NO342723B1 - energy Conversions - Google Patents

energy Conversions Download PDF

Info

Publication number
NO342723B1
NO342723B1 NO20170027A NO20170027A NO342723B1 NO 342723 B1 NO342723 B1 NO 342723B1 NO 20170027 A NO20170027 A NO 20170027A NO 20170027 A NO20170027 A NO 20170027A NO 342723 B1 NO342723 B1 NO 342723B1
Authority
NO
Norway
Prior art keywords
channel
damper
wave
valve
pressure
Prior art date
Application number
NO20170027A
Other languages
Norwegian (no)
Other versions
NO20170027A1 (en
Inventor
Karl Venås
Original Assignee
Venaas Karl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Venaas Karl filed Critical Venaas Karl
Priority to NO20170027A priority Critical patent/NO342723B1/en
Publication of NO20170027A1 publication Critical patent/NO20170027A1/en
Publication of NO342723B1 publication Critical patent/NO342723B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Prinsippet framgår av figur 1, hvor en bølge kommer inn fra venstre mot flottøren (10) som løftes opp og bølgen går videre inni kanalen (1). Via vektstangen (9), som er opplagret i (13), tvinges spjeldet (3) ned og stenger kanalen (1). Figurene 1 og 5 viser posisjonen ved stengt kanal. Det oppstår et støt som bevirker en trykkøkning i bølgen, slik at tilbakeslagsventilen (5) åpnes og vann strømmer gjennom åpningen (6) inn i beholderen (2). Når trykket avtar i kanalen vil ventilen (5) stenge åpningen (6). Vektarmen (9) går ned slik at spjeldet (3) åpner kanalen igjen. Dette gjentas for hver store bølge som kommer. Et annet alternativ til spjeldets åpningsmekanisme er vist på figur 6. Her tenkes at spjeldet åpnes og stenges vha av en hydraulisk sylinder (13). Aktivatoren (5) kan også være styrt av en hydraulisk sylinder. Samkjøringen av (15) og (5) kan da programmeres og styres f eks vha bølgeregistrator. Når trykket er stort nok i beholderen (12) åpnes magnetventilen (11) og vannet går til en turbin for strømproduksjon, eventuelt at vannet går til et reservoar.The principle is shown in figure 1, where a wave enters from the left towards the float (10) which is lifted up and the wave proceeds inside the channel (1). Via the lever (9), which is stored in (13), the damper (3) is forced down and closes the channel (1). Figures 1 and 5 show the closed channel position. A shock results in a pressure increase in the wave, so that the check valve (5) opens and water flows through the opening (6) into the container (2). When the pressure decreases in the duct, the valve (5) will close the opening (6). The weight arm (9) goes down so that the damper (3) opens the channel again. This is repeated for every major wave that comes. Another alternative to the damper opening mechanism is shown in Figure 6. Here, the damper is thought to be opened and closed by a hydraulic cylinder (13). The actuator (5) may also be controlled by a hydraulic cylinder. The interconnection of (15) and (5) can then be programmed and controlled, for example, by means of a wave register. When the pressure is large enough in the container (12), the solenoid valve (11) opens and the water goes to a turbine for power production, possibly the water goes to a reservoir.

