NO338545B1 - Wind turbine with wind turbines that rotate independently of each other and where electrical and mechanical gearing is used - Google Patents

Wind turbine with wind turbines that rotate independently of each other and where electrical and mechanical gearing is used Download PDF

Info

Publication number
NO338545B1
NO338545B1 NO20160592A NO20160592A NO338545B1 NO 338545 B1 NO338545 B1 NO 338545B1 NO 20160592 A NO20160592 A NO 20160592A NO 20160592 A NO20160592 A NO 20160592A NO 338545 B1 NO338545 B1 NO 338545B1
Authority
NO
Norway
Prior art keywords
unit
shaft
electricity
rotational power
units
Prior art date
Application number
NO20160592A
Other languages
Norwegian (no)
Other versions
NO20160592A1 (en
Inventor
Frode Olsen
Original Assignee
Frode Olsen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frode Olsen filed Critical Frode Olsen
Publication of NO338545B1 publication Critical patent/NO338545B1/en
Publication of NO20160592A1 publication Critical patent/NO20160592A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • H02K5/1285Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs of the submersible type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Fluid-Driven Valves (AREA)
  • Eye Examination Apparatus (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Wind Motors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Gyroscopes (AREA)

Description

Patentsøknad Patent application

Vindmølle med vindturbiner som roterer uavhengig Windmill with wind turbines that rotate independently

av hverandre og hvor det benyttes elektrisk og mekanisk oppgiring, som beskrevet i patentkravene. of each other and where electrical and mechanical gearing is used, as described in the patent claims.

Elektrisitet genereres i enhet (M3), omformes og Electricity is generated in unit (M3), transformed and

overføres til enhet (M2) som tilfører rotasjonskraft på is transferred to unit (M2) which adds rotational force to it

egen aksling. Akslingen i enhet (M2) er montert sammen med akslingen i enhet (M1). Elektrisitet overfører fra enhet (M2) til enhet (M1). Enhet (M1) vil rotere på den roterende akslingen. Akslingen i enhet (M1) er montert til aksling (31). Elektrisitet kan ledes mellom enhet (32) og enhetene (M). Benyttes det magneter på enhet (34) vil vikling på enhet (32) ytterside (32b), og enhet (36) own axle. The shaft in unit (M2) is mounted together with the shaft in unit (M1). Electricity transfers from unit (M2) to unit (M1). Unit (M1) will rotate on the rotating shaft. The shaft in unit (M1) is mounted to shaft (31). Electricity can be conducted between unit (32) and the units (M). If magnets are used on unit (34), winding on unit (32), outer side (32b), and unit (36)

innerside (36a) oppta energi fra magnetfelt når enheten roterer. Det kan benyttes skovler som gir rotasjon og som medfører at elektrisitet genereres, og som igjen benyttes inn imot de ulike roterende enhetene for å få en jevn energiproduksjon. inner side (36a) absorb energy from magnetic fields when the unit rotates. Vanes can be used which provide rotation and which cause electricity to be generated, and which are in turn used against the various rotating units to obtain a uniform energy production.

Enheten (fig 6) kan også benyttes i energiforbrukene maskiner som motorer. The unit (fig 6) can also be used in the energy consumption of machines such as motors.

Publikasjonene US 2015069759 A beskriver et vertikalaksel vindturbinsystem med en eller flere uavhengige generatorenheter for elektrisk kraft, og US 2014050588 A beskriver en enhet for bruk av vindkraft som har minst en rotor, hvor rotoren har en rotoraksling som har en vertikal rotorakse og minst tre støtterammer som hver har minst ett rotorblad arrangert på rotorakslingen og rotorbladene er forskjøvet fra hverandre med samme vinkel i rotasjonsretningen til rotor, hvor rotorbladene er anordnet i en radial avstand fra rotorakselen. The publications US 2015069759 A describe a vertical axis wind turbine system with one or more independent generator units for electric power, and US 2014050588 A describe a unit for using wind power having at least one rotor, where the rotor has a rotor shaft having a vertical rotor axis and at least three support frames which each has at least one rotor blade arranged on the rotor shaft and the rotor blades are offset from each other by the same angle in the direction of rotation of the rotor, where the rotor blades are arranged at a radial distance from the rotor shaft.

