NO337576B1 - Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils - Google Patents

Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils Download PDF

Info

Publication number
NO337576B1
NO337576B1 NO20140429A NO20140429A NO337576B1 NO 337576 B1 NO337576 B1 NO 337576B1 NO 20140429 A NO20140429 A NO 20140429A NO 20140429 A NO20140429 A NO 20140429A NO 337576 B1 NO337576 B1 NO 337576B1
Authority
NO
Norway
Prior art keywords
vibration generator
vibrations
compaction
compacting
compression
Prior art date
Application number
NO20140429A
Other languages
Norwegian (no)
Other versions
NO20140429A1 (en
Inventor
Øystein Larsen
Sakalima George Sikaneta
Original Assignee
Badger Explorer Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Badger Explorer Asa filed Critical Badger Explorer Asa
Priority to NO20140429A priority Critical patent/NO337576B1/en
Priority to EP15713458.6A priority patent/EP3126615A1/en
Priority to PCT/EP2015/056752 priority patent/WO2015150270A1/en
Priority to US15/300,802 priority patent/US20170016296A1/en
Publication of NO20140429A1 publication Critical patent/NO20140429A1/en
Publication of NO337576B1 publication Critical patent/NO337576B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/003Vibrating earth formations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Soil Working Implements (AREA)

Description

Denne søknaden vedrører en kompakteringsinnretning for effektiv kompaktering og/eller hydrofrakturgenerering. This application concerns a compaction device for efficient compaction and/or hydrofracturing generation.

Under drift av Badger Explorer, som er et boreverktøy av typen beskrevet i NO 312110, så blir en brønn boret i en undergrunnformasjon og stein fra boreprosessen blir deponert som en plugg bak det avanserende verktøyet. På grunn av dilatansen som oppstår når formasjonen gjennombores så er volumet av materialet som må bli deponert bak verktøyet større enn det som ble boret ut. Avfallsmaterialet må bli behandlet på en slik måte at det gjenvinner sin opprinnelige tetthet og/eller plassen det ekspanderte volumet opptar må bli tilpasset inne i formasjonen. During operation of the Badger Explorer, which is a drilling tool of the type described in NO 312110, a well is drilled in an underground formation and rock from the drilling process is deposited as a plug behind the advancing tool. Due to the dilatancy that occurs when the formation is drilled, the volume of material that must be deposited behind the tool is greater than what was drilled out. The waste material must be treated in such a way that it regains its original density and/or the space occupied by the expanded volume must be adapted within the formation.

I tilsvarende problem oppstår i gruveindustrien der mineralmalm fjernes fra undergrunnen, prosessert og avfallssteinen blir deretter benyttet for å tilbakefylle undergrunntunellene og hulrommene de ble utvunnet fra. A similar problem occurs in the mining industry where mineral ore is removed from the underground, processed and the waste rock is then used to backfill the underground tunnels and cavities from which they were extracted.

Et liknende problem påtreffes også på fagfeltet for injeksjon av tykk oppslemming der produserte faste avfallstoffer fra hydrokarbonbrønner blir injisert tilbake i undergrunnformasj oner. A similar problem is also encountered in the field of injection of thick slurry where produced solid waste from hydrocarbon wells is injected back into underground formations.

Enkel kompresjon av avfallet vil fjerne noe av fluidene (væsker og gasser) som er til stede i porehulrommene, men dette vil i mange tilfeller ikke være tilstrekkelig. Simple compression of the waste will remove some of the fluids (liquids and gases) that are present in the pore cavities, but this will not be sufficient in many cases.

Kompaktering av gruvetilbakefyllmasse ved å benytte lavfrekvensvibrerende kompaktorer har blitt utført på overflaten i gruveindustrien, og har sannsynligvis blitt benyttet i undergrunnen. Fortetting av overskuddsdeponeringer ved å benytte en eksperimentell lav-effekt ultrasonisk kompaktor for geoteknisk grunnforbedring har også blitt rapportert (Towhata, I., Geotechnical Earthquake Engineering, Springer-Verlag 2008, s. 608). Compaction of mine backfill using low-frequency vibrating compactors has been carried out on the surface in the mining industry, and has probably been used underground. Compaction of excess deposits using an experimental low-power ultrasonic compactor for geotechnical ground improvement has also been reported (Towhata, I., Geotechnical Earthquake Engineering, Springer-Verlag 2008, p. 608).

