes avstand i høyderetningen.5. Tidal-driven seawater pump (100) according to claim 4, in which the cylinder (108) exhibits a number of additional inlet valves (106A', 106A'') spaced apart in the height direction, and a number of additional outlet valves (107A', 107A'') distributed at a distance from each other in the height direction. 6. Tidevannsdrevet sjøvannspumpe (100) ifølge et av kravene foran, hvori innløpsventilen (106A) er en tilbakeslagsventil som hindrer sjøvann fra å strømme ut fra det nedre kammeret (109) i sylinderen (108), og at utløpsventilen (107A) er en tilbakeslagsventil som hindrer sjøvann fra å strømme inn i det nedre kammeret (109) i sylinderen (108).6. Tidal-driven seawater pump (100) according to one of the preceding claims, in which the inlet valve (106A) is a non-return valve that prevents seawater from flowing out from the lower chamber (109) in the cylinder (108), and that the outlet valve (107A) is a non-return valve which prevents seawater from flowing into the lower chamber (109) of the cylinder (108).
NO20171846A 2017-11-20 2017-11-20 Tide-driven seawater pump NO20171846A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO20171846A NO20171846A1 (en) 2017-11-20 2017-11-20 Tide-driven seawater pump
GB2009234.2A GB2583251B (en) 2017-11-20 2018-10-25 Tidal-driven seawater pump
PCT/NO2018/050256 WO2019098843A1 (en) 2017-11-20 2018-10-25 Tidal-driven seawater pump
CA3083084A CA3083084A1 (en) 2017-11-20 2018-10-25 Tidal-driven seawater pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20171846A NO20171846A1 (en) 2017-11-20 2017-11-20 Tide-driven seawater pump

Publications (2)

Publication Number Publication Date
NO343666B1 true NO343666B1 (en) 2019-04-29
NO20171846A1 NO20171846A1 (en) 2019-04-29

Family

ID=66429963

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20171846A NO20171846A1 (en) 2017-11-20 2017-11-20 Tide-driven seawater pump

Country Status (4)

Country Link
CA (1) CA3083084A1 (en)
GB (1) GB2583251B (en)
NO (1) NO20171846A1 (en)
WO (1) WO2019098843A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US886931A (en) * 1907-03-11 1908-05-05 Francis E Bosworth Wave-power pumping apparatus.
US961401A (en) * 1909-05-12 1910-06-14 Charles O Bonney Wave-operated pump.
US4076463A (en) * 1976-10-26 1978-02-28 Mordechai Welczer Wave motor
US4326840A (en) * 1980-03-10 1982-04-27 University Of Delaware Wave driven pump
US4883411A (en) * 1988-09-01 1989-11-28 Windle Tom J Wave powered pumping apparatus and method
WO1999013238A1 (en) * 1997-09-11 1999-03-18 Ismael Rego Espinoza Machine for producing kinetic energy
ES2208066A1 (en) * 2002-04-04 2004-06-01 Hermenegildo Sendra Zurita Under water pump for using kinetic energy of sea waves, has cylindrical body with jacket, and movable rod that is provided in jacket, which supports float at upper end
WO2006053843A1 (en) * 2004-11-19 2006-05-26 Dante Ferrari Apparatus for converting energy from the wave motion of the sea
EP1933026A1 (en) * 2006-12-06 2008-06-18 René Schwender Pump for tide/wave actuation
US20090250934A1 (en) * 2006-06-16 2009-10-08 Enrico Bozano Plant for the production of electric power from the movement of waves