At enhetene (M) er montert på begge sidene på enhet (34) og benyttes slik at rotasjonshastigheten økes inn mot enhet (34) ved å benytte elektrisk oppgiring, og mekanisk oppgiring, som beskrevet i patentkravene er ikke beskrevet i publikasjonene. That the units (M) are mounted on both sides of unit (34) and are used so that the rotation speed is increased towards unit (34) by using electrical gearing and mechanical gearing, as described in the patent claims, is not described in the publications.

Teknisk beskrivelse: Technical description:

Fig 1 ses som et tverrsnitt sett fra siden. Enhet (1) som har sylinderform (2) hvor anordning (3) med elektronikk tres inn på enheten og låses fast i spor slik at anordningene ikke vrir seg på enheten. Delene låses sammen med bolter og muttere. Delene kan også ha gjenger slik at delene skrues inn i hverandre. Fig 1 is seen as a cross-section seen from the side. Unit (1) which has a cylindrical shape (2) where device (3) with electronics is threaded onto the unit and locked in a slot so that the devices do not twist on the unit. The parts are locked together with bolts and nuts. The parts can also have threads so that the parts are screwed into each other.

Røret (2) kan ha strømledere som leder strøm inn til modulene med elektronikk (3). Modulene benyttes til omforming av strøm, signalstyring, regulator eller annen form for elektronikk. The pipe (2) may have current conductors that conduct current into the modules with electronics (3). The modules are used to transform power, signal control, regulators or other forms of electronics.

Fig 2 ses som et tverrsnitt sett fra siden. To enheter (1) settes mot hverandre og det monteres på rotor / stator. Rotor / stator opplagres med kulelager (4) på begge enhetene (1). Aksling monteres fast i senter på rotor / stator (5) Strømledere (5) i stator / rotor overfører strøm fra aksling inn på spole (6). Strømmen / elektrisiteten kan også ledes inn på anordningene med elektronikk og omformes før den benyttes på stator / rotor. Det benyttes børster imellom stator / rotor og anordningene med elektronikk. Det kan også benyttes strømleder istedenfor for børster. Fig 2 is seen as a cross-section seen from the side. Two units (1) are placed against each other and mounted on the rotor / stator. The rotor / stator is stored with ball bearings (4) on both units (1). The shaft is fixed in the center of the rotor / stator (5) Current conductors (5) in the stator / rotor transfer current from the shaft into the coil (6). The current / electricity can also be fed into the devices with electronics and transformed before it is used on the stator / rotor. Brushes are used between the stator / rotor and the devices with electronics. Current conductors can also be used instead of brushes.

Magneter / strømledere (7) monteres fast mellom enhetene (1). Fig 3 ses som et tverrsnitt sett fra siden. Aksling med isolert strømleder/e i senter (8) skrues inn på aksling del (10) med strømledere på utsidene som leder elektrisitet inn på stator / rotor (5) Akslingen opplagres i begge endene (9) med kulelager. Sylinderformet deksel (11) tres inn på enheten og låses med bolter til modul enhetene (1). Deksel har spor på begge sidene (14,15) som benyttes når flere enheter (M) monteres sammen. Disse sporene (14,15) kan også benyttes med kontakter for å overføre elektrisitet / signal mellom flere enheter (M). Børster / strømledere (16) som overfører elektrisitet mellom stator / rotor og modulene med elektronikk, overfører også strøm til strømleder/e i aksling (10) via stator/ rotor. Tilkobling (12,13) aksling med kontakt slik at strømlederne i akslingene blir sammenhengende om flere enheter monteres sammen i hverandre. Fig 4 viser figur sett fra siden. Deksel (17) med strøminntak monteres på enhet (M1). Benyttes det enheter på begge sidene på enhet (M1), så er strøminntaket på langsiden (14) til enhet (M1). Akslingene i enhet (M1) og i enhet (M2) skrues sammen (18) slik at strømlederne i akslingene blir sammenhengende. Det benyttes glatte deksel (20) slik at enhetene ikke kommer i kontakt med hverandre. Mellom enhet (M2) og enhet (M3) benyttes det en enhet (19) som skrues fast til enhet (M2). Enheten (19) har ikke kontakt med akslingen i enhet (M2). Enheten (19) har strømledere som overfører elektrisitet fra enhet (M2) til enhet (M3). Enheten (19) kan også benyttes som elektromagnet hvor elektrisiteten som passerer igjennom enheten benyttes i vikling / elektromagnet. Aksling i enhet (M3) skrues inn på enhet (19) slik at elektrisitet overføres til stator / rotor i enhet (M3). Det benyttes glatt deksel (20) på enhet (M3) slik at det er kun aksling i enheten (M3) som er tilkoblet enhet (19) som benyttes mellom enhetene (M2) og (M3). Magnets / current conductors (7) are fixed between the units (1). Fig 3 is seen as a cross-section seen from the side. Shaft with insulated current conductor(s) in the center (8) is screwed onto the shaft part (10) with current conductors on the outside that lead electricity into the stator / rotor (5) The shaft is supported at both ends (9) with ball bearings. The cylindrical cover (11) is threaded onto the unit and locked with bolts to the module units (1). The cover has grooves on both sides (14,15) which are used when several units (M) are assembled together. These tracks (14,15) can also be used with contacts to transfer electricity / signal between several units (M). Brushes / current conductors (16) which transfer electricity between the stator / rotor and the modules with electronics, also transfer current to current conductors in the shaft (10) via the stator / rotor. Connection (12,13) shaft with contact so that the current conductors in the shafts are connected if several units are assembled together. Fig 4 shows the figure seen from the side. Cover (17) with power inlet is mounted on unit (M1). If units are used on both sides of unit (M1), then the current intake is on the long side (14) of unit (M1). The shafts in unit (M1) and in unit (M2) are screwed together (18) so that the current conductors in the shafts are connected. A smooth cover (20) is used so that the units do not come into contact with each other. Between unit (M2) and unit (M3) a unit (19) is used which is screwed to unit (M2). The unit (19) does not have contact with the shaft in unit (M2). The unit (19) has current conductors that transfer electricity from unit (M2) to unit (M3). The unit (19) can also be used as an electromagnet where the electricity that passes through the unit is used in the winding / electromagnet. Shaft in unit (M3) is screwed onto unit (19) so that electricity is transferred to stator / rotor in unit (M3). A smooth cover (20) is used on unit (M3) so that only the shaft in unit (M3) is connected to unit (19) which is used between units (M2) and (M3).

Alternativ 2: Vindmølle hvor vindturbin er påmontert enhet (M3). Enheten (M3) generer energi som overføres til enheten (M2). Enheten (M2) tilfører rotasjonskraft og elektrisitet til aksling med strømledere som er sammenkoblet med aksling i enheten (M1). Dette beskrives videre oppunder figur 6. Option 2: Windmill where the wind turbine is attached to the unit (M3). The unit (M3) generates energy which is transferred to the unit (M2). The unit (M2) supplies rotational power and electricity to the shaft with current conductors that are interconnected with the shaft in the unit (M1). This is further described below in Figure 6.

Fig 5 viser figur sett fra siden. To aksling deler (8) med strømleder i senter skrues inn på hver sin side på aksling del (10) med strømledere på utsiden. Elektrisitet som ledes igjennom akslingen vil overføres til stator / rotor via aksling del Fig 5 shows the figure seen from the side. Two shaft parts (8) with power conductors in the center are screwed in on either side of the shaft part (10) with power conductors on the outside. Electricity that is conducted through the shaft will be transferred to the stator / rotor via the shaft part

(10) med utvendige strømledere. Stator / rotor kan også bygges direkte på aksling del i midten (10). Fig 6 viser et tverrsnitt av figuren sett fra siden. Aksling (21) i enheten (M3) har strømledere og er skrudd fast til enhet (23). Enhet (23) har filter / riller (24) som benyttes på fluid som passerer igjennom enheten i åpningen (35). Enhet (23) er montert fast til enhet (25), og til enhet (M2). Strømledere og kontakt (22) overfører elektrisitet / signal mellom enhet (23) og enhet (25). Enhet (23) vil få samme plassering som enhet (19), men med annerledes utforming og funksjon. Aksling i enhet (M2) har ikke kontakt med enhet (23). Riller (26) som slipper igjennom fluid. Aksling i enheten (M2) har strømledere og er montert til (27) aksling med strømledere i enhet (M1). Kontakt med strømledere (28) mellom enhet (25) og enhet (36). Aksling med strømledere i enhet (M1) er montert til (29) aksling (31) med strømledere som benyttes igjennom enhet (32). Enhet (32) er montert fast til aksling (31). Enhet (M1) er montert fast (30) til enhet (34). Enhet (32) har strømledere (32a) inn mot aksling (31) med strømledere. Åpning (33) mellom enhet (32) og enhet (34). Enhet (32) ytterside (32b) benyttes imot enhet (34) innerside (34a). Enhet (34) ytterside (34b) benyttes imot enhet (36) innerside (36a). Åpning (35) i mellom enhet (34) og enhet (36). Enhet (36) ytterside (36b) benyttes som stator hus, eller imot ny enhet. (10) with external current conductors. Stator / rotor can also be built directly on the shaft part in the middle (10). Fig 6 shows a cross-section of the figure seen from the side. Shaft (21) in the unit (M3) has current conductors and is screwed to unit (23). Unit (23) has filter / grooves (24) which are used on fluid that passes through the unit in the opening (35). Unit (23) is mounted firmly to unit (25) and to unit (M2). Current conductors and connector (22) transmit electricity / signal between unit (23) and unit (25). Unit (23) will have the same location as unit (19), but with a different design and function. Shaft in unit (M2) does not have contact with unit (23). Grooves (26) that allow fluid to pass through. Shaft in the unit (M2) has current conductors and is mounted to (27) shaft with current conductors in unit (M1). Contact with current conductors (28) between unit (25) and unit (36). Shaft with current conductors in unit (M1) is mounted to (29) shaft (31) with current conductors that are used through unit (32). Unit (32) is fixed to shaft (31). Unit (M1) is fixedly mounted (30) to unit (34). Unit (32) has current conductors (32a) towards shaft (31) with current conductors. Opening (33) between unit (32) and unit (34). Unit (32) outer side (32b) is used against unit (34) inner side (34a). Unit (34) outer side (34b) is used against unit (36) inner side (36a). Opening (35) between unit (34) and unit (36). Unit (36) outer side (36b) is used as a stator housing, or against a new unit.

Alternativ: Enhet (28) kan benyttes som opplagring slik at enhet (25) og enhet (36) kan rotere uavhengig av hverandre. Det kan benyttes skovler på enhet (34) ytterside (34a), og på enhet (36) ytterside (36a). Alternative: Unit (28) can be used as storage so that unit (25) and unit (36) can rotate independently of each other. Vanes can be used on unit (34) outer side (34a), and on unit (36) outer side (36a).

Alternativ Vindmølle: Elektrisitet genereres i enhet (M3), omformes og overføres til enhet (M2) som tilfører rotasjonskraft på egen aksling. Akslingen i enhet (M2) er montert sammen med akslingen i enhet (M1). Elektrisitet overfører fra enhet (M2) til enhet (M1). Enhet (M1) vil rotere på den roterende akslingen. Akslingen i enhet (M1) er montert til aksling (31). Elektrisitet kan ledes mellom enhet (32) og enhetene (M). Benyttes det magneter på enhet (34) vil vikling på enhet (32) ytterside (32b), og enhet (36) innerside (36a) oppta energi fra magnetfelt når enheten roterer. Alternative Windmill: Electricity is generated in unit (M3), transformed and transferred to unit (M2) which supplies rotational power on its own axle. The shaft in unit (M2) is mounted together with the shaft in unit (M1). Electricity transfers from unit (M2) to unit (M1). Unit (M1) will rotate on the rotating shaft. The shaft in unit (M1) is mounted to shaft (31). Electricity can be conducted between unit (32) and the units (M). If magnets are used on unit (34), the winding on unit (32) outer side (32b) and unit (36) inner side (36a) will absorb energy from the magnetic field when the unit rotates.

Enheten (fig 6) kan også benyttes i energiforbrukene maskiner som motorer. Det kan benyttes skovler som gir rotasjon og som medfører at elektrisitet genereres og som benyttes inn imot de ulike roterende/ bevegelige delene i enheten (fig6). The unit (fig 6) can also be used in the energy consumption of machines such as motors. Vanes can be used which provide rotation and which cause electricity to be generated and which are used against the various rotating/moving parts in the unit (fig6).