WO 2005003648 beskriver en geotermisk varmeveksler og en metode for kompaktering av masse. WO 2005003648 describes a geothermal heat exchanger and a method for compacting mass.

WO 2005049306 beskriver en kompresjons enhet for å presse medisinske tabletter som benytter ultralyd for å omforme aktive ingredienser i legemiddelet fra krystallinsk til amorft. WO 2005049306 describes a compression device for pressing medical tablets that uses ultrasound to transform active ingredients in the drug from crystalline to amorphous.

US 5676213 beskriver en metode og apparat for å fjerne en slamkake fra veggene i et borehull, hvor apparatet har en vibrasjonsgenerator. US 5676213 describes a method and apparatus for removing a mud cake from the walls of a borehole, where the apparatus has a vibration generator.

US 5837298, WO 03026810. US 2013004237 og US 4173725 viser eksempler på bakgrunnsteknologi. US 5837298, WO 03026810. US 2013004237 and US 4173725 show examples of background technology.

Formålet med oppfinnelsen er å tilveiebringe en innretning og en fremgangsmåte for effektiv kompaktering og/eller hydrofrakturgenerering som lindrer i det minste noen av de ovennevnte problemene og utfordringene. The purpose of the invention is to provide a device and a method for efficient compaction and/or hydrofracture generation that alleviates at least some of the above-mentioned problems and challenges.

Formålet med oppfinnelsen blir oppnådd ved hjelp av trekkene i patentkravene. The purpose of the invention is achieved by means of the features of the patent claims.

Materialet som skal kompaktes, f.eks. for applikasjonene beskrevet ovenfor, vil i denne beskrivelsen bli referert til som «masser». Dette uttrykket er ment å skulle beskrive ethvert materiale som skal kompaktes eller injiseres, f.eks. i undergrunnen. The material to be compacted, e.g. for the applications described above, will be referred to in this description as "masses". This term is intended to describe any material to be compacted or injected, e.g. in the underground.

En potensiell applikasjon av den beskrevne teknologien som ikke er avhengig av den økte evnen til å kompaktere, men heller av forbedret injeksjonsytelse, hører til på fagområdet for hydrofraktur og hydraulisk stimulering, slik som i brønnhull for å danne små frakturer (typisk mindre enn 1 mm), langs hvilke fluider slik som gass, petroleum, uranbærende løsning, og saltvann mak migrere til brønnen. Ved å påføre vibrasjoner på injeksjonspunktet under en stimulering vil friksjonen i brønnen bli redusert, og vibrering under plassering av bulkproppmateriale vil tillate videre åpning og dermed mer produktiv stimulering. A potential application of the described technology that does not rely on the increased ability to compact, but rather on improved injection performance, is in the field of hydrofracturing and hydraulic stimulation, such as in wellbores to form small fractures (typically less than 1 mm ), along which fluids such as gas, petroleum, uranium-bearing solution and salt water can migrate to the well. By applying vibrations to the injection point during a stimulation, friction in the well will be reduced, and vibration during placement of bulk plug material will allow further opening and thus more productive stimulation.

Formålet med oppfinnelsen blir oppnådd ved en kombinasjon av to mekanismer: kompresjon og høyfrekvensvibrering. The purpose of the invention is achieved by a combination of two mechanisms: compression and high-frequency vibration.

Det er godt etablert at vibrering av en tørr eller mettet granulær blanding vil forårsake et fall i viskositeten til blandingen. Minskningen i strømningsmotstanden er relatert til frekvensen på vibrasjonene, størrelsen på partiklene i blandingen og amplituden på vibrasjonene (Melosh, Journal of Geophysical Research, 1979). It is well established that vibration of a dry or saturated granular mixture will cause a drop in the viscosity of the mixture. The reduction in flow resistance is related to the frequency of the vibrations, the size of the particles in the mixture and the amplitude of the vibrations (Melosh, Journal of Geophysical Research, 1979).