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523031A (en) * 1923-04-16 1925-01-13 Jr Dillard C Mitchell Tide and wave motor
US4698969A (en) * 1984-03-12 1987-10-13 Wave Power Industries, Ltd. Wave power converter
BE903837A (en) * 1985-12-12 1986-04-01 Waelbers Emanuel Energy generation and storage complex - uses e.g. tides, wind, water level differentials, solar radiation to continuously generate air thermals to drive rotors
CA1292638C (en) * 1986-10-06 1991-12-03 George W. Berg Tidal power apparatus
GR20070100528A (en) * 2007-08-10 2009-03-17 Φωτιος Τσολπακης Mechanical system for receiving sea tidal power
CN202441534U (en) * 2012-03-01 2012-09-19 西安科技大学 Drive device of water wave energy power generation equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US886931A (en) * 1907-03-11 1908-05-05 Francis E Bosworth Wave-power pumping apparatus.
US961401A (en) * 1909-05-12 1910-06-14 Charles O Bonney Wave-operated pump.
US4076463A (en) * 1976-10-26 1978-02-28 Mordechai Welczer Wave motor
US4326840A (en) * 1980-03-10 1982-04-27 University Of Delaware Wave driven pump
US4883411A (en) * 1988-09-01 1989-11-28 Windle Tom J Wave powered pumping apparatus and method
WO1999013238A1 (en) * 1997-09-11 1999-03-18 Ismael Rego Espinoza Machine for producing kinetic energy
ES2208066A1 (en) * 2002-04-04 2004-06-01 Hermenegildo Sendra Zurita Under water pump for using kinetic energy of sea waves, has cylindrical body with jacket, and movable rod that is provided in jacket, which supports float at upper end
WO2006053843A1 (en) * 2004-11-19 2006-05-26 Dante Ferrari Apparatus for converting energy from the wave motion of the sea
US20090250934A1 (en) * 2006-06-16 2009-10-08 Enrico Bozano Plant for the production of electric power from the movement of waves
EP1933026A1 (en) * 2006-12-06 2008-06-18 René Schwender Pump for tide/wave actuation

Also Published As

Publication number Publication date
GB2583251B (en) 2022-06-08
GB202009234D0 (en) 2020-07-29
WO2019098843A1 (en) 2019-05-23
CA3083084A1 (en) 2019-05-23
NO20171846A1 (en) 2019-04-29
GB2583251A (en) 2020-10-21

Similar Documents

Publication Publication Date Title
RU2009132015A (en) HYDROCOLUMN
WO2013150320A2 (en) Mechanical hydraulic electrical floating and grounded system exploiting the kinetic energy of waves (seas-lakes-oceans) and converting it to electric energy and to drinking water
CN103867422A (en) Flexible telescopic cylinder ocean tide water pumping device
CA2764486A1 (en) Wave energy electrical power generation
AU2014403443B2 (en) A tidal wave powered device and a method thereof for producing potential energy
CN103867421A (en) Modular flexible oceanic tide water pumping equipment with telescopic cylinder
CN103912469A (en) Ocean tidal energy telescoping cylinder water pump
ES2321997B1 (en) PRESSURE EXCHANGERS OF DEVELOPED BEDS.
EP2475870B1 (en) Pumping device
JP2015140723A (en) Tower type hydro-structure and installation method therefor
NO343666B1 (en) Tidal powered seawater pump
KR20090020471A (en) Pipe line pipe water way siphon cistern structure aquarium installation and installation method
RU120722U1 (en) WAVE POWER PLANT WITH HYDROTURBINE
CN103397996A (en) Movable ocean tide fall pumping device
CN100549409C (en) Buoyancy pump power system
WO2009019572A2 (en) A wave energy pump assembly
JPH08312519A (en) Buoy for wave power pumping device and wave power pumping device
JP5739485B2 (en) Tank water pressure prime mover
DK2788615T3 (en) Power plant
GB2401405A (en) A tidal powered device for pumping fluid
RU2545112C2 (en) Wave and tidal power plant
RU2542192C1 (en) Surfy hydraulic ram
GB2340553A (en) Buoyant piston pumping system
RS20200730A1 (en) System which uses sea waves to accumulate water at a certain height for electricity generation, optionally desalination
AU2016429336B2 (en) Assembly and system for pumping a volume of fluid through a body of water