Description

Bakgrunn Background

Omforming av bølgeenergi, til f eks elektrisk energi, er en miljøvennlig prosess som kommer under begrepet fornybar energi. Ved konverteringen er det ikke noe utslipp av miljøskadelige stoffer som C02(g). Å komme fram til gode løsninger er meget viktig og det er uttrykt en omfattende interesse for konvertering av bølgekraft. Litteraturen beskriver et stort antall forslag på bølgekraftverk, men per i dag er det få løsninger som kan betraktes som økonomisk lønnsomme. Foreliggende oppfinnelse vedrører en anordning for å omforme bølgeenergi til mekanisk eller elektrisk energi er angitt i patentkrav 1. Oppfinnelsen videreutvikler prinsippet for en støthevert, som er oppfunnet i 1796 av franskmannen Joseph Michel Montgolier. Foreliggende oppfinnelse dreier seg om et system som regulerer en støthevert som konverterer bølgeenergi til trykkener gi. Transforming wave energy, for example into electrical energy, is an environmentally friendly process that comes under the term renewable energy. During the conversion, there is no emission of environmentally harmful substances such as C02(g). Arriving at good solutions is very important and extensive interest in the conversion of wave power has been expressed. The literature describes a large number of proposals for wave power plants, but as of today there are few solutions that can be considered economically profitable. The present invention relates to a device for transforming wave energy into mechanical or electrical energy is stated in patent claim 1. The invention further develops the principle of a shock sieve, which was invented in 1796 by the Frenchman Joseph Michel Montgolier. The present invention relates to a system that regulates an impact sieve that converts wave energy into pressure energy.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Prinsippet framgår av etterfølgende figurer, figur 1 illustrerer at vann fra en bølge kommer inn kanalen (1) og går inn i en beholder (2) ved hjelp av reguleringsenheter. Når en bølge kommer inn fra venstre inn i kanalen (1) løftes flottøren (10) opp samtidig som utløpet av kanalen (1) stenges av et spjeld (3). Flottøren (10) er monter til en vektstang (9) i den ene ende og et spjeld i den andre enden av vekstangen som er opplagret i (13), dvs. når flottøren (10) går opp tvinges spjeldet (3) ned og stenger kanalen (1). Spjeldet (3) går ned i en styrespalten (14). Se figur 1 og figur 5 som viser posisjonen ved stengt kanal. Slissen (11) lages for unngå at vektstangen kiler seg fast. Når spjeldet (3) er nede oppstår et støt som bevirker en trykkøkning i bølgen, ventilen (5) åpnes og vann strømmer gjennom åpningen (6) inn i beholderen (2). Når trykket avtar i kanalen vil ventilen (5) stenge åpningen (6). Vannet i beholderen (2) går ut gjennom et rør (4) til en turbin eller et høyereliggende reservoar. Røret (4) er tilknyttet en tilbakeslagventil som forhindrer vannretur gjennom røret (4) inn i beholderen (2). Vektarmen (9) går slik at spjeldet (3) åpner kanalen igjen og ventilen (5) lukkes. Dette gjentas for hver store bølge som kommer. Mekanismen for å åpne og stenge ventilen (5) er en aksling (7) som er forbundet med ventilen (5) i den ene ende og en veiv (8) i den andre. Akslingen (7) går gjennom veggen på beholderen (2), hvor en pakkboks tetter rundt akslingen (7). Veiven (8) er tilknyttet en slisse på vektarmen (9). Et annet alternativ til spjeldets åpningsmekanisme er vist på figur 6. Her tenkes at spjeldet åpnes og stenges vha av en hydraulisk sylinder (13). En trykkmåler (15) kan benyttes for å styre den hydraulisk sylinder som også kan programmeres og styres f eks vha en bølgeregistrator. Den hydraulisk sylinder kan også være til hjelp for å redusere tiden for å stenge og åpne henholdsvis spjeld (3) og ventil (5). The principle can be seen from subsequent figures, figure 1 illustrates that water from a wave enters the channel (1) and enters a container (2) with the help of regulation units. When a wave enters the channel (1) from the left, the float (10) is lifted up at the same time as the outlet of the channel (1) is closed by a damper (3). The float (10) is fitted to a weight bar (9) at one end and a damper at the other end of the riser which is stored in (13), i.e. when the float (10) goes up, the damper (3) is forced down and closes the channel (1). The damper (3) goes down into a guide slot (14). See Figure 1 and Figure 5 which show the position when the channel is closed. The slot (11) is made to prevent the barbell from getting stuck. When the damper (3) is down, a shock occurs which causes a pressure increase in the wave, the valve (5) is opened and water flows through the opening (6) into the container (2). When the pressure decreases in the channel, the valve (5) will close the opening (6). The water in the container (2) goes out through a pipe (4) to a turbine or a higher reservoir. The pipe (4) is connected to a non-return valve which prevents water from returning through the pipe (4) into the container (2). The weight arm (9) moves so that the damper (3) opens the channel again and the valve (5) closes. This is repeated for each large wave that comes. The mechanism for opening and closing the valve (5) is a shaft (7) which is connected to the valve (5) at one end and a crank (8) at the other. The shaft (7) passes through the wall of the container (2), where a packing box seals around the shaft (7). The crank (8) is connected to a slot on the weight arm (9). Another alternative to the damper's opening mechanism is shown in Figure 6. Here, it is thought that the damper is opened and closed by means of a hydraulic cylinder (13). A pressure gauge (15) can be used to control the hydraulic cylinder, which can also be programmed and controlled, for example, using a wave recorder. The hydraulic cylinder can also help to reduce the time to close and open respectively damper (3) and valve (5).

Kort beskrivelse av tegningene Brief description of the drawings

Oppfinnelsen skal i det følgende beskrives nærmere under henvisning til de medfølgende tegningene, der: Figur 1 viser skjematisk et oppriss sett fra siden av oppfinnelsen, spjeldet er i lukket posisjon. In the following, the invention will be described in more detail with reference to the accompanying drawings, where: Figure 1 schematically shows an elevation view from the side of the invention, the damper is in the closed position.

Figur 2 viser skjematisk figur 1 dreid 90 grader mot venstre. Figure 2 shows schematically Figure 1 turned 90 degrees to the left.

Figur 3 viser gjenstanden sett ovenfra med snitt A-A , se figur 1. Figure 3 shows the object seen from above with section A-A, see figure 1.

Figur 4 viser skjematisk et oppriss sett fra siden av oppfinnelsen, spjeldet er i åpen posisjon. Figur 5 viser skjematisk et oppriss sett fra siden av oppfinnelsen, spjeldet er i lukket ventilen åpen. Viser også luftrommet som befinner seg over vannspeilet ved full beholder. Figur 6 viser skjematisk et oppriss sett fra siden av oppfinnelsen, spjeldet er i lukket og ventilen åpen. I tillegg er inntegnet hydraulisk sylinder som styres fra en trykksonde. Viser også luftrommet som befinner seg over vannspeilet ved fullredusert vannmengde i beholder. Figure 4 schematically shows an elevation seen from the side of the invention, the damper is in the open position. Figure 5 schematically shows an elevation view from the side of the invention, the damper is open in the closed valve. Also shows the air space above the water level when the tank is full. Figure 6 schematically shows an elevation view from the side of the invention, the damper is closed and the valve is open. In addition, a hydraulic cylinder is included which is controlled from a pressure probe. Also shows the air space above the water level when the amount of water in the container is fully reduced.

Claims (1)

Krav 1. Anordning for å omforme bølgeenergi til mekanisk eller elektrisk energi, hvor prinsippet for oppfinnelsen er en anordning som konverterer kinetisk bølgeenergi fra havbølger til potensiell trykkenergi, dette gjøres ved at bølger ledes inn i et rektangulært eller sirkulært kanal (1), hvor kanalen (1) er utrustet med en lukkeanordning, et spjeld, (3) som raskt kan stenge hele kanal tverrsnittet, og dette bevirker at den kinetiske energien går over til trykkenergi hvor trykkøkningen bevirker åpning av tilbakeslagsventilen (5) åpner seg og leder vannet inn i en beholder (2) som fylles og vannet presses ut via en rør (4) hvor en tilbakeslagsventil er montert, når trykket i kanalen (1) er lavere enn trykket i beholderen (2) lukkes ventilen (5), kanalen er da helt åpen og en ny bølge kan komme inn, prosedyren gjentas kontinuerlig og overfører vannet til en turbin som driver en generator for produksjon av elektrisk energi. Krav 2. Anordning ifølge krav 1 der kanalen (1) kan lukkes og åpnes ved hjelp av vha to opplagrete vektstenger (9) som i den ene ende er knyttet til et spjeld (3) og den andre knyttet til en flottør (10), pga oppdriften fra bølgen, som er på vei inn i kanalen, vil flottøren (10) løftes opp, og spjeldet (3) gå ned og stenger kanal tverrsnittet og en bunnventil (5) åpnes slik at vann strømmer inn i beholderen (2). Krav 3. Anordning ifølge krav 1 der kanalen (1) og ventilen (5) kan åpnes og stenges vha en hydraulisk sylinder (13)Claim 1. Device for transforming wave energy into mechanical or electrical energy, where the principle of the invention is a device that converts kinetic wave energy from ocean waves into potential pressure energy, this is done by guiding waves into a rectangular or circular channel (1), where the channel (1) is equipped with a closing device, a damper, (3) which can quickly close the entire channel cross-section, and this causes the kinetic energy to transfer to pressure energy where the increase in pressure causes the check valve (5) to open and lead the water into a container (2) that is filled and the water is pushed out via a pipe (4) where a non-return valve is fitted, when the pressure in the channel (1) is lower than the pressure in the container (2) the valve (5) closes, the channel is then completely open and a new wave can enter, the procedure is continuously repeated and transfers the water to a turbine that drives a generator for the production of electrical energy. Claim 2. Device according to claim 1 where the channel (1) can be closed and opened by means of two stored weight rods (9) which at one end are connected to a damper (3) and the other connected to a float (10), due to the buoyancy from the wave, which is on its way into the channel, the float (10) will be lifted up, and the damper (3) will go down and close the channel cross-section and a bottom valve (5) will be opened so that water flows into the container (2). Claim 3. Device according to claim 1 where the channel (1) and the valve (5) can be opened and closed using a hydraulic cylinder (13)
NO20170027A 2017-01-06 2017-01-06 energy Conversions NO342723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20170027A NO342723B1 (en) 2017-01-06 2017-01-06 energy Conversions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20170027A NO342723B1 (en) 2017-01-06 2017-01-06 energy Conversions

Publications (2)

Publication Number Publication Date
NO20170027A1 NO20170027A1 (en) 2018-07-09
NO342723B1 true NO342723B1 (en) 2018-07-30

Family

ID=63112970

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20170027A NO342723B1 (en) 2017-01-06 2017-01-06 energy Conversions

Country Status (1)

Country Link
NO (1) NO342723B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2518655A1 (en) * 1981-12-23 1983-06-24 Manche Atel Chantiers Energy extractor for sea water - has cylinder with open base and pumping ducts carrying flow control valves
US4441316A (en) * 1980-12-01 1984-04-10 The Secretary Of State For Energy In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Wave energy device
GB2143284A (en) * 1983-06-11 1985-02-06 Anthony Michael Peatfield Energy conversion apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441316A (en) * 1980-12-01 1984-04-10 The Secretary Of State For Energy In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Wave energy device
FR2518655A1 (en) * 1981-12-23 1983-06-24 Manche Atel Chantiers Energy extractor for sea water - has cylinder with open base and pumping ducts carrying flow control valves
GB2143284A (en) * 1983-06-11 1985-02-06 Anthony Michael Peatfield Energy conversion apparatus

Also Published As

Publication number Publication date
NO20170027A1 (en) 2018-07-09

Similar Documents

Publication Publication Date Title
US8668472B2 (en) Wave actuated pump and means of connecting same to the seabed
NO325279B1 (en) Potential energy storage device
WO2006025936A1 (en) System for generating fluid movement
CN102434690A (en) Opening-assisting method and opening-assisting device of check valve
NO342723B1 (en) energy Conversions
DE102012015421A1 (en) Power plant for generating power using buoyant forces, has float which is moved by lever or gear and belt transmissions in electric generator to convert generated forces into suitable forms of energy
CN101260870A (en) Gravity force potential energy power machine
JP2016501337A (en) Hydro-pneumatic energy generator and operation method thereof
RU2631474C1 (en) Hydraulic power unit
RU2542192C1 (en) Surfy hydraulic ram
KR101202926B1 (en) Apparatus for production air pressure energy by using wave energy
US11073151B2 (en) Energy generating system and method
RU2019141519A (en) ELECTRIC POWER PRODUCTION METHOD
NO20150386A1 (en) Arrangement for energy recovery from a liquid-filled tank
RU2019141545A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141543A (en) ELECTRIC POWER PRODUCTION METHOD
US972991A (en) Method of and means for removing ashes on board ship.
RU2019141487A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141569A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141521A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141546A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141517A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141499A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141557A (en) ELECTRIC POWER PRODUCTION METHOD
RU2019141518A (en) ELECTRIC POWER PRODUCTION METHOD

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees