NO342894B1 - Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material - Google Patents

Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material Download PDF

Info

Publication number
NO342894B1
NO342894B1 NO20141050A NO20141050A NO342894B1 NO 342894 B1 NO342894 B1 NO 342894B1 NO 20141050 A NO20141050 A NO 20141050A NO 20141050 A NO20141050 A NO 20141050A NO 342894 B1 NO342894 B1 NO 342894B1
Authority
NO
Norway
Prior art keywords
aplite
cementing
alkali
based geopolymer
range
Prior art date
Application number
NO20141050A
Other languages
Norwegian (no)
Other versions
NO20141050A1 (en
Inventor
Helge Hodne
Mahmoud Khalifeh
Original Assignee
Mahmoud Khalifeh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahmoud Khalifeh filed Critical Mahmoud Khalifeh
Priority to NO20141050A priority Critical patent/NO342894B1/en
Priority to PCT/NO2015/050146 priority patent/WO2016032341A1/en
Publication of NO20141050A1 publication Critical patent/NO20141050A1/en
Publication of NO342894B1 publication Critical patent/NO342894B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • C04B28/008Mineral polymers other than those of the Davidovits type, e.g. from a reaction mixture containing waterglass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Det beskrives et sementerende, aplittbasert geopolymermateriale, hvor en blanding av finkornet aplitt og en alkalisk mediumkonsentrasjon innbefattende en alkalioppløsning og en alkalisilikatoppløsning danner en herdbar velling. Det beskrives også en fremgangsmåte for tilveiebringelse av en herdbar velling av et sementerende, aplittbasert geopolymermateriale, hvor fremgangsmåten omfatter trinnene: - å tilveiebringe en finkornet aplitt; - å tilsette en konsentrasjon av en alkalioppløsning og en alkalisilikatoppløsning til et væske/faststoff-vektforhold i området 0,40-0,50.A cementitious aplite-based geopolymer material is disclosed in which a mixture of fine-grained aplite and an alkaline medium concentration including an alkali solution and an alkali silicate solution forms a curable swell. There is also disclosed a method of providing a curable slurry of a cementing, aplite-based geopolymer material, the method comprising the steps of: - providing a fine-grained aplite; - adding a concentration of an alkali solution and an alkali silicate solution to a liquid / solid weight ratio in the range of 0.40-0.50.

Description

SEMENTERENDE, APLITTBASERT GEOPOLYMERMATERIALE OG FREMGANGSMÅTE FOR Å TILVEIEBRINGE EN PUMPBAR, HERDBAR VELLING AV ET SEMENTERENDE, APLITTBA-SERT GEOPOLYMERMATERIALE CEMENTING APLIT-BASED GEOPOLYMER MATERIAL AND METHOD OF PROVIDING A PUMPABLE, CURING Slurry OF A CEMENTING APLIT-BASED GEOPOLYMER MATERIAL

Oppfinnelsen vedrører et sementerende, aplittbasert geopolymermateriale samt en fremgangsmåte for tilveiebringelse av en pumpbar, herdbar velling av et sementerende, aplittbasert geopolymermateriale. The invention relates to a cementing, aplite-based geopolymer material and a method for providing a pumpable, hardenable slurry of a cementing, aplite-based geopolymer material.

Det kan generelt skilles mellom to ulike typer sementer: "hydrauliske" sementer, som f.eks. portlandsementer, og "geopolymer"-sementer. In general, a distinction can be made between two different types of cement: "hydraulic" cements, such as e.g. portland cements, and "geopolymer" cements.

Siden utviklingen av portlandsement er denne blitt den vanligste bygningsbestanddelen. Portlandsement er også et utbredt materiale brukt i petroleumsindustrien til avtetting av det ringformede rommet mellom fôringsrør og til soneisolering. Det er imidlertid noen ulemper når det gjelder kjemisk-fysiske egenskaper ved herdet portlandsement og utslipp av klimagasser ved prosessen for fremstilling av den. Since the development of Portland cement, this has become the most common building material. Portland cement is also a widely used material in the petroleum industry for sealing the annular space between feed pipes and for zone insulation. However, there are some disadvantages when it comes to the chemical-physical properties of hardened portland cement and the emission of greenhouse gases in the process of its production.

Produksjon av portlandsement bidrar med mellom 5 og 7 % av det globale utslippet av karbondioksid (CO2), idet det slippes ut ca.900 kg CO2for fremstilling av ett tonn portlandsement. CO2-utslipp som kommer fra fremstilling av portlandsement, tilskrives: Production of portland cement contributes between 5 and 7% of the global emission of carbon dioxide (CO2), as approx. 900 kg of CO2 is emitted for the production of one tonne of portland cement. CO2 emissions from the manufacture of portland cement are attributed to:

(i) dannelsen og frigjøring av CO2som skyldes nedbryting av kalkstein (en nøkkelingrediens); og (ii) høyt energiforbruk ved kalsinering av råmaterialer i brennovn. Videre er kjemisk krymping og autogen krymping, mulig gassinnstrømning (permeabilitet), bestandighet på lang sikt, og ustabilitet i korrosive miljøer og ved høye temperaturer også noen ulemper, som motiverer forskere til å lete etter alternativer til portlandsement. Det er blitt pekt ut flere alternative bindemidler: kalsiumaluminatsement, kalsiumsulfoaluminatsement, supersulfatert sement og alkaliaktiverte bindemidler. (i) the formation and release of CO2 due to the breakdown of limestone (a key ingredient); and (ii) high energy consumption when calcining raw materials in an incinerator. Furthermore, chemical shrinkage and autogenous shrinkage, possible gas inflow (permeability), long-term durability, and instability in corrosive environments and at high temperatures are also some disadvantages, which motivate researchers to look for alternatives to Portland cement. Several alternative binders have been identified: calcium aluminate cement, calcium sulphoaluminate cement, supersulphated cement and alkali-activated binders.

Alkaliaktiverte bindemidler får økende oppmerksomhet som alternativ til portlandsement på grunn av sin tilstrekkelige styrke, bestandighet og lave miljøpåvirkning. Til forskjell fra portlandsement kan kilden til alkaliaktiverte bindemidler være avfallsstrømmaterialer brukt med meget begrenset videre behandling. Alkaliaktiverte bindemidler utvikles ved å blande en alkalisk aktivator, som kan være en alkalisk oppløsning eller blanding av en alkalisk oppløsning og alkalisk silikatoppløsning, med en kilde til aluminosilikatmateriale, som f.eks. flyveaske, kaolin, metakaolin, smelteovnsslagg osv. Kort fortalt trenger hydroksylgruppen (OH-) inn til aluminiumsilikatmateriales opprinnelige struktur og depolymeriserer silikatene. Som et resultat av alkalisering danner monomerer av silisiumtetraedere og aluminiumtetraedere kovalent bundne oligomerer. Oligomerer er omleiring av et geldannende, størknet polykondensasjonsnettverk. I store trekk er depolymerisasjon, transport eller orientering og polykondensasjon tre hovedmekanismer ved utvikling av alkaliaktiverte bindemidler. Reaksjonsproduktet er et uorganisk materiale, som har fått navnet "geopolymer". Alkali-activated binders are receiving increasing attention as an alternative to Portland cement due to their sufficient strength, durability and low environmental impact. Unlike Portland cement, the source of alkali-activated binders can be waste stream materials used with very limited further processing. Alkali-activated binders are developed by mixing an alkaline activator, which can be an alkaline solution or mixture of an alkaline solution and alkaline silicate solution, with a source of aluminosilicate material, such as fly ash, kaolin, metakaolin, smelter slag, etc. In short, the hydroxyl group (OH-) penetrates the original structure of the aluminosilicate material and depolymerizes the silicates. As a result of alkalization, monomers of silicon tetrahedra and aluminum tetrahedra form covalently bound oligomers. Oligomers are rearrangements of a gel-forming, solidified polycondensation network. Broadly speaking, depolymerisation, transport or orientation and polycondensation are three main mechanisms in the development of alkali-activated binders. The reaction product is an inorganic material, which has been named "geopolymer".

Utstrakt forskning har blitt utført for å undersøke muligheten for å benytte kunstige pozzolaner eller industriavfallsmaterialer av typen aluminiumsilikat, som f.eks. flyveaske, kaolin osv. I motsetning til dette er det blitt gjort lite arbeid for å undersøke utnyttelse av naturlig pozzolan eller stein av typen aluminiumsilikat som kildemateriale i geopolymerisasjon. Kawano og Tomita (Kawano M., Tomita K.: "Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150 and 200 °C." Journal of Clay and clay minerals 45 (1997) 3, s.365-377) undersøkte syntese av zeolitter fra obsidian ved ulike konsentrasjoner av NaOH- og KOH-oppløsninger ved 150 og 200 °C. Deres funn viser at det ble dannet smektitt, phillipsitt og rhodesitt i NaOH-oppløsning idet pH økte, og smektitten, merlinoitten og sanidinet ble resultatet i KOH-oppløsning idet pH økte. Reaksjonsløsningens pH-verdi, Si/Al-, og Na/K-forhold er oppgitt å være viktige faktorer som bestemmer karakteren til de produktene som dannes fra obsidian. Extensive research has been carried out to investigate the possibility of using artificial pozzolans or industrial waste materials of the aluminosilicate type, such as e.g. fly ash, kaolin, etc. In contrast, little work has been done to investigate the utilization of natural pozzolan or aluminosilicate rock as a source material in geopolymerization. Kawano and Tomita (Kawano M., Tomita K.: "Experimental study on the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150 and 200 °C." Journal of Clay and clay minerals 45 (1997) 3, p .365-377) investigated the synthesis of zeolites from obsidian at different concentrations of NaOH and KOH solutions at 150 and 200 °C. Their findings show that smectite, phillipsite, and rhodesite were formed in NaOH solution as pH increased, and smectite, merlinoite, and sanidine resulted in KOH solution as pH increased. The reaction solution's pH value, Si/Al and Na/K ratio are stated to be important factors that determine the character of the products formed from obsidian.

Allahverdi m.fl. (Allahverdi A., Mehrpour K., Najafi Kani E.: "Taftan pozzolan-based geopolymer cement." IUST International Journal of Engineering Science årgang 19, nr.3, 2008, s.1-5) benyttet en naturlig pozzolan av pimpsteinstype, hentet fra Taftan-fjellet sørøst i Iran, for å utvikle en Taftanbasert geopolymer. Den naturlige pozzolanen av pimpsteinstype har et relativt høyt kiselinnhold. En blanding av NaOH og Na2OSiO2ble brukt som en aktivator i deres undersøkelse. Deres røntgendiffraksjonsundersøkelse viser at Taftan-pozzolan hadde fire krystallinske mineralfaser: kvarts, hornblende, anortitt og biotitt. Biotitt og amorf del av Taftan-pozzolan deltok i reaksjonen, mens kvarts, hornblende og anortitt imidlertid ikke var reaktive. Ut fra deres resultat, var de endelige størkningstidene relativt lange for alle deres systemer på grunn av høyt væske/faststoff-forhold på 0,44. Allahverdi et al. (Allahverdi A., Mehrpour K., Najafi Kani E.: "Taftan pozzolan-based geopolymer cement." IUST International Journal of Engineering Science volume 19, no.3, 2008, p.1-5) used a natural pumice-type pozzolan , obtained from Taftan Mountain in southeast Iran, to develop a Taftan-based geopolymer. The natural pumice-type pozzolan has a relatively high silicon content. A mixture of NaOH and Na2OSiO2 was used as an activator in their investigation. Their X-ray diffraction study shows that the Taftan pozzolan had four crystalline mineral phases: quartz, hornblende, anorthite and biotite. Biotite and amorphous part of Taftan pozzolan participated in the reaction, while quartz, hornblende and anorthite were not reactive. Based on their results, the final solidification times were relatively long for all their systems due to the high liquid/solid ratio of 0.44.

Fra Simonsen, E.: "Strength development of aplite-based geopolymer cements", masteroppgave Teknisk-naturvitenskapelig fakultet, Universitetet I Stavanger, 2013 er det kjent aplittbaserte polymerer blandet med 8 M NaOH-aktiveringsoppløsning og herding av blandingen. Høy viskositet gjør det umulig å pumpe den aplittbaserte polymeren. Det ble oppnådd trykkfasthet på 5000 psi og mer. From Simonsen, E.: "Strength development of aplite-based geopolymer cements", master's thesis Faculty of Science, University of Stavanger, 2013, aplite-based polymers mixed with 8 M NaOH activation solution and hardening of the mixture are known. High viscosity makes it impossible to pump the aplite-based polymer. Compressive strengths of 5000 psi and more were achieved.

Oppfinnelsen har som formål å avhjelpe eller redusere i det minste én av ulempene ved kjent teknikk, eller i det minste tilveiebringe et nyttig alternativ til kjent teknikk. The purpose of the invention is to remedy or reduce at least one of the disadvantages of known technology, or at least to provide a useful alternative to known technology.

Formålet oppnås gjennom trekk som er angitt i den nedenstående beskrivelsen og i de etterfølgende patentkravene. The purpose is achieved through features indicated in the description below and in the subsequent patent claims.

Geopolymerer er ett av de materialene hvis kjemisk-fysiske egenskaper og rikholdighet har tiltrukket seg mye oppmerksomhet i den senere tid. Geopolymersementer fremkommer ved en mineralpolykondensasjonsreaksjon i et alkalisk medium. Dersom geopolymerer (reaktive aluminiumsilikatmaterialer) blandes med formålstjenlige tilsetningsstoffer under egnet temperatur og trykk, størkner de, og sluttproduktet kan tåle høye trykk, temperaturer og korrosive miljøer i lang tid. Geopolymers are one of those materials whose chemical-physical properties and richness have attracted much attention in recent times. Geopolymer cements are produced by a mineral polycondensation reaction in an alkaline medium. If geopolymers (reactive aluminosilicate materials) are mixed with suitable additives under suitable temperature and pressure, they solidify, and the final product can withstand high pressures, temperatures and corrosive environments for a long time.

Geopolymerer blir brukt som alternativ til sement og erstatningsbindemiddel i betong. Benevnelsen "geopolymerer" ble skapt av Davidovits for å beskrive uorganiske bindemidler som har den empiriske formelen Mn{-(SiO2)z– AlO2}٠ωH2O, hvor M er et kation (K<+>, Na<+>, Li<+>, eller Ca<2+>), n er en grad av polykondensasjon, og z er atomforholdet for Si/Al som kan være 1, 2, 3 eller høyere. Geopolymerer er med andre ord aluminiumsilikatmineraler som reagerer i alkalisk oppløsning. Reaksjonen viser en kompleks prosess, men det ville kunne sies at i et alkalisk medium blir Si-O-Si-bindingene brutt og Al-atomer trenger inn i den opprinnelige Si-O-Si-strukturen; det dannes for det meste aluminiumsilikatgeler i prosessen. Kationer må være til stede i rammeverkshulrommene for å utligne ioners negative ladninger (J. Davidovits: "Geopolymer chemistry & applications", 3. utgave, juli 2011, s.3-5, 228-230, 365-371, 375-386. F. Skvara: "Alkali activated materials or geopolymers?" Institute of Chemical Technology Prague, mai 2007. H. Xu: "Geopolymerisation of alumino-silicate minerals." doktoravhandling, Universitetet i Melbourne, april 2002). Prosessen benevnes "geopolymerisasjon", og resultatet er en sementerende fase med høy mekanisk styrke, høy bestandighet mot brann og syre og bakterier. I tillegg kjennetegnes geopolymerer ved en rekke fysiske egenskaper, herunder termisk stabilitet, høy overflatejevnhet, hard overflate, lang holdbarhet og sterk adhesjonsevne mot naturstein og stål (Davidovits, 2011. Xu, 2002). Geopolymerisasjonsutviklingen avhenger av mange parametere, herunder kjemisk og mineralogisk sammensetning, partikkelstørrelse og overflateareal, herdetemperatur og trykk, alkalikationtype, Si/Al-forhold i de benyttede stoffene, aktivator/faststoff-forhold, og typer av tilsetningsstoffer (E. I. Diaz, E. N. Allouche, S. Eklund: "Factors affecting the suitability of fly ash as source material for geopolymers" Elsevier, Fuel, årgang 89, 2010, s.992-996. D. L. Y. Kong, J. G. Sanjayan, K. Sagoe-Crentsil: "Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures." Journal of Materials Science, årgang 43, 2008, s.824-831. J. Nemecek, V. Smilauer, L. Kopecky: "Nanoindentation characteristics of alkali-activated aluminosilicate materials." Elsevier, Cement & Concrete Composites, årgang 33, 2011, s.163-170. D. Ravikumar, S. Peethamparan, N. Neithalath: "Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder." Elsevier, Cement & Concrete Composites, årgang 32, 2010, s.399-410. J. Stark: "Recent advances in the field of cement hydration and microstructure analysis." Elsevier, Cement & Concrete Research, årgang 41, 2011, s.666-678). Geopolymers are used as an alternative to cement and replacement binder in concrete. The term "geopolymers" was coined by Davidovits to describe inorganic binders having the empirical formula Mn{-(SiO2)z– AlO2}٠ωH2O, where M is a cation (K<+>, Na<+>, Li<+> , or Ca<2+>), n is a degree of polycondensation, and z is the atomic ratio of Si/Al which can be 1, 2, 3 or higher. In other words, geopolymers are aluminum silicate minerals that react in alkaline solution. The reaction shows a complex process, but it could be said that in an alkaline medium the Si-O-Si bonds are broken and Al atoms penetrate into the original Si-O-Si structure; mostly aluminosilicate gels are formed in the process. Cations must be present in the framework cavities to balance the ions' negative charges (J. Davidovits: "Geopolymer chemistry & applications", 3rd edition, July 2011, pp.3-5, 228-230, 365-371, 375-386. F. Skvara: "Alkali activated materials or geopolymers?" Institute of Chemical Technology Prague, May 2007. H. Xu: "Geopolymerisation of alumino-silicate minerals." PhD thesis, University of Melbourne, April 2002). The process is called "geopolymerisation", and the result is a cementing phase with high mechanical strength, high resistance to fire and acid and bacteria. In addition, geopolymers are characterized by a number of physical properties, including thermal stability, high surface smoothness, hard surface, long durability and strong adhesion to natural stone and steel (Davidovits, 2011. Xu, 2002). Geopolymerization development depends on many parameters, including chemical and mineralogical composition, particle size and surface area, curing temperature and pressure, alkali cation type, Si/Al ratio in the substances used, activator/solid ratio, and types of additives (E. I. Diaz, E. N. Allouche, S . Eklund: "Factors affecting the suitability of fly ash as source material for geopolymers" Elsevier, Fuel, year 89, 2010, pp.992-996. D. L. Y. Kong, J. G. Sanjayan, K. Sagoe-Crentsil: "Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures." Journal of Materials Science, volume 43, 2008, pp.824-831. J. Nemecek, V. Smilauer, L. Kopecky: "Nanoindentation characteristics of alkali-activated aluminosilicate materials." Elsevier, Cement & Concrete Composites, volume 33, 2011, pp.163-170. D. Ravikumar, S. Peethamparan, N. Neithalath: "Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder." Elsevier , Cement & Concrete Composites, Volume 32, 2010, pp.399-410. J. Stark: "Recent advances in the field of cement hydration and microstructure analysis." Elsevier, Cement & Concrete Research, volume 41, 2011, pp.666-678).

Det finnes forskjellige typer geopolymerer ut fra den benyttede kilden, f.eks. kaolinittbaserte, metakaolinbaserte, flyveaskebaserte, fosfatbaserte osv. There are different types of geopolymers depending on the source used, e.g. kaolinite-based, metakaolin-based, fly ash-based, phosphate-based, etc.

Aplitt er en intrusivbergart hvor kvarts, alkalifeltspat, mikroklin og albitt er de dominerende bestanddelene. Oligoklas, muskovitt, apatitt og zirkon er i hovedsak mineraler av aplitter. Biotitt og alle ferromagnesiumholdige mineraler forekommer sjelden i aplitter. Aplitt-medlemmer er vanligvis rike på Na. Aplitter inneholder SiO2og Al2O3, hvorved de ligner pozzolaner, og de synes å ha potensial til å bli brukt i utviklingen av en aplittbasert geopolymersement. Aplite is an intrusive rock where quartz, alkali feldspar, microcline and albite are the dominant constituents. Oligoclase, muscovite, apatite and zircon are mainly minerals of aplite. Biotite and all ferromagnesium-bearing minerals rarely occur in aplites. Aplitt members are usually rich in Na. Aplites contain SiO2 and Al2O3, making them similar to pozzolans, and they seem to have the potential to be used in the development of an aplite-based geopolymer cement.

Den foreliggende oppfinnelsen introduserer et nytt geopolymermateriale som kan kalles en aplittbasert geopolymer og fremstilles for sementeringsanvendelser på oljefelt, slik som avtetting av ringrom mellom fôringsrør, avtetting av et ringrom mellom et forlengningsrør og en formasjon, soneisolering, midlertidig og permanent plugging, og innpressingsoperasjoner (squeeze-operasjoner). Aplitt blandes med tilsetningsstoffer og en alkaliaktivator for fremstilling av en geopolymervelling. Tilsetningsstoffene er masovnslagg (BFS = Blast Furnace Slag) og mikrosilika. Alkaliaktivatoren fremstilles ved å blande ulike konsentrasjoner av alkalioppløsning og alkalisilikatoppløsning. Det er blitt utført flere tester ved bruk av en aplitt for å oppnå aplittbasert geopolymerbindemiddel og en aplittbasert geopolymersement. Den aplittbaserte geopolymeren størkner ved 25-200 °C under omgivelsestrykk og høye trykk. The present invention introduces a new geopolymer material which can be called an aplite-based geopolymer and is manufactured for cementing applications in oil fields, such as sealing annulus between casing, sealing an annulus between an extension pipe and a formation, zone isolation, temporary and permanent plugging, and squeeze operations -operations). Aplite is mixed with additives and an alkali activator to produce a geopolymer slurry. The additives are blast furnace slag (BFS = Blast Furnace Slag) and microsilica. The alkali activator is produced by mixing different concentrations of alkali solution and alkali silicate solution. Several tests have been carried out using an aplite to obtain an aplite-based geopolymer binder and an aplite-based geopolymer cement. The aplite-based geopolymer solidifies at 25-200 °C under ambient pressure and high pressure.

Hovedformålet er å skape et sementerende materiale som får høy nok trykkfasthet for å motstå noen grad av tektoniske spenninger. Produktet bør være impermeabelt, krympefast, tåle korrosive miljøer og binder seg til stein og fôringsrør. Det ble utført flere tester for å finne virkningen av ulike tilsetningsstoffer på de reologiske og fysiske egenskapene til vellingen og det endelige produktet etter størkning. Det er utført enaksede trykkfasthetsmålinger (Uniaxial Compressive Strength (UCS) measurements) for å finne trykkfasthetsutviklingen over tid. Endelig er det blitt utført sett av sensitivitetsanalysetester for å finne innvirkningen av alkalikonsentrasjon, væske/faststoff-forhold, herdetemperatur og -trykk på den kjemisk-fysiske egenskapen til de utviklede aplittbaserte geopolymerene. The main purpose is to create a cementing material that has high enough compressive strength to withstand some degree of tectonic stress. The product should be impermeable, shrink-proof, withstand corrosive environments and bind to stone and feeding pipes. Several tests were carried out to determine the effect of different additives on the rheological and physical properties of the gruel and the final product after solidification. Uniaxial compressive strength measurements (Uniaxial Compressive Strength (UCS) measurements) have been carried out to determine the development of compressive strength over time. Finally, sets of sensitivity analysis tests have been carried out to find the influence of alkali concentration, liquid/solid ratio, curing temperature and pressure on the chemical-physical property of the developed aplite-based geopolymers.

Det er gjort lite undersøkelser av natursteins reaktivitet for fremstilling av geopolymerbindemiddel og geopolymersement i alkalisk medium i motsetning til surt medium. Det vil kunne være som et resultat av natursteiners lavere løselighet i alkalisk medium enn i surt medium (J. A. Chermak: "Low temperature experimental investigation of the effect of high pH NaOH solutions on the opalinus shale, Switzerland". Clay and clay minerals, årgang 40, nr.6, 1992, s.650-658. Davidovits, 2011). M. Kawano, K. Tomita (se ovenfor) rapporterte: smektitt, phillipsitt og rhodesitt ble dannet i NaOH-oppløsning idet pH økte, og smektitten, merlinoitten og sanidinet ble fremstilt i KOH-oppløsning idet pH økte. De nevnte også at pH-verdien, Si/Al-, og Na/K-forholdet i reaksjonsløsningen er viktige faktorer som bestemmer karakteren til produktene fremstilt av obsidian. Little research has been done on the reactivity of natural stone for the production of geopolymer binder and geopolymer cement in an alkaline medium as opposed to an acidic medium. It could be as a result of the lower solubility of natural stones in an alkaline medium than in an acidic medium (J. A. Chermak: "Low temperature experimental investigation of the effect of high pH NaOH solutions on the opalinus shale, Switzerland". Clay and clay minerals, year 40 , no.6, 1992, pp.650-658. Davidovits, 2011). M. Kawano, K. Tomita (see above) reported: smectite, phillipsite, and rhodesite were formed in NaOH solution as pH increased, and smectite, merlinoite, and sanidine were produced in KOH solution as pH increased. They also mentioned that the pH value, Si/Al and Na/K ratio in the reaction solution are important factors that determine the character of the products made from obsidian.

Gougazeh, M., Buhl, J.-C.: "Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin". Journal of the Association of Arab Universities for Basic and Applied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.03.007 syntetiserte zeolitt A gjennom behandling av det aktiverte metakaolinet fra naturlig kaolin med ulike konsentrasjoner av NaOH ved 100 °C. Deres oppnådde resultater viser at zeolitt A er den store delfasen, og kvarts og hydroksysodalitt var de mindre bestanddelene. Gougazeh, M., Buhl, J.-C.: "Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin". Journal of the Association of Arab Universities for Basic and Applied Sciences (2013), http://dx.doi.org/10.1016/j.jaubas.2013.03.007 synthesized zeolite A through treatment of the activated metakaolin from natural kaolin with different concentrations of NaOH at 100 °C. Their obtained results show that zeolite A is the major subphase, and quartz and hydroxysodalite were the minor constituents.

Oppfinnelsen er angitt av de selvstendige patentkravene. De uselvstendige kravene angir fordelaktige utførelsesformer av oppfinnelsen. The invention is indicated by the independent patent claims. The independent claims indicate advantageous embodiments of the invention.

I et første aspekt vedrører oppfinnelsen nærmere bestemt et sementerende, aplittbasert geopolymermateriale omfattende en blanding av finkornet aplitt med partikkelstørrelse på opptil 75 μm og en alkalisk mediumkonsentrasjon innbefattende en alkalioppløsning omfattende NaOH i området 6M-10M og/eller KOH i området 4M-8M, kjennetegnet ved at blandingen videre omfatter en alkalisilikatoppløsning som omfatter Na2SiO3eller K2SiO3; og blandingens væske/faststoff-vektforhold er i området 0,42-0,47; og derved danner en pumpbar og herdbar velling. In a first aspect, the invention specifically relates to a cementing, aplite-based geopolymer material comprising a mixture of fine-grained aplite with a particle size of up to 75 μm and an alkaline medium concentration including an alkali solution comprising NaOH in the range 6M-10M and/or KOH in the range 4M-8M, characterized in that the mixture further comprises an alkali silicate solution comprising Na2SiO3 or K2SiO3; and the mixture's liquid/solid weight ratio is in the range 0.42-0.47; thereby forming a pumpable and hardenable gruel.

Alkalioppløsningen kan omfatte NaOH i området 7M-9M. The alkali solution may comprise NaOH in the range 7M-9M.

Alkalioppløsningen kan omfatte KOH i området 5M-7M. The alkali solution may comprise KOH in the range 5M-7M.

I et andre aspekt vedrører oppfinnelsen nærmere bestemt en fremgangsmåte for å tilveiebringe en pumpbar, herdbar velling av et sementerende, aplittbasert geopolymermateriale, kjennetegnet ved at fremgangsmåten omfatter trinnene: In a second aspect, the invention specifically relates to a method for providing a pumpable, hardenable slurry of a cementing, aplite-based geopolymer material, characterized in that the method comprises the steps:

- å tilveiebringe en finkornet aplitt med partikkelstørrelse på opptil 75 μm; - to provide a fine-grained aplite with a particle size of up to 75 μm;

- å tilsette en konsentrasjon av en alkalioppløsning omfattende NaOH i området 6M-10M og/eller KOH i området 4M-8M, og en alkalisilikatoppløsning til et væske/faststoff-vektforhold i området0,42-0,47, idet alkalisilikatoppløsningen omfatter Na2SiO3eller K2SiO3, for derved å danne den pumpbare og herdbare vellingen. - to add a concentration of an alkali solution comprising NaOH in the range 6M-10M and/or KOH in the range 4M-8M, and an alkali silicate solution to a liquid/solid weight ratio in the range 0.42-0.47, the alkali silicate solution comprising Na2SiO3 or K2SiO3, thereby forming the pumpable and hardenable gruel.

Oppfinnelsen byr på flere fordeler fremfor kjent teknikk: The invention offers several advantages over prior art:

● Betingelser med høyt trykk / høy temperatur (opp til 8000 psi (ca.55 MPa) og 700 °C) ● Lav masse-krympefaktor (mindre enn 4 %) ● High pressure / high temperature conditions (up to 8000 psi (approx.55 MPa) and 700 °C) ● Low mass shrinkage factor (less than 4%)

● Tåle korrosive miljøer ● Withstand corrosive environments

● Lav permeabilitet og bedre egnet for gassreservoarer (mindre enn 20 mikron Darcy) ● Det finnes retardere, akseleratorer og viskositetsregulerende tilsetningsstoffer ● Low permeability and better suited for gas reservoirs (less than 20 micron Darcy) ● There are retarders, accelerators and viscosity regulating additives

● Samme utstyr som det som brukes ved sementeringsoperasjoner, for anbringelse av vellingen på ønskede dyp. ● The same equipment as that used in cementing operations, for placing the slurry at the desired depth.

Forsøksdel Experimental part

Materialer Materials

Tabell 1 viser i tabellform den kjemiske sammensetningen til knust aplitt som ble levert av HELI Utvikling AS, Namsskogan. Fig.1 fremstiller partikkelstørrelsesfordelingsanalysen for den benyttede aplitten. Elkem mikrosilika kvalitet 955 ble levert av Elkem AS, Oslo. Masovnslagg (BFS) ble fremstilt i Sverige og levert av SSAB Merox AB, Oxelösund, Sverige, under varemerket Merit 5000. Natriumhydroksid (NaOH) og kaliumhydroksid (KOH) kom som pelleter med 99 % renhet levert av Merck KGaA, Darmstadt, Tyskland. Natriumsilikatoppløsning (Na2SiO3) ble levert av Merck. Den kjemiske sammensetningen av Na2SiO3var: 28,5 % SiO2, 8,5 % Na2O og 63 % H2O. Benyttet ka liumsilikatoppløsning (K2SiO3) ble levert av Univar AS, Oslo. Kaliumsilikatoppløsning ble angitt å ha 38 % K2SiO3og 62 % H2O. Det ble gjennom hele forsøkene brukt destillert vann. Table 1 shows in tabular form the chemical composition of crushed aplite which was supplied by HELI Utvikling AS, Namsskogan. Fig.1 shows the particle size distribution analysis for the aplite used. Elkem microsilica quality 955 was supplied by Elkem AS, Oslo. Blast furnace slag (BFS) was manufactured in Sweden and supplied by SSAB Merox AB, Oxelösund, Sweden, under the trademark Merit 5000. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) came as pellets with 99% purity supplied by Merck KGaA, Darmstadt, Germany. Sodium silicate solution (Na2SiO3) was supplied by Merck. The chemical composition of Na2SiO3 was: 28.5% SiO2, 8.5% Na2O and 63% H2O. The calcium silicate solution (K2SiO3) used was supplied by Univar AS, Oslo. Potassium silicate solution was stated to have 38% K2SiO3 and 62% H2O. Distilled water was used throughout the experiments.

Tabell 1 Table 1

Den opprinnelige aplittens kjemiske sammensetning The chemical composition of the original aplite

Klargjøring av prøver Preparation of samples

Det ble tilberedt natriumhydroksidoppløsninger i tre ulike konsentrasjoner på 6, 8, og 10 M NaOH. Kaliumhydroksidoppløsninger ble tilberedt i konsentrasjoner på 4 og 6 M. Aktivatorer ble tilberedt med ulike andeler slik Tabell 2 oppsummerer alkalioppløsning/alkalisilikat-forhold. Det anbefales å tilberede aktivatoren én dag før for å få ingrediensene jevnt blandet. Væske-faststoff-blanding bør overholdes for å få det mest virksomme produktet. Først skulle mikrosilika tilsettes til aktivatoren og blandes i 2 minutter. Deretter ble aplitt tilsatt og blandet i 2 minutter. Senere ble BFS tilsatt og blandet. Væske- og faststoffaser ble blandet ved bruk av en Hamilton-Beach-blander. Vellinger ble støpt i sylindriske plastformer med dimensjoner på 5,2 cm i diameter og 10 cm i lengde. Tabell 3 viser de ulike reseptene som har vist de utmerkede resultatene. Prøver ble herdet ved omgivelsestrykk og –temperatur i 7 og 28 dager i en plastboks som var fylt med vann fra kranen. Vær oppmerksom på at prøver vil kunne herdes utenfor plastboksen. Sodium hydroxide solutions were prepared in three different concentrations of 6, 8 and 10 M NaOH. Potassium hydroxide solutions were prepared in concentrations of 4 and 6 M. Activators were prepared with different proportions as Table 2 summarizes the alkali solution/alkali silicate ratio. It is recommended to prepare the activator one day before to get the ingredients evenly mixed. Liquid-solid mixture should be observed to obtain the most effective product. First, microsilica should be added to the activator and mixed for 2 minutes. Aplit was then added and mixed for 2 minutes. Later BFS was added and mixed. Liquid and solid phases were mixed using a Hamilton-Beach mixer. Porridges were cast in cylindrical plastic molds with dimensions of 5.2 cm in diameter and 10 cm in length. Table 3 shows the various prescriptions that have shown the excellent results. Samples were cured at ambient pressure and temperature for 7 and 28 days in a plastic box filled with tap water. Please note that samples will be able to harden outside the plastic box.

Tabell 2 Table 2

Tabell 3 Table 3

Analytiske metoder Analytical methods

For å undersøke den utviklede aplittbaserte geopolymersementens mekaniske egenskaper er geopolymerers trykkfasthetsutvikling blitt beregnet. Prøvenes trykkfastheter ble målt ved å ta i bruk en Toni Technik-H mekanisk tester. Apparatet bruker en testprogramvare TestXpert v7.11 for å vurdere den enaksede trykkfastheten. In order to investigate the mechanical properties of the developed aplite-based geopolymer cement, the compressive strength development of geopolymers has been calculated. The compressive strengths of the samples were measured using a Toni Technik-H mechanical tester. The device uses a test software TestXpert v7.11 to assess the uniaxial compressive strength.

Et skanningselektronmikroskop-analyseapparat av modell Zeiss Supra 35VP ble brukt for å avdekke de aplittbaserte geopolymerenes mikrostruktur. A Zeiss Supra 35VP scanning electron microscope analyzer was used to reveal the microstructure of the aplite-based geopolymers.

Partikkelstørrelsesfordelinger (PSD) for aplitt ble beregnet med et Sympatec HELOS laserdiffraksjon-partikkelstørrelsesanalyseapparat, og forsøket ble utført ved Tel-Tek nasjonalt forskningsinstitutt i Norge. Sauter middeldiameter (SMD) og volum-middeldiameter (VMD) ble rapportert som henholdsvis 3,20 og 19,68 μm. Aplitts tetthet ble beregnet til 1,18 (g/cm<3>). Particle size distributions (PSD) for aplite were calculated with a Sympatec HELOS laser diffraction particle size analyzer, and the experiment was carried out at the Tel-Tek National Research Institute in Norway. Sauter mean diameter (SMD) and volume mean diameter (VMD) were reported as 3.20 and 19.68 μm, respectively. Aplite's density was calculated to be 1.18 (g/cm<3>).

Resultater og drøfting Results and discussion

Virkning av herdetid Effect of curing time

Ulike prøver ble tilberedt og herdet i 7, 28 og 56 dager. Målt trykkfasthet for prøvene viste fasthetsutvikling med tid etter 56 dager. Different samples were prepared and cured for 7, 28 and 56 days. Measured compressive strength of the samples showed strength development with time after 56 days.

Røntgendiffraksjons(XRD)-analyse X-ray diffraction (XRD) analysis

Røntgen-pulverdiffraksjons(XRD)-analyse av aplitten og de fremstilte geopolymerene ble utført ved bruk av synkrotronstråling med bølgelengde på 0,6888Å. XRD-målingene ble utført med et PILA-TUS2M-basert diffraktometer ved European Synchrotron Radiation Facility (ESRF). Vinkelområdet var 0-46, 2theta. X-ray powder diffraction (XRD) analysis of the aplite and the prepared geopolymers was performed using 0.6888Å wavelength synchrotron radiation. The XRD measurements were performed with a PILA-TUS2M-based diffractometer at the European Synchrotron Radiation Facility (ESRF). The angular range was 0-46, 2theta.

Det oppnådde resultatet viser at aplitten og de aplitt-baserte geopolymerene er krystallinske. The obtained result shows that the aplite and the aplite-based geopolymers are crystalline.

Permeabilitetsmåling Permeability measurement

En QX-serie av Quizix-pumpe fremstilt av AMETEK Chandler Engineering ble benyttet for permeabilitetsmåling. A QX series of Quizix pump manufactured by AMETEK Chandler Engineering was used for permeability measurement.

Injeksjonstrykk på 210 bar (3045 psi) ble valgt på grunnlag av erfaringene for permeabilitetsmåling. Overdekningstrykk valgt å være 240 bar (3480 psi) og pumpetrykksgrense ble satt på 210 bar (3045 psi). Destillert vann brukt til injeksjon. Utløpstrykk ble valgt å være omgivelsestrykk. Forsøket utført ved omgivelsestrykk. Målt permeabilitet etter 30 dagers testforløp er k = 0,07 x 10<-7>mD, som kan regnes for å være 0 sammenlignet med portlandsements permeabilitet. Injection pressure of 210 bar (3045 psi) was chosen based on permeability measurement experience. Cover pressure chosen to be 240 bar (3480 psi) and pump pressure limit set at 210 bar (3045 psi). Distilled water used for injection. Outlet pressure was chosen to be ambient pressure. The experiment was carried out at ambient pressure. Measured permeability after 30 days of testing is k = 0.07 x 10<-7>mD, which can be considered to be 0 compared to portland cement permeability.

Konklusjon Conclusion

Noen prøver ble herdet ved 87 °C i 28 dager og beregnet trykkfasthet var 517 bar (7500 psi) og i noen tilfeller 597 bar (8660 psi). Some samples were cured at 87 °C for 28 days and calculated compressive strength was 517 bar (7500 psi) and in some cases 597 bar (8660 psi).

Aplittbaserte geopolymerer ble herdet ved 500 °C i 12 timer og det ble ikke observert noen endring i deres mekaniske egenskap. Aplite-based geopolymers were cured at 500 °C for 12 h and no change in their mechanical properties was observed.

På grunn av lavt CaO-innhold (20 %) kan de aplittbaserte geopolymerene motstå karbondioksidangrep. Due to the low CaO content (20%), the aplite-based geopolymers can resist carbon dioxide attack.

Masse-krymping er målt og det ble målt en verdi på mindre enn 4 %, og i noen tilfeller var den 0,0 %. Mass shrinkage has been measured and a value of less than 4% was measured, and in some cases it was 0.0%.

Under fremstilling avgir den aplittbaserte geopolymeren ikke klimagasser; den kan kalles et miljøvennlig sementerende materiale. During manufacture, the aplite-based geopolymer does not emit greenhouse gases; it can be called an environmentally friendly cementing material.

Natriumhydroksidkonsentrasjon kan variere mellom 6 og 10 M og enda høyere. Sodium hydroxide concentration can vary between 6 and 10 M and even higher.

Kaliumhydroksidkonsentrasjon kan variere mellom 4 og 8 M. Potassium hydroxide concentration can vary between 4 and 8 M.

Forholdet alkalioppløsning/alkalisilikatoppløsning kan variere mellom 0,3 og 1. The ratio alkali solution/alkaline silicate solution can vary between 0.3 and 1.

Liste over illustrasjoner: List of illustrations:

Fig.1 Partikkelstørrelsesfordelings(PSD)-analyse av den benyttede aplitten; Fig.1 Particle size distribution (PSD) analysis of the aplite used;

Fig.2a Beregnet trykkfasthet for den aplittbaserte geopolymeren med en alkalioppløsning omfattende NaOH etter 7 og 28 dager; Fig.2a Calculated compressive strength for the aplite-based geopolymer with an alkali solution comprising NaOH after 7 and 28 days;

Fig.2b Beregnet trykkfasthet for den aplittbaserte geopolymeren med en alkalioppløsning omfattende KOH etter 7 og 28 dager. Fig.2b Calculated compressive strength for the aplite-based geopolymer with an alkali solution comprising KOH after 7 and 28 days.

Claims (4)

PatentkravPatent claims 1. Sementerende, aplittbasert geopolymermateriale omfattende en blanding av finkornet aplitt med partikkelstørrelse på opptil 75 μm og en alkalisk mediumkonsentrasjon innbefattende en alkalioppløsning omfattende NaOH i området 6M-10M og/eller KOH i området 4M-8M, k a r a k t e r i s e r t v e d at blandingen videre omfatter:1. Cementitious, aplite-based geopolymer material comprising a mixture of fine-grained aplite with a particle size of up to 75 μm and an alkaline medium concentration including an alkali solution comprising NaOH in the range 6M-10M and/or KOH in the range 4M-8M, characterized in that the mixture further comprises: en alkalisilikatoppløsning som omfatter Na2SiO3eller K2SiO3; og blandingens væske/faststoff-vektforhold er i området 0,42-0,47;an alkali silicate solution comprising Na 2 SiO 3 or K 2 SiO 3 ; and the mixture's liquid/solid weight ratio is in the range 0.42-0.47; og derved danner en pumpbar og herdbar velling.thereby forming a pumpable and hardenable gruel. 2. Sementerende, aplittbasert geopolymermateriale ifølge krav 1, hvor alkalioppløsningen omfatter NaOH i området 7M-9M.2. Cementing, aplite-based geopolymer material according to claim 1, where the alkali solution comprises NaOH in the range 7M-9M. 3. Sementerende, aplittbasert geopolymermateriale ifølge krav 1, hvor alkalioppløsningen omfatter KOH i området 5M-7M.3. Cementing, aplite-based geopolymer material according to claim 1, where the alkali solution comprises KOH in the range 5M-7M. 4. Fremgangsmåte for tilveiebringelse av en pumpbar, herdbar velling av et sementerende, aplittbasert geopolymermateriale, k a r a k t e r i s e r t v e d at fremgangsmåten omfatter trinnene:4. Method for providing a pumpable, hardenable slurry of a cementing, aplite-based geopolymer material, characterized in that the method comprises the steps: - å tilveiebringe en finkornet aplitt med partikkelstørrelse på opptil 75 μm;- to provide a fine-grained aplite with a particle size of up to 75 μm; - å tilsette en konsentrasjon av en alkalioppløsning omfattende NaOH i området 6M-10M og/eller KOH i området 4M-8M, og en alkalisilikatoppløsning til et væske/faststoff-vektforhold i området 0,42-0,47, idet alkalisilikatoppløsningen omfatter Na2SiO3eller K2SiO3, for derved å danne den pumpbare og herdbare vellingen.- to add a concentration of an alkali solution comprising NaOH in the range 6M-10M and/or KOH in the range 4M-8M, and an alkali silicate solution to a liquid/solid weight ratio in the range 0.42-0.47, the alkali silicate solution comprising Na2SiO3 or K2SiO3 , thereby forming the pumpable and hardenable gruel.
NO20141050A 2014-08-29 2014-08-29 Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material NO342894B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20141050A NO342894B1 (en) 2014-08-29 2014-08-29 Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material
PCT/NO2015/050146 WO2016032341A1 (en) 2014-08-29 2015-08-27 Aplite based, cementitious geopolymeric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20141050A NO342894B1 (en) 2014-08-29 2014-08-29 Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material

Publications (2)

Publication Number Publication Date
NO20141050A1 NO20141050A1 (en) 2016-03-01
NO342894B1 true NO342894B1 (en) 2018-08-27

Family

ID=55400111

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20141050A NO342894B1 (en) 2014-08-29 2014-08-29 Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material

Country Status (2)

Country Link
NO (1) NO342894B1 (en)
WO (1) WO2016032341A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017087787A1 (en) 2015-11-18 2017-05-26 Board Of Regents, The University Of Texas System Cementitious compositions comprising a non-aqueous fluid and an alkali-activated material
US11306026B2 (en) 2019-06-27 2022-04-19 Terra Co2 Technology Holdings, Inc. Cementitious reagents, methods of manufacturing and uses thereof
EP4212492A1 (en) 2019-06-27 2023-07-19 Terra CO2 Technology Holdings, Inc. Cementitious reagents, methods of manufacturing and uses thereof
EP4263942A1 (en) * 2020-12-21 2023-10-25 Terra CO2 Technology Holdings, Inc. Cementitious reagents, methods of manufacturing and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103480A1 (en) * 2008-02-19 2009-08-27 Services Petroliers Schlumberger Pumpable geopolymer formulation for oilfield application
WO2011072784A1 (en) * 2009-12-17 2011-06-23 Services Petroliers Schlumberger Pumpable geopolymers comprising a mixing aid and dispersing agent
WO2013176545A1 (en) * 2012-05-23 2013-11-28 Pqa B.V. Geopolymer composition comprising additives

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007013262A (en) * 2005-04-26 2008-01-21 Statoil Asa Method of well treatment and construction.
KR101726914B1 (en) * 2010-12-17 2017-04-13 더 카톨릭 유니버시티 오브 아메리카 Geopolymer composite for ultra high performance concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103480A1 (en) * 2008-02-19 2009-08-27 Services Petroliers Schlumberger Pumpable geopolymer formulation for oilfield application
WO2011072784A1 (en) * 2009-12-17 2011-06-23 Services Petroliers Schlumberger Pumpable geopolymers comprising a mixing aid and dispersing agent
WO2013176545A1 (en) * 2012-05-23 2013-11-28 Pqa B.V. Geopolymer composition comprising additives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Simonsen, E., "Strength development of aplite-based geopolymer cements", Master thesis, Faculty of Science and Technology, University of Stavanger, Open Research Archive (2013.11.13), kapittel 5., Dated: 01.01.0001 *

Also Published As

Publication number Publication date
WO2016032341A1 (en) 2016-03-03
NO20141050A1 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
Firdous et al. Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics
Pacheco-Torgal et al. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products
Allahverdi et al. Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements
He et al. Geopolymerization of red mud and fly ash for civil infrastructure applications
Shi et al. Discussion on properties and microstructure of geopolymer concrete containing fly ash and recycled aggregate
Jawahar et al. Performance of fly ash and GGBS based geopolymer concrete in acid environment
Patel et al. Study on workability and hardened properties of self compacted geopolymer concrete cured at ambient temperature
NO342894B1 (en) Cementing, aplite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, aplite-based geopolymer material
Aygörmez Assessment of performance of metabentonite and metazeolite-based geopolymers with fly ash sand replacement
Waldmann et al. A short review on alkali-activated binders and geopolymer binders
Rashad Effect of limestone powder on the properties of alkali-activated materials–A critical overview
Tammam et al. Effect of waste filler materials and recycled waste aggregates on the production of geopolymer composites
Dave et al. Impact resistance of geopolymer concrete containing recycled plastic aggregates
Wang et al. Optimization of alkali-activated concrete based on the characteristics of binder systems
Rajamane et al. Pozzolanic industrial waste-based geopolymer concretes with low carbon footprint
NO342076B1 (en) Cementing, norite-based geopolymer material and method for providing a pumpable, curable slab of a cementing, norite-based geopolymer material
Najimi Alkali-activated natural pozzolan/slag binder for sustainable concrete
Bernal et al. Alkali-activated materials: cementing a sustainable future
Gopal et al. Investigation on behaviour of fly ash based geopolymer concrete in acidic environment
Vyšvařil et al. Rheological properties of alkali-activated brick powder based pastes: effect of alkali activator and silicate modulus
Kyrilis Fly ash-based geopolymer cement as an alternative to ordinary portland cement in oil well cementing operation
Dener Effect of alkali modulus on the compressive strength and ultrasonic pulse velocity of alkali-activated BFS/FS cement
Geraldo et al. Geopolymers studies in Brazil: A meta-analysis and perspectives
John et al. Geopolymer concrete using Red mud and GGBS
Ekaputri et al. An application of Rice husk ash (RHA) and calcium carbonate (CaCO3) as materal for self-healing cement

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: MAHMOUD KHALIFEH, NO

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: UNIVERSITETET I STAVANGER, NO