Fig 7 viser et tverrsnitt av figuren sett fra siden. Vindmølle med to vindturbiner (38) som er påmontert enhetene (M3). Elektrisitet tas ut fra enhet (36). Fundament (37) som enhet (36) er montert fast på. Fig 7 shows a cross-section of the figure seen from the side. Windmill with two wind turbines (38) which are mounted on the units (M3). Electricity is taken from unit (36). Foundation (37) on which unit (36) is fixed.

Claims (10)

1. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) som roterer rundt egen roterende og strømførende aksling, og elektronisk oppgiring mellom enhet (M2) og enhet (M1) overføres til enhet (34) og er videre karaktrisert ved: at enhetene (M) er montert på begge sidene (30) på enhet (34) og rotasjonshastigheten på enhetene (M) økes inn mot enhet (34), fra begge sidene, at elektrisitet og signal overføres via kontakter (14.15) mellom enhetene, at elektrisitet og signal overføres via aksling, at enhet (34) benyttes som stator / rotor,1. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) which rotates around its own rotating and current-carrying shaft, and electronic gearing between unit (M2) and unit (M1) is transferred to unit (34) and is further characterized by: that the units (M) are mounted on both sides (30) on unit (34) and the rotational speed of the units (M) is increased towards unit (34), from both sides, that electricity and signal are transferred via contacts (14.15) between the units, that electricity and signal are transferred via shafting, that unit (34) used as a stator / rotor, 2. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1, ved at enhet (34) har en roterende enhet innvendig (32) og er videre karaktrisert ved: at enhet (32) er montert fast til aksling (31) som er montert til (29) aksling i enhet (M1) at elektrisitet og signal ledes igjennom strømledere i aksling, at enhetene (32,34) benyttes som stator / rotor,2. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claim 1, in that unit (34) has a rotating unit inside (32) and is further characterized by: that unit (32) is mounted firmly to the shaft (31) which is fitted to (29) shaft in unit (M1) that electricity and signal are passed through current conductors in the shaft, that the units (32,34) are used as stator / rotor, 3. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1 - 2, ved at enhet (34) benyttes innvendig i enhet (36) og er videre karaktrisert ved: at enhet (34) kan ha skovler på utsiden (34b) som benyttes i område (35), mellom enhet (34) og enhet (36), at fluid kan passerer igjennom enheten i område (35) mellom enhet (34), og enhet (36), at enhet (36) ytterside (36b) kan benyttes imot ny enhet, eller imot rotor hus, at enhet (34) og enhet (36) benyttes som stator / rotor,3. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1 - 2, in that unit (34) is used inside unit (36) and is further characterized by: that unit (34) ) may have vanes on the outside (34b) which used in area (35), between unit (34) and unit (36), that fluid can pass through the unit in area (35) between unit (34) and unit (36), that unit (36) outside (36b) can be used against new unit, or against the rotor housing, that unit (34) and unit (36) are used as stator / rotor, 4. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1 - 3, ved at enhet (25) benyttes med anordning utvendig som tilfører en mekanisk oppgiring til akslingen i enhet (M2) at enhet (25) påmonteres anordning som skovler eller turbin som tilfører rotasjon på enheten når fluidstrømninger passerer skovlene,4. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1 - 3, by using unit (25) with an external device which supplies a mechanical gearing to the shaft in unit (M2) that unit (25) is fitted with a device such as shovels or turbine that adds rotation to the unit when fluid flows pass the vanes, 5. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1 - 4, ved at strømledere og kontakt (28) overfører elektrisitet og signal mellom enhet (36) og enhet (25).5. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1 - 4, by the fact that current conductors and contact (28) transmit electricity and signal between unit (36) and unit (25). 6. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1-5, ved at enhet (28) er opplagring mellom enhet (36) og enhet (25).6. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1-5, in that unit (28) is storage between unit (36) and unit (25). 7. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1 - 6, ved at enhet (23) har strømledere som overfører elektrisitet og signal (22) mellom enhet (M3) og enhet (M2).7. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1 - 6, in that unit (23) has current conductors which transmit electricity and signal (22) between unit (M3) and unit (M2). 8. Enhet (M1) som roterer rundt egen strømførende aksling ifølge krav 1 - 7, ved at det kan tas ut elektrisitet fra enhet (36), fra enhet (32), fra rotor hus imot enhet (36b), eller det tas ut elektrisitet fra enhet (34) via enheten (M).8. Unit (M1) which rotates around its own current-carrying shaft according to claims 1 - 7, in that electricity can be taken out from unit (36), from unit (32), from the rotor housing towards unit (36b), or it is taken out electricity from unit (34) via unit (M). 9. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1-8, ved at det kan tilføres elektrisitet og signal til enheten (36, 34, 32) via enheten (M).9. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1-8, in that electricity and signal can be supplied to the unit (36, 34, 32) via the unit (M). 10. Enhet (M2) tilfører rotasjonskraft og elektrisitet til aksling som er tilkoblet aksling i enhet (M1) ifølge krav 1-9, ved at enhetene (36, 34, 32) reguleres / styreres elektronisk med elektronikk fra modulene (3) i enhetene (M).10. Unit (M2) supplies rotational power and electricity to the shaft which is connected to the shaft in unit (M1) according to claims 1-9, in that the units (36, 34, 32) are regulated / controlled electronically with electronics from the modules (3) in the units (M).
NO20160592A 2016-01-20 2016-04-12 Wind turbine with wind turbines that rotate independently of each other and where electrical and mechanical gearing is used NO20160592A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20160103A NO338432B1 (en) 2016-01-20 2016-01-20 High speed rotor. Motor units (M) that will allow multiple units to be assembled into a larger and more powerful unit. The motor unit is then used in series to provide high rotational speed

Publications (2)

Publication Number Publication Date
NO338545B1 true NO338545B1 (en) 2016-09-05
NO20160592A1 NO20160592A1 (en) 2016-09-05

Family

ID=61800185

Family Applications (4)

Application Number Title Priority Date Filing Date
NO20160103A NO338432B1 (en) 2016-01-20 2016-01-20 High speed rotor. Motor units (M) that will allow multiple units to be assembled into a larger and more powerful unit. The motor unit is then used in series to provide high rotational speed
NO20160592A NO20160592A1 (en) 2016-01-20 2016-04-12 Wind turbine with wind turbines that rotate independently of each other and where electrical and mechanical gearing is used
NO20160669A NO338546B1 (en) 2016-01-20 2016-04-21 Pump
NO20161163A NO338711B1 (en) 2016-01-20 2016-07-13 Unit used to create gyro effect. Several units are placed around the load wire to prevent it from swinging from side to side as the rotational speed of the units is increased (29).

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO20160103A NO338432B1 (en) 2016-01-20 2016-01-20 High speed rotor. Motor units (M) that will allow multiple units to be assembled into a larger and more powerful unit. The motor unit is then used in series to provide high rotational speed

Family Applications After (2)

Application Number Title Priority Date Filing Date
NO20160669A NO338546B1 (en) 2016-01-20 2016-04-21 Pump
NO20161163A NO338711B1 (en) 2016-01-20 2016-07-13 Unit used to create gyro effect. Several units are placed around the load wire to prevent it from swinging from side to side as the rotational speed of the units is increased (29).

Country Status (1)

Country Link
NO (4) NO338432B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451392B (en) * 1981-05-29 1987-10-05 Josef Hoff Frame for rotor-type wind motor
US20020192068A1 (en) * 2001-06-14 2002-12-19 Selsam Douglas Spriggs Serpentine wind turbine
NO331605B1 (en) * 2009-12-11 2012-02-06 Ingenium As Wind Power Generation System
US20130071228A1 (en) * 2001-06-14 2013-03-21 Douglas Spriggs Selsam Stationary co-axial multi-rotor wind turbine supported by continuous central driveshaft
US20130280072A1 (en) * 2010-10-28 2013-10-24 Kechao Ma Air-Jet Wind Turbine Generator
US20140050588A1 (en) * 2011-03-02 2014-02-20 Siegfried Schmitt Device for using wind power having at least one rotor
SE1330086A1 (en) * 2013-07-02 2015-01-03 Mansour Kazempour Generator with varying number of rotors and stators
US20150069759A1 (en) * 2013-09-06 2015-03-12 Vert Wind Engergy, Llc Vertical axis wind turbine system with one or more independent electric power generation units

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE322454T1 (en) * 2000-10-19 2006-04-15 Liebherr Werk Nenzing CRANE OR EXCAVATOR FOR HANDLING A LOAD HANGING ON A LOADS WITH LOAD SWING DAMPING
JP5142810B2 (en) * 2008-05-09 2013-02-13 カヤバ工業株式会社 Suspension device
FR2939783B1 (en) * 2008-12-15 2013-02-15 Schneider Toshiba Inverter DEVICE FOR CONTROLLING THE DISPLACEMENT OF A LOAD SUSPENDED TO A CRANE
SG11201501910TA (en) * 2012-09-12 2015-04-29 Fmc Technologies Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling
GB2508868A (en) * 2012-12-13 2014-06-18 Johnson Electric Sa Suspension system for the rotor of a linear actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451392B (en) * 1981-05-29 1987-10-05 Josef Hoff Frame for rotor-type wind motor
US20020192068A1 (en) * 2001-06-14 2002-12-19 Selsam Douglas Spriggs Serpentine wind turbine
US20130071228A1 (en) * 2001-06-14 2013-03-21 Douglas Spriggs Selsam Stationary co-axial multi-rotor wind turbine supported by continuous central driveshaft
NO331605B1 (en) * 2009-12-11 2012-02-06 Ingenium As Wind Power Generation System
US20130280072A1 (en) * 2010-10-28 2013-10-24 Kechao Ma Air-Jet Wind Turbine Generator
US20140050588A1 (en) * 2011-03-02 2014-02-20 Siegfried Schmitt Device for using wind power having at least one rotor
SE1330086A1 (en) * 2013-07-02 2015-01-03 Mansour Kazempour Generator with varying number of rotors and stators
US20150069759A1 (en) * 2013-09-06 2015-03-12 Vert Wind Engergy, Llc Vertical axis wind turbine system with one or more independent electric power generation units

Also Published As

Publication number Publication date
NO20161163A1 (en) 2016-10-03
NO20160103A1 (en) 2016-08-15
NO338432B1 (en) 2016-08-15
NO20160669A1 (en) 2016-09-05
NO338546B1 (en) 2016-09-05
NO338711B1 (en) 2016-10-03
NO20160592A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
US8872403B2 (en) Electrical system and method for sustaining an external load
PH12016500653A1 (en) In-pipe turbine and hydro-electric power generation system
MX2012003382A (en) Electric power generation system.
US9334847B2 (en) Bi-rotational generator
PL228025B1 (en) A unit utilizing solar and wind energy
US8536725B2 (en) Compact wind and water turbine systems
WO2008121024A1 (en) Wind-driven power plant
RU2370660C1 (en) Hydrogenerator
NO338545B1 (en) Wind turbine with wind turbines that rotate independently of each other and where electrical and mechanical gearing is used
WO2011000283A1 (en) Outer-rotation type bi-directional rotation power generating equipment
KR101562384B1 (en) A rudder and brake with wind power generator
US20130020192A1 (en) Wind Turbine Fuel Generation System
KR200491127Y1 (en) Wind direction-tracking power generator with electrical connection
NO342169B1 (en) Wind turbine with electronic gear and adjustable / adjustable stator
CN105298716B (en) The strong multiphase fault-tolerant structure ocean current power generation unit of the ability that operates with failure
EP2430305A2 (en) Compact wind and water turbine systems
RU178822U1 (en) ELECTRICITY POWER MODULE
RU2477811C2 (en) Rotor-blade impeller of electric generating device based on magnus effect
JP2015052282A (en) Small-sized hydroelectric generator
CN102996363A (en) Composite two-stage wind power generation device in pipeline
RU2372519C2 (en) Wind power plant
CN208040610U (en) A kind of small-sized hydroelectric power generating apparatus
KR20130073031A (en) Wind turbine generator unit with a multi
KR101524432B1 (en) Generator having the air gap
RU2576091C1 (en) Wind engine

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: FRODE OLSEN, NO

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: FRODE OLSEN, NO

MM1K Lapsed by not paying the annual fees