Høyeffekt (> 10 W/cm2) - høyfrekvente (> 8 kHz) ultrasoniske vibrasjoner påført en overflate som blir benyttet til å kompakte vil slik fluidisere massen og tillate porefluider å bli tvunget ut inntil massen har blitt komprimert til sitt «jamming»-punktet. «Jamming» er den fysiske prosessen ved hvilken noen materialer, slik som granulære materialer, glasstyper, skum og andre komplekse fluider blir rigide med økende tetthet. Tettheten ved hvilken systemer «jammes» er bestemt av mange faktorer, inkludert formen på deres komponenter, deform er barheten av partiklene, friksjonskrefter mellom partiklene, og graden av dispergering i systemet. Den overordnede formen på «jamming»-manifolden kan være avhengig av det spesifikke systemet. High power (> 10 W/cm2) - high frequency (> 8 kHz) ultrasonic vibrations applied to a surface being used for compaction will thus fluidize the mass and allow pore fluids to be forced out until the mass has been compacted to its "jamming" point. "Jamming" is the physical process by which some materials, such as granular materials, glass types, foams and other complex fluids become rigid with increasing density. The density at which systems "jam" is determined by many factors, including the shape of their components, the deformability of the particles, frictional forces between the particles, and the degree of dispersion in the system. The overall shape of the "jamming" manifold may depend on the specific system.

«Jamming»-punktet for den ultrasonisk vibrerte massen vil forekomme ved en høyere tetthet enn den ikke-vibrerte massen, noe som fører til en høyere sluttetthet for materialet, f.eks. i en komprimert plugg. The "jamming" point for the ultrasonically vibrated mass will occur at a higher density than the non-vibrated mass, leading to a higher final density of the material, e.g. in a compressed plug.

Fluidisering og energioverføring til massen vil tillate denne å trenge inn i og utvide små åpninger og hydrofraktur er som eller ville vært for små til å ta imot materialet. Fluidization and energy transfer to the mass will allow it to penetrate and expand small openings and hydrofractures that are or would be too small to receive the material.

I én utførelsesform omfatter en kompakteringsinnretning ifølge oppfinnelsen en kompresjonsinnretning, en vibrasjonsgeneratorinnretning anbrakt for å generere vibrasjoner i det ultrasoniske frekvensområdet og en kraftkilde koblet til vibrasj onsgeneratoren. In one embodiment, a compaction device according to the invention comprises a compression device, a vibration generator device arranged to generate vibrations in the ultrasonic frequency range and a power source connected to the vibration generator.

Kompresjonsinnretningen er en innretning som komprimerer materialet, det vil si massen, til en så kompakt tilstand som mulig. Kompresjonsinnretningen kan være enhver passende innretning som er i stand til å komprimere materialet det er snakk om, og er i én utførelsesform en bevegelig stempelplate. Stempelet kan være et pneumatisk eller hydraulisk stempel med en plate montert på dens ene ende perpendikulært på bevegelsesretningen til stempelet. Forlengningen av stempelet mot massen forårsaker komprimering av massen. The compression device is a device that compresses the material, i.e. the mass, to as compact a state as possible. The compression device can be any suitable device capable of compressing the material in question, and is in one embodiment a movable piston plate. The piston may be a pneumatic or hydraulic piston with a plate mounted on one end of it perpendicular to the direction of movement of the piston. The extension of the piston against the mass causes compression of the mass.

Vibrasjonsgeneratorinnretningen er en innretning som er tilpasset å generere vibrasjoner med en ønsket frekvens i massen for å oppnå fluidiseringseffekten beskrevet ovenfor. I én utførelsesform er vibrasjonsgeneratorinnretningen en sonisk eller ultrasonisk vibrerende overflate som er festet på den bevegelige stempelplaten. Vibrasjonene vil deretter bli overført via stempelplaten og deretter overført til massen, der de forårsaker de ønskede vibrasjonene i massen. Vibrasjonsgeneratorinnretningen kan også være koblet til enhver annen type kompresjonsinnretning og være anbrakt for å generere vibrasjoner i kompresjonsinnretningen. Vibrasjonsgeneratoren er en piezoelektrisk eller magnetostriktiv omformer. I andre utførelsesformer kan vibrasjonsgeneratoren sende vibrasjonene direkte inn i massen. The vibration generator device is a device adapted to generate vibrations with a desired frequency in the mass to achieve the fluidization effect described above. In one embodiment, the vibration generator means is a sonic or ultrasonic vibrating surface that is attached to the movable piston plate. The vibrations will then be transmitted via the piston plate and then transferred to the mass, where they cause the desired vibrations in the mass. The vibration generator device can also be connected to any other type of compression device and be arranged to generate vibrations in the compression device. The vibration generator is a piezoelectric or magnetostrictive transducer. In other embodiments, the vibration generator can send the vibrations directly into the mass.

For å oppnå de ønskede vibrasjonskarakteristikaene kan kompakteringsinnretningen omfatte en styringsenhet koblet til vibrasjonsgeneratoren for å styre vibrasj onsgeneratoren. In order to achieve the desired vibration characteristics, the compacting device can comprise a control unit connected to the vibration generator to control the vibration generator.

Karakteristikaene for vibrasjonene, slik som frekvens og amplitude for vibrasjonene som genereres av vibrasjonsgeneratorinnretningen, kan bli innstilt for å tilveiebringe den ønskede frekvensen og amplituden i massen ved å ta hensyn til dempingen og andre effekter som forårsakes av de tilkoblede elementene slik som stempelplate, stempel, osv. The characteristics of the vibrations, such as frequency and amplitude of the vibrations generated by the vibration generator device, can be adjusted to provide the desired frequency and amplitude in the mass by taking into account the damping and other effects caused by the connected elements such as piston plate, piston, etc.

I én utførelsesform genererer vibrasj onsgeneratorinnretningen høyeffektvibrasj oner på > 1 kW og > 8 kHz frekvens. I en annen utførelsesform kan vibrasjonene ligge i området 20 kHz og høyere. Kompakteringsinnretningen kan også være anbrakt for å være i stand til å variere frekvensen, eller tilpasse frekvensen til materialet som skal kompaktes. Kompakteringsinnretningen kan i så henseende omfatte sensorinnretninger som kan overvåke typen materiale/masse som skal kompaktes, og styringsenheten kan være programmert for å tilpasse vibrasjonskarakteristikaene til det foreliggende materialet. In one embodiment, the vibration generator device generates high power vibrations of > 1 kW and > 8 kHz frequency. In another embodiment, the vibrations can be in the range of 20 kHz and higher. The compacting device can also be arranged to be able to vary the frequency, or adapt the frequency to the material to be compacted. In this regard, the compacting device can include sensor devices that can monitor the type of material/mass to be compacted, and the control unit can be programmed to adapt the vibration characteristics to the material in question.

Kraftkilden for kompakteringsinnretningen kan være enhver passende kraftkilde, slik som en kablet kraftkilde, eller innretningen kan motta kraft fra en tilkoblet eller tilliggende innretning, eller være selvdrevet. The power source for the compacting device may be any suitable power source, such as a wired power source, or the device may receive power from a connected or adjacent device, or be self-powered.

Oppfinnelsen vil nå bli beskrevet i større detalj ved hjelp av et eksempel og med referanse til de tilhørende figurene. Figur 1 illustrerer et eksempel på en kompakteringsinnretning benyttet til effektiv kompaktering. Figur 2 illustrerer et eksempel på en kompakteringsinnretning benyttet til hydrofrakturgenerering. Figur 1 illustrerer en kompakteringsinnretning 10 ifølge oppfinnelsen som omfatter en kompresjons innretning 11, i formen av et stempel 13 og en påsatt bevegelig stempelplate 14. En vibrasjonsgeneratorinnretning 12 er anbrakt for å generere vibrasjoner i det ultrasoniske frekvensområdet, og er en sonisk eller ultrasonisk vibrerende overflate 12 som er festet på den bevegelige stempelplaten 14. Vibrasjonsoverflaten 12 kan f.eks. omfatte en piezoelektrisk eller magnetostriktiv omformer. The invention will now be described in greater detail by means of an example and with reference to the associated figures. Figure 1 illustrates an example of a compaction device used for efficient compaction. Figure 2 illustrates an example of a compaction device used for hydrofracture generation. Figure 1 illustrates a compaction device 10 according to the invention which comprises a compression device 11, in the form of a piston 13 and an attached movable piston plate 14. A vibration generator device 12 is arranged to generate vibrations in the ultrasonic frequency range, and is a sonic or ultrasonic vibrating surface 12 which is attached to the movable piston plate 14. The vibrating surface 12 can e.g. include a piezoelectric or magnetostrictive transducer.

Vibrasjonene forårsaker fluidisering og partikkelreorganisering som tillater blandingen å fortrenge fluider (væsker og/eller gasser) mer effektivt, for slik å tilveiebringe den ønskede kompresjonen. The vibrations cause fluidization and particle reorganization that allows the mixture to displace fluids (liquids and/or gases) more efficiently, thus providing the desired compression.

Vibrasj onsgeneratorinnretningen er koblet til en kraftkilde (ikke vist) for å tilveiebringe kraft for å generere vibrasjoner. I tilfellet der The vibration generator device is connected to a power source (not shown) to provide power to generate vibrations. In the case there

kompakteringsinnretningen blir benyttet i et boreverktøy av typen beskrevet i NO 312110 (Badger Explorer) kan kraftkilden være anbrakt på jordoverflaten og kraft kan tilføres via den kveilede kabelen, gjennom hvilken kraft blir tilført verktøyet og data overført til overflaten. the compaction device is used in a drilling tool of the type described in NO 312110 (Badger Explorer), the power source can be located on the ground surface and power can be supplied via the coiled cable, through which power is supplied to the tool and data transmitted to the surface.

Figur 2 illustrerer et eksempel på en kompakteringsinnretning benyttet for hydrofrakturgenerering. Dette er en teknikk for å danne små frakturer (typisk mindre enn 1 mm), langs hvilke fluider slik som gass, petroleum, uranbærende løsninger og saltvann kan migrere til brønnen. Hydraulisk trykk blir fjernet fra brønnen, deretter holder små korn med bulkproppmateriale (sand eller aluminiumoksid) disse frakturene åpne med en gang fjellet oppnår likevekt. Figure 2 illustrates an example of a compaction device used for hydrofracture generation. This is a technique to form small fractures (typically less than 1 mm), along which fluids such as gas, petroleum, uranium-bearing solutions and salt water can migrate to the well. Hydraulic pressure is removed from the well, then small grains of bulk plug material (sand or aluminum oxide) keep these fractures open once the rock reaches equilibrium.

Teknikkene er svært vanlige i brønner for skifergass, skiferolje, tett gass, og kullag-gass og brønner i hardt fjell. Denne brønnstimuleringen blir vanligvis utført én gang i brønnens levetid og forbedrer i stor grad fluidfjerning og brønnproduktivitet, men det har oppstått en økende trend mot flere hydrauliske fraktureringssesjoner ettersom produksjonen faller. The techniques are very common in wells for shale gas, shale oil, tight gas, and coal seam gas and wells in hard rock. This well stimulation is usually performed once in the life of the well and greatly improves fluid removal and well productivity, but there has been an increasing trend towards more hydraulic fracturing sessions as production declines.

I eksemplet på figur 2 omfatter kompakteringsinnretningen 20 en kompresjonsinnretning 21, f.eks. liknende som på figur 1. En vibrasj onsgeneratorinnretning 22 er anbrakt for å generere vibrasjoner i det ultrasoniske frekvensområdet, og er en sonisk eller ultrasonisk vibrerende overflate 22 som er festet til kompresjonsinnretningen 21. Vibrasj onsoverflaten 22 kan f.eks. omfatte en piezoelektrisk eller magnetostriktiv omformer. Vibrasjoner på et injeksjonspunkt under en stimulering blir frembrakt ved hjelp av vibratorgenereringsinnretningen 22. Dette reduserer friksjonen i brønnen («skin friction») og tilveiebringer frakturer 23 i grunnen inn i hvilke bulkproppmateriale kan migrere. Som nevnt ovenfor vil dette tillate bredere åpninger og dermed mer produktiv stimulering. In the example in Figure 2, the compacting device 20 comprises a compression device 21, e.g. similar to Figure 1. A vibration generator device 22 is placed to generate vibrations in the ultrasonic frequency range, and is a sonic or ultrasonic vibrating surface 22 which is attached to the compression device 21. The vibration surface 22 can e.g. include a piezoelectric or magnetostrictive transducer. Vibrations at an injection point during a stimulation are produced by means of the vibrator generating device 22. This reduces friction in the well ("skin friction") and provides fractures 23 in the bed into which bulk plug material can migrate. As mentioned above, this will allow wider openings and thus more productive stimulation.

Claims (8)

1. Underjordisk materiale-kompakteringsinnretning (10) omfattende: en kompresjonsinnretning (11), en vibrasj onsgeneratorinnretning (12) anbrakt for å generere vibrasjoner i frekvensområdet > 8 kHz i det underjordiske materialet, og en kraftkilde koblet til vibrasjonsgeneratoren.1. Underground material compaction device (10) comprising: a compression device (11), a vibration generator device (12) arranged to generate vibrations in frequency range > 8 kHz in the underground material, and a power source connected to the vibration generator. 2. Kompakteringsinnretning ifølge krav 1, der kompresjonsinnretningen (11) er en bevegelig stempelplate (14).2. Compacting device according to claim 1, where the compression device (11) is a movable piston plate (14). 3. Kompakteringsinnretning ifølge krav 2, der vibrasj onsgeneratorinnretningen (12) er en vibrerende overflate som er satt fast på den bevegelige stempelplaten (14).3. Compacting device according to claim 2, where the vibration generator device (12) is a vibrating surface which is attached to the movable piston plate (14). 4. Kompakteringsinnretning ifølge ett av de foregående krav, der vibrasj onsgeneratorinnretningen (12) er forbundet med kompresjonsinnretningen (11) og anbrakt for å generere vibrasjoner i kompresjonsinnretningen.4. Compacting device according to one of the preceding claims, where the vibration generator device (12) is connected to the compression device (11) and arranged to generate vibrations in the compression device. 5. Kompakteringsinnretning ifølge ett av de foregående krav, der vibrasj onsgeneratorinnretningen (12) genererer kraftige vibrasjoner på > lkW og > 8 kHz frekvens.5. Compacting device according to one of the preceding claims, where the vibration generator device (12) generates powerful vibrations of > lkW and > 8 kHz frequency. 6. Kompakteringsinnretning ifølge ett av de foregående krav, ytterligere omfattende en styringsenhet koblet til vibrasjonsgeneratoren (12) for å styre vibrasjonsgeneratoren.6. Compacting device according to one of the preceding claims, further comprising a control unit connected to the vibration generator (12) for controlling the vibration generator. 7. Kompakteringsinnretning ifølge ett av de foregående krav, der vibrasjonsgeneratoren (12) er en piezoelektrisk eller magnetostriktiv omformer.7. Compacting device according to one of the preceding claims, where the vibration generator (12) is a piezoelectric or magnetostrictive converter. 8. Kompakteringsinnretning ifølge ett av de foregående krav, der vibrasjonene ligger i området 20 kHz og høyere.8. Compacting device according to one of the preceding claims, where the vibrations are in the range of 20 kHz and higher.
NO20140429A 2014-04-03 2014-04-03 Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils NO337576B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO20140429A NO337576B1 (en) 2014-04-03 2014-04-03 Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils
EP15713458.6A EP3126615A1 (en) 2014-04-03 2015-03-27 A sonic/ultrasonic-assisted method for the compaction and injection of granular slurries and pastes in the subsurface
PCT/EP2015/056752 WO2015150270A1 (en) 2014-04-03 2015-03-27 A sonic/ultrasonic-assisted method for the compaction and injection of granular slurries and pastes in the subsurface
US15/300,802 US20170016296A1 (en) 2014-04-03 2015-03-27 A sonic/ultrasonic-assisted method for the compaction and injection of granular slurries and pastes in the subsurface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20140429A NO337576B1 (en) 2014-04-03 2014-04-03 Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils

Publications (2)

Publication Number Publication Date
NO20140429A1 NO20140429A1 (en) 2015-10-05
NO337576B1 true NO337576B1 (en) 2016-05-09

Family

ID=54239424

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20140429A NO337576B1 (en) 2014-04-03 2014-04-03 Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils

Country Status (4)

Country Link
US (1) US20170016296A1 (en)
EP (1) EP3126615A1 (en)
NO (1) NO337576B1 (en)
WO (1) WO2015150270A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10787874B2 (en) * 2017-05-18 2020-09-29 Ncs Multistage Inc. Apparatus, systems and methods for mitigating solids accumulation within the wellbore during stimulation of subterranean formations
CN115012893B (en) * 2022-05-31 2024-04-16 贵州大学 Ultrasonic wave cooperated hydraulic fracturing device for increasing yield of coalbed methane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173725A (en) * 1977-03-07 1979-11-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Piezoelectrically driven ultrasonic transducer
US5676213A (en) * 1996-04-10 1997-10-14 Schlumberger Technology Corporation Method and apparatus for removing mudcake from borehole walls
US5837298A (en) * 1997-10-15 1998-11-17 Face International Corp. Piezoelectrically-actuated vibrating surface-finishing tool
WO2003026810A1 (en) * 2001-09-27 2003-04-03 The Morgan Crucible Company Plc Apparatus and method of manufacturing ultrasonic transducers
WO2005003648A1 (en) * 2003-07-03 2005-01-13 Enlink Geoenergy Services, Inc. A method of constructing a geothermal heat exchanger
WO2005049306A1 (en) * 2003-11-18 2005-06-02 Eurand Pharmaceuticals Limited Ultrasound-assisted compaction process with a compaction device made of coupled plastic-metal materials
US20130004237A1 (en) * 2011-06-28 2013-01-03 Bomag Gmbh Apparatus for soil compaction, especially hand-operated, comprising an electric drive, and a method for operating such an apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975056A (en) * 1974-02-11 1976-08-17 Rapidex, Inc. Longwall canted drum mining machine
JPH07239322A (en) * 1993-04-21 1995-09-12 Mas Fab Gustav Eirich Method and equipment for deciding molding characteristic of sand
EP1559864B1 (en) * 2004-01-27 2006-06-21 Services Petroliers Schlumberger Downhole drilling of a lateral hole

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173725A (en) * 1977-03-07 1979-11-06 Kabushiki Kaisha Toyota Chuo Kenkyusho Piezoelectrically driven ultrasonic transducer
US5676213A (en) * 1996-04-10 1997-10-14 Schlumberger Technology Corporation Method and apparatus for removing mudcake from borehole walls
US5837298A (en) * 1997-10-15 1998-11-17 Face International Corp. Piezoelectrically-actuated vibrating surface-finishing tool
WO2003026810A1 (en) * 2001-09-27 2003-04-03 The Morgan Crucible Company Plc Apparatus and method of manufacturing ultrasonic transducers
WO2005003648A1 (en) * 2003-07-03 2005-01-13 Enlink Geoenergy Services, Inc. A method of constructing a geothermal heat exchanger
WO2005049306A1 (en) * 2003-11-18 2005-06-02 Eurand Pharmaceuticals Limited Ultrasound-assisted compaction process with a compaction device made of coupled plastic-metal materials
US20130004237A1 (en) * 2011-06-28 2013-01-03 Bomag Gmbh Apparatus for soil compaction, especially hand-operated, comprising an electric drive, and a method for operating such an apparatus

Also Published As

Publication number Publication date
NO20140429A1 (en) 2015-10-05
EP3126615A1 (en) 2017-02-08
WO2015150270A1 (en) 2015-10-08
US20170016296A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
Mullakaev et al. Development of ultrasonic equipment and technology for well stimulation and enhanced oil recovery
He et al. Review of hydraulic fracturing for preconditioning in cave mining
US10309202B2 (en) Fracturing treatment of subterranean formations using shock waves
US20100044032A1 (en) Method for completion, maintenance and stimulation of oil and gas wells
US7059403B2 (en) Electroacoustic method and device for stimulation of mass transfer processes for enhanced well recovery
US8534352B2 (en) Methods and apparatus for enhanced oil recovery
Guo et al. High frequency vibration recovery enhancement technology in the heavy oil fields of China
Xi et al. Modelling rock fracture induced by hydraulic pulses
US4471838A (en) Sonic method and apparatus for augmenting fluid flow from fluid-bearing strata employing sonic fracturing of such strata
Davies et al. Elastic strain energy release from fragmenting grains: Effects on fault rupture
EP3126608A1 (en) System and method for cleaning of a drill bit
Minkley et al. Stability and integrity of salt caverns under consideration of hydro-mechanical loading
NO337576B1 (en) Sonic / Ultrasonic Assisted Procedure for Compaction and Injection of Granular Slurries and Subsoils
US3016095A (en) Sonic apparatus for fracturing petroleum bearing formation
Bui et al. Numerical predictions of post-flow behaviour of granular materials using an improved SPH model
Warren The quasi-static stress field around a fractured well bore
US20070295500A1 (en) Method of treating bottom-hole formation zone
Wasantha et al. Effect of fluid injection rate on the hydraulic fracture propagation characteristics
CN103195386B (en) Downhole double-wave low-frequency high-power hydraulic vibrator
Green et al. Effect of Mars atmospheric pressure on percussive excavation forces
Zhu et al. Numerical Investigation of Influential Factors in Hydraulic Fracturing Processes Using Coupled Discrete Element‐Lattice Boltzmann Method
Yang et al. Three-dimensional simulation of rock breaking efficiency under various impact drilling loads
Omidi et al. Well stimulation in tight formations: a dynamic approach
Cui et al. Numerical investigation on the influence of inter-well stress interference on hydraulic fracture propagation in shale formation
Nasedkina et al. A model for hydrodynamic influence on a multi-layer deformable coal seam

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees