NO342992B1 - Method of measuring metal loss from equipment in process systems - Google Patents
Method of measuring metal loss from equipment in process systems Download PDFInfo
- Publication number
- NO342992B1 NO342992B1 NO20150799A NO20150799A NO342992B1 NO 342992 B1 NO342992 B1 NO 342992B1 NO 20150799 A NO20150799 A NO 20150799A NO 20150799 A NO20150799 A NO 20150799A NO 342992 B1 NO342992 B1 NO 342992B1
- Authority
- NO
- Norway
- Prior art keywords
- metal loss
- value
- resistance
- time
- confidence
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 239000002184 metal Substances 0.000 title claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 67
- 239000000523 sample Substances 0.000 claims abstract description 30
- 230000007797 corrosion Effects 0.000 claims abstract description 29
- 238000005260 corrosion Methods 0.000 claims abstract description 29
- 230000003628 erosive effect Effects 0.000 claims abstract description 23
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 claims description 13
- 239000004576 sand Substances 0.000 claims description 13
- 239000003129 oil well Substances 0.000 claims description 7
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000005755 formation reaction Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/04—Corrosion probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/006—Investigating resistance of materials to the weather, to corrosion, or to light of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/041—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Method of measuring metal loss from equipment in process systems. Probes installed for monitoring of erosion and/or corrosion (metal loss) in process equipment use results from resistivity measurements in a measurement element and a reference element to produce a measurement of metal loss in the measurement element exposed to process flow and may trigger an alarm when measured metal loss exceeds a threshold level. Prior art methods produce numerous false alarms hiding true alarms. The present method ignores these false alarms by calculating confidence measures that are included in the metal loss calculations to attenuate noise that otherwise would produce false alarms or misinterpretation of the corrosion or erosion state in the process Equipment being monitored.
Claims (5)
- Patentkrav 1. Framgangsmåte for måling av metalltap fra utstyr i prosess-systemer i kontakt med eroderende og/eller korrosive prosessfluider, inkludert rørledninger og armatur i gass- og oljebrønner eksponert for fluider som strømmer fra formasjoner nedihulls, hvori framgangsmåten omfatter trinnene med å: a) framskaffe en overvåkingsprobe i kontakt med prosessfluidene, hvilken probe omfatter ett eller flere måleelementer eksponert for strømmen av prosessfluidene, og et referanseelement beskyttet mot strøm av prosessfluidene, b) måle elektrisk resistens Reover ett eller flere måleelementer, c) måle elektrisk resistens Rrover referanseelementet, d) beregne metalltapet Δhefra motstanden målt i henhold til formelender Δhe, Rrog Reer som definert foran og heog hrrepresenterer den opprinnelige tykkelsen av henholdsvis nevnte i det minste ett måleelement og referanseelementet, karakterisert ved e) framskaffe en konfidensmåling for endring i observert resistivitet, ved å beregne variasjonen av resistensverdien for referanseelementet eller variasjon av temperatur i proben målt med en ekstra temperaturføler, hvori konfidensmålingen beregnes i henhold til formelen (2): (2):hvor konfidens representerer beregnet konfidens med desimalverdier som varierer fra 0 til 1, hvor verdien 0 representerer ingen eller lav konfidens, og verdien 1 representerer høy konfidens, Rtrepresenterer den ferskeste verdien for referanseresistens fra et valgt intervall med målinger, Rarepresenterer en vektet middelverdi for resistensprøver tatt på tidligere tidspunkt, og L representerer støygrensen, og f) anvende konfidensmålingen fra trinn e) i en sammenlikning av resistivitetsendringer som funksjon av tid, for å framskaffe en pålitelighetsverdi for reelt metalltap i nevnte ett eller flere måleelementer, hvori pålitelighetsverdien for reelt metalltap beregnes I henhold til formel (3):der den beregnede utgangsverdien Yter filtrert resistensforhold mellom måleelementet og referanseelementet ved et tidspunkt t, som representerer et pålitelig metalltap, inngangsverdien Xter ufiltrert resistensforhold mellom måleelementet og referanseelementet ved et tidspunkt t, som representerer upålitelig metalltap, inngangsverdien Yt-1representerer beregnet ufiltrert resistensforhold mellom måleelementet og referanseelementet ved et tidspunkt t, inngangsverdien konfidens representerer konfidensmålingen beregnet i trinn e), for slik å dempe resistivitetsendringer forårsaket av støy i prosess-systemet, og dempe resistivitetsendringer i større grad når konfidensmålet er lavt og dempe resistivitetsendringer i mindre grad når konfidensmålingen er høy.
- 2. Framgangsmåte ifølge krav 1, karakterisert ved at framgangsmåten i tillegg omfatter trinnet: g) fyre en alarm dersom pålitelighetsverdien for reelt metalltap overskrider en forhåndsbestemt grenseverdi.
- 3. Framgangsmåte ifølge krav 1 eller 2, karakterisert ved å beregne pålitelighetsverdien for reelt metalltap i henhold til trinn f), gjenta beregningen foran, der Xtrepresenterer ufiltrert resistens fra målingen for referanseelementet, Yt-1representerer beregnet filtrert resistens for referanseelementet ved et tidligere tidspunkt t-1, der inngangsverdien konfidens er som definert foran, og deretter beregne forholdet mellom filtrerte resistensverdier Yt for resistensverdier for henholdsvis måleelementet og referanseelementet, ved valgte tidspunkt t.
- 4. Framgangsmåte ifølge et av kravene foran, karakterisert ved at tidsforskjellen mellom observert resistivitet tatt ved tidspunkt «t» og «t-1» har en størrelsesorden lik minutter for sandprober.
- 5. Framgangsmåte ifølge et av kravene foran, karakterisert ved at tidsforskjellen mellom observert resistivitet tatt ved tidspunkt «t» og «t-1» har en størrelsesorden lik timer eller dager for korrosjonsprober.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20150799A NO342992B1 (no) | 2015-06-17 | 2015-06-17 | Method of measuring metal loss from equipment in process systems |
US15/736,077 US10852224B2 (en) | 2015-06-17 | 2016-06-15 | Method of measuring metal loss from equipment in process systems |
EP16812017.8A EP3280994A4 (en) | 2015-06-17 | 2016-06-15 | METHOD OF MEASURING METAL LOSS OF EQUIPMENT IN PROCESSING SYSTEMS |
PCT/NO2016/050128 WO2016204625A1 (en) | 2015-06-17 | 2016-06-15 | Method of measuring metal loss from equipment in process systems |
CN201680034968.3A CN107735670B (zh) | 2015-06-17 | 2016-06-15 | 测量来自过程系统中设备的金属损耗的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20150799A NO342992B1 (no) | 2015-06-17 | 2015-06-17 | Method of measuring metal loss from equipment in process systems |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20150799A1 NO20150799A1 (no) | 2016-12-19 |
NO342992B1 true NO342992B1 (no) | 2018-09-17 |
Family
ID=57545349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20150799A NO342992B1 (no) | 2015-06-17 | 2015-06-17 | Method of measuring metal loss from equipment in process systems |
Country Status (5)
Country | Link |
---|---|
US (1) | US10852224B2 (no) |
EP (1) | EP3280994A4 (no) |
CN (1) | CN107735670B (no) |
NO (1) | NO342992B1 (no) |
WO (1) | WO2016204625A1 (no) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318529B (zh) * | 2018-02-02 | 2020-05-08 | 中国石油大学(华东) | 用于电压检测的温度补偿方法、电场指纹检测方法及系统 |
CN109138982B (zh) * | 2018-11-16 | 2023-09-26 | 美钻深海能源科技研发(上海)有限公司 | 水下装备生物腐蚀自动安全关井系统 |
GB2586659B (en) * | 2019-09-02 | 2021-09-08 | Imrandd Ltd | Inspection related systems and methods |
CN113834860A (zh) * | 2021-09-06 | 2021-12-24 | 广州天韵达新材料科技有限公司 | 一种原位实时接地极失效预警装置及预警方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2150300A (en) * | 1983-11-23 | 1985-06-26 | Rohrback Corp | A corrosion probe |
US5293323A (en) * | 1991-10-24 | 1994-03-08 | General Electric Company | Method for fault diagnosis by assessment of confidence measure |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2150300A (en) * | 1936-04-13 | 1939-03-14 | Teller Jacob | Range and refrigerator construction |
US4587479A (en) * | 1984-07-16 | 1986-05-06 | Rohrback Corporation | Corrosion measurement with multiple compensation |
AU4019200A (en) * | 1999-03-23 | 2000-10-09 | Exxonmobil Research And Engineering Company | Methods for optimal usage and improved valuation of corrosive petroleum feedstocks and fractions |
US6919729B2 (en) | 2003-01-06 | 2005-07-19 | Rohrback Cosasco Systems, Inc. | Corrosivity measuring device with temperature compensation |
SE526673C2 (sv) * | 2003-08-28 | 2005-10-25 | Sandvik Intellectual Property | Användning av en metallförstoftningsresistent kopparlegering |
US7515781B2 (en) * | 2005-07-22 | 2009-04-07 | Exxonmobil Research And Engineering Company | Fiber optic, strain-tuned, material alteration sensor |
US7681449B2 (en) * | 2006-02-28 | 2010-03-23 | Exxonmobil Research And Engineering Company | Metal loss rate sensor and measurement using a mechanical oscillator |
US7540197B2 (en) * | 2006-12-01 | 2009-06-02 | Luna Innovations Incorporated | Sensors, methods and systems for determining physical effects of a fluid |
US20100275689A1 (en) * | 2007-06-15 | 2010-11-04 | Exxonmobil Research And Engineering Company | Tuning Fork Oscillator Activated or Deactivated by a Predetermined Condition |
US7721605B2 (en) * | 2007-06-15 | 2010-05-25 | Exxonmobil Research And Engineering Company | Mechanical oscillator activated or deactivated by a predetermined condition |
US8612164B2 (en) * | 2010-02-10 | 2013-12-17 | Chevron U.S.A. Inc. | Method of maintaining a pipeline |
RU2465991C2 (ru) * | 2011-01-17 | 2012-11-10 | Общество С Ограниченной Ответственностью "Есм" | Способ электрохимической обработки |
US20120235693A1 (en) * | 2011-03-20 | 2012-09-20 | Hong Feng | Ceramic Crack Inspection |
JP2013048231A (ja) * | 2011-08-29 | 2013-03-07 | Samsung Electro-Mechanics Co Ltd | 積層セラミック電子部品及びその製造方法 |
CN202484610U (zh) * | 2011-12-28 | 2012-10-10 | 四川中油天能科技有限公司 | 基于电位矩阵的金属管道腐蚀监测系统 |
US10502677B2 (en) * | 2013-10-14 | 2019-12-10 | Exxonmobil Research And Engineering Company | Detection of corrosion rates in processing pipes and vessels |
-
2015
- 2015-06-17 NO NO20150799A patent/NO342992B1/no unknown
-
2016
- 2016-06-15 WO PCT/NO2016/050128 patent/WO2016204625A1/en active Application Filing
- 2016-06-15 EP EP16812017.8A patent/EP3280994A4/en not_active Withdrawn
- 2016-06-15 US US15/736,077 patent/US10852224B2/en active Active
- 2016-06-15 CN CN201680034968.3A patent/CN107735670B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2150300A (en) * | 1983-11-23 | 1985-06-26 | Rohrback Corp | A corrosion probe |
US5293323A (en) * | 1991-10-24 | 1994-03-08 | General Electric Company | Method for fault diagnosis by assessment of confidence measure |
Also Published As
Publication number | Publication date |
---|---|
US20180172577A1 (en) | 2018-06-21 |
WO2016204625A1 (en) | 2016-12-22 |
NO20150799A1 (no) | 2016-12-19 |
CN107735670A (zh) | 2018-02-23 |
EP3280994A1 (en) | 2018-02-14 |
US10852224B2 (en) | 2020-12-01 |
CN107735670B (zh) | 2020-07-28 |
EP3280994A4 (en) | 2019-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120160329A1 (en) | Method and apparatus for monitoring fluids | |
US10852224B2 (en) | Method of measuring metal loss from equipment in process systems | |
CN106068447B (zh) | 差压测量组件及用于监测差压测量组件的方法 | |
US20130066568A1 (en) | Integrated system with acoustic technology, mass imbalance and neural network for detecting, locating and quantifying leaks in ducts | |
EP3580623B1 (en) | Method for detection and isolation of faulty sensors | |
US20080033693A1 (en) | Diagnostic device for use in process control system | |
US12091842B2 (en) | Method and system to monitor pipeline condition | |
CN106556439B (zh) | 曳出流体检测诊断 | |
GB2534750A (en) | Leakage determination system and leakage determination method | |
US7461544B2 (en) | Methods for detecting water induction in steam turbines | |
Pipa et al. | Flexible riser monitoring using hybrid magnetic/optical strain gage techniques through RLS adaptive filtering | |
CA2922727C (en) | Detection of corrosion rates in process piping and vessels | |
US5315529A (en) | Fluid vessel leak existence system, method and apparatus | |
CN110631646B (zh) | 支持流动不稳定性检测的漩涡流量计 | |
JP4782734B2 (ja) | プラント用計測器校正支援装置及びプラント用計測器校正支援方法 | |
Dallabona et al. | Friction estimation for condition monitoring of wind turbine hydraulic pitch system | |
KR20170048843A (ko) | 센서 데이터를 이용한 이상 감지 장치 및 방법 | |
WO2018058511A1 (en) | Sensor drift handling in virtual flow metering | |
Brandal et al. | The development of sand monitoring technologies and establishing effective, control and alarm-based sand monitoring on a Norwegian offshore field | |
ogly Aliev et al. | System of monitoring of period of hidden transition of compressor station to emergency state | |
Bustnes et al. | Leak detection performance of a commercial Real Time Transient Model for Troll oil pipeline | |
US20160138960A1 (en) | Method for operating a flow meter | |
WO2023208368A1 (en) | A system and method for early detection of a leak in a fluid containing structure | |
Hilleary | Acquiring and Analyzing Electrical Resistance Probe Data Using Web-Based Remote Monitoring Tools | |
NEL | Paper 3.1 A Review of Pipeline Integrity Systems |