NO334627B1 - Process for the production of disilane - Google Patents

Process for the production of disilane Download PDF

Info

Publication number
NO334627B1
NO334627B1 NO20100466A NO20100466A NO334627B1 NO 334627 B1 NO334627 B1 NO 334627B1 NO 20100466 A NO20100466 A NO 20100466A NO 20100466 A NO20100466 A NO 20100466A NO 334627 B1 NO334627 B1 NO 334627B1
Authority
NO
Norway
Prior art keywords
disilane
process according
monosilane
gas
catalyst
Prior art date
Application number
NO20100466A
Other languages
Norwegian (no)
Other versions
NO20100466A1 (en
Inventor
Dag Øistein Eriksen
Vidar Bjørnstad
Alexander Krivokapic
Original Assignee
Polysilane As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polysilane As filed Critical Polysilane As
Priority to NO20100466A priority Critical patent/NO334627B1/en
Priority to PCT/NO2011/000112 priority patent/WO2011122959A1/en
Publication of NO20100466A1 publication Critical patent/NO20100466A1/en
Priority to NO20121263A priority patent/NO20121263A1/en
Publication of NO334627B1 publication Critical patent/NO334627B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

Teknisk område Technical area

Denne oppfinnelsen gjelder en ny og innovativ prosess for produksjon av disilan. This invention relates to a new and innovative process for the production of disilane.

Bakgrunn Background

Innen dagens produksjon av elektroniske- og fotovoltaiske komponenter blir tynne lag av silisium deponert på substrater, vanligvis såkalte silisium "wafers" (skiver). Slike lag produseres ved hjelp av CVD, Chemical Vapor Deposition, eller MBE, Molecular Beam Epitaxy. Silisiumet føres inn i reaktoren i form av en gass som dekomponerer termisk på substratet som skal dekkes. Gassene som benyttes er monosilan, SiH4, eller TCS, triklorsilan (Tri-Chloro Silan), SiHCI3. Temperaturene som trengs for å dekomponere disse gassene er henholdsvis i områdene rundt 800 og 1400 K. Substratene må derfor tåle høye temperaturer. I tillegg blir i CVD, som er den raskeste av de to prosessene, gassen varmet i hele reaksjonskammeret og mye silisium blir avsatt utenfor substratet. Hvis deponeringstemperaturen er lavere blir tapet mindre siden temperaturgradienten mellom omgivelsene og reaksjonsstedet blir mindre og derfor lettere å isolere termisk. In today's production of electronic and photovoltaic components, thin layers of silicon are deposited on substrates, usually so-called silicon wafers. Such layers are produced using CVD, Chemical Vapor Deposition, or MBE, Molecular Beam Epitaxy. The silicon is fed into the reactor in the form of a gas which decomposes thermally on the substrate to be coated. The gases used are monosilane, SiH4, or TCS, trichlorosilane (Tri-Chloro Silane), SiHCI3. The temperatures needed to decompose these gases are respectively around 800 and 1400 K. The substrates must therefore withstand high temperatures. In addition, in CVD, which is the fastest of the two processes, the gas is heated throughout the reaction chamber and much silicon is deposited outside the substrate. If the deposition temperature is lower, the loss is smaller since the temperature gradient between the surroundings and the reaction site is smaller and therefore easier to insulate thermally.

Disilan, Si2H6, representerer et alternativ som omgår de ulempene monosilan og TCS medfører. Disilan blir i dag brukt industrielt til deponering av amorft silisium, epitaksisk silisium og silisiumbaserte dielektrikum produsert via hurtig lavtemperatur CVD (rapid low-temperature chemical vapor deposition, LTCVD)<1>. Disilan blir også brukt i groing av tynne SiGe-filmer ved hjelp av MBE sammen med metallisk germanium<2>. Disilan er brukt som silisiumkilde for hurtig lavtemperatur epitaktisk deponering av silisium<3>. Disilane, Si2H6, represents an alternative that circumvents the disadvantages of monosilane and TCS. Disilane is currently used industrially for the deposition of amorphous silicon, epitaxial silicon and silicon-based dielectrics produced via rapid low-temperature CVD (rapid low-temperature chemical vapor deposition, LTCVD)<1>. Disilane is also used in the growth of thin SiGe films using MBE together with metallic germanium<2>. Disilane is used as a silicon source for rapid low-temperature epitaxial deposition of silicon<3>.

Deponering av amorft silisium, a-Si, på substrater kan gjøres ved langt lavere temperaturer ved bruk av disilan enn ved bruk av silan. Det har blitt vist at disilan er gir langt bedre produkter enn silan ved deponering av polykrystallinske tynne filmer på forskjellige substrater. Chen et al.<4>rapporterer 50% forbedring i filmtykkelsens homogenitet og 25% i overflatens ruhet. Rogel et al.<5>rapporterer forbedrede egenskaper hos transistorer laget av tynne filmer produsert på Corning glassubstrat. Den termiske dekomponeringsmekanismen til disilan er ikke godt forstått, men de viktigste stegene er det enighet om. Det er enighet om at dekomponeringen går gjennom et steg hvor disilanmolekylet splittes opp i monosilan and SiH2.<6>Splitting av Si-Si-bindingen krever 340 kJ/mol sammenliknet med Si-H-bindingen som krever 393 kJ/mole<7>. Det kreves derfor lavere temperatur for å splitte disilanmolekylet enn for å splitte monosilan, men bare halvparten av disilanmolekylet vil bli deponert ved denne temperaturen. Niwano et al. foreslår imidlertid en dekomponeringsmekanisme ved 700 K hvor det dannes et intermediært molekyl: H2Si-SiH2. Om så er vil alt disilan bli omdannet til silisium. Tonokura et al. studerte hydrogenert silisium etter som det ble dannet med time-of-flight massespektrometri, men kunne ikke påvise noen monosilisium-forbindelser.<8>Den samme gruppe bestemte, i en senere studie, dekomponeringsstegene til SiH4, SiH2, H3SiSiH, og dannelsen av høyere silaner, dvs. tri- og tetrasilaner<9>. Deposition of amorphous silicon, a-Si, on substrates can be done at much lower temperatures when using disilane than when using silane. It has been shown that disilane gives far better products than silane when depositing polycrystalline thin films on different substrates. Chen et al.<4> report 50% improvement in film thickness homogeneity and 25% in surface roughness. Rogel et al.<5>report improved properties of transistors made of thin films produced on Corning glass substrate. The thermal decomposition mechanism of disilane is not well understood, but the most important steps are agreed upon. It is agreed that the decomposition goes through a step where the disilane molecule is split into monosilane and SiH2.<6>Splitting the Si-Si bond requires 340 kJ/mol compared to the Si-H bond which requires 393 kJ/mole<7> . A lower temperature is therefore required to split the disilane molecule than to split monosilane, but only half of the disilane molecule will be deposited at this temperature. Niwano et al. however, suggests a decomposition mechanism at 700 K where an intermediate molecule is formed: H2Si-SiH2. If so, all the disilane will be converted to silicon. Tonokura et al. studied hydrogenated silicon as it formed with time-of-flight mass spectrometry, but could not detect any monosilicon compounds.<8>The same group determined, in a later study, the decomposition steps of SiH4, SiH2, H3SiSiH, and the formation of higher silanes, i.e. tri- and tetrasilanes<9>.

Disilan som har blitt brukt i de ovenfor beskrevne metoder har blitt produsert på en rekke forskjellige måter. Disilane which has been used in the methods described above has been produced in a number of different ways.

Disilan kan produseres fra vandig, sur reaksjon med Mg2Si<10>: Disilane can be produced from aqueous, acidic reaction with Mg2Si<10>:

Fortynnet saltsyre (5%) kan benyttes. Det kjemiske utbyttet av disilan sammenliknet med monosilan øker med økning i temperaturen. For å holde reaksjonen i gang ved omlag 100°C (372 K), så kan fortynnet svovelsyre eller fosforsyre benyttes. Det japanske selskapet Mitsui benytter reaksjon av magnesiumsilisid med ammoniumklorid: Diluted hydrochloric acid (5%) can be used. The chemical yield of disilane compared to monosilane increases with increasing temperature. To keep the reaction going at around 100°C (372 K), dilute sulfuric acid or phosphoric acid can be used. The Japanese company Mitsui uses the reaction of magnesium silicide with ammonium chloride:

Disse prosessene krever silisider av jordalkalimetallene. En metode for å produsere slike silisider er ved maling i jet-mølle av metallurgisk (metallurgical grade - MG) magnesium med MG silisium. These processes require silicides of the alkaline earth metals. One method of producing such silicides is by grinding in a jet mill metallurgical (metallurgical grade - MG) magnesium with MG silicon.

En annen metode for å produsere disilan er å starte med monosilan og aktivere disse molekylene så de kan reagere. En aktiveringsmetode er å bruke elektriske utladninger og en annen er å varme opp silangassen. Disse metodene er brukt av silanprodusenter for å produsere små mengder av disilan. En annen metode som er antatt å være mindre energikrevende og med enklere prosesskrav er ved bruk av en katalysator. Japanske selskaper har søkt flere patenter innen dette emnet, men ingen har blitt implementert industrielt. Disse patentene benytter metallkomplekser av platinagruppen<11>eller lantanider som katalysatorer<12.>Det japanske selskapet Showa Denko har publisert resultater hvor de benyttet innskuddsmetall fra 4. periode: Ni, Mn og Fe som katalysatorer i en prosess hvor disilan ble dannet i en reaktor ved 470 - 570 K, deretter separert kryogent ved 200 K i en annen enhet og det ureagerte monosilan ble resirkulert i 10 timer i en batch-operasjon. Innenfor en syklus måtte gassen gjennomgå to trinn med temperaturdifferanse på > 250 K. Hydrogen, som ikke er en inert gass i denne prosessen, ble brukt som bæregass.<13>Another method of producing disilane is to start with monosilane and activate these molecules so they can react. One activation method is to use electrical discharges and another is to heat the silane gas. These methods are used by silane manufacturers to produce small quantities of disilane. Another method which is believed to be less energy-demanding and with simpler process requirements is the use of a catalyst. Japanese companies have applied for several patents in this subject, but none have been implemented industrially. These patents use metal complexes of the platinum group<11>or lanthanides as catalysts<12.>The Japanese company Showa Denko has published results where they used deposit metal from the 4th period: Ni, Mn and Fe as catalysts in a process where disilane was formed in a reactor at 470 - 570 K, then separated cryogenically at 200 K in another unit and the unreacted monosilane was recycled for 10 h in a batch operation. Within one cycle, the gas had to undergo two stages with a temperature difference of > 250 K. Hydrogen, which is not an inert gas in this process, was used as carrier gas.<13>

Showa Denko har også søkt patent for å produsere trisilan og høyere silaner ved å benytte disproporsjonering av mono- og disilaner<14>. I dette patentet er hydrogen brukt som bæregass og videre beskrevet som inert. Metodene beskrevet ovenfor har alle forskjellige problemer som må løses før de er klare for storskala industriell produksjon. Den største utfordring er katalysatorenes lave aktivitet og dannelse av for mye biprodukt. Med hensyn til elektrisk utladning og oppvarming så er ulempene med disse metodene lavt utbytte, høyt energiforbruk og lav selektivitet for disilan relativt til høyere silaner. I tillegg tapes store andeler elementært silisium i form av støv i den sistnevnte prosessen. Showa Denko has also applied for a patent to produce trisilane and higher silanes by using disproportionation of mono- and disilanes<14>. In this patent, hydrogen is used as carrier gas and further described as inert. The methods described above all have different problems that need to be solved before they are ready for large-scale industrial production. The biggest challenge is the low activity of the catalysts and the formation of too much by-product. With regard to electrical discharge and heating, the disadvantages of these methods are low yield, high energy consumption and low selectivity for disilane relative to higher silanes. In addition, large proportions of elemental silicon are lost in the form of dust in the latter process.

Fra det som er skrevet ovenfor framgår det at det er flere metoder som kan brukes for å produsere disilan. I tillegg til utbytte og innhold av høyere silaner er imidlertid også den kjemiske renhet av avgjørende betydning for bruk innen fotovoltaisk- og elektronisk industri. På grunn av viktigheten av di- og høyere silaner, søkes det stadig nye måter å forbedre produksjonsmetodene på. Den her beskrevne oppfinnelse omhandler derfor en ny metode for å produsere disilan. From what has been written above, it appears that there are several methods that can be used to produce disilane. In addition to the yield and content of higher silanes, however, the chemical purity is also of decisive importance for use in the photovoltaic and electronic industry. Due to the importance of di- and higher silanes, new ways to improve production methods are constantly sought. The invention described here therefore deals with a new method for producing disilane.

Beskrivelse av oppfinnelsen Description of the invention

Den her beskrevne oppfinnelse angir en ny innovativ prosess for framstilling av disilan. Den beskrevne prosessen unngår flere av ulempene som har blitt framholdt ved de hittil kjente produksjonsmetoder. Den nye metoden er i tillegg kontinuerlig, energieffektiv og har høyt utbytte pr syklus. The invention described here indicates a new innovative process for the production of disilane. The described process avoids several of the disadvantages that have been pointed out by the hitherto known production methods. The new method is also continuous, energy efficient and has a high yield per cycle.

Oppfinnelsen er definert ved de vedlagte krav, og er en kontinuerlig prosess for produksjon av disilankarakterisert vedat: a. en strøm av monosilan, eventuelt sammen med en inert bæregass, føres over en katalysator i en kontaktor, hvor katalysatoren omfatter et metall fra gruppe 5 - 10 i det periodiske system, eller en forbindelse hvor et slikt metall inngår, The invention is defined by the attached claims, and is a continuous process for the production of disilane characterized by: a. a stream of monosilane, possibly together with an inert carrier gas, is passed over a catalyst in a contactor, where the catalyst comprises a metal from group 5 - 10 in the periodic table, or a compound in which such a metal is included,

b. det dannede disilan separeres fra det ureagerte monosilan, b. the formed disilane is separated from the unreacted monosilane,

c. hydrogengassen, dannet i kontaktoren, separeres fra de andre komponenter i prosesstrømmen ved hjelp av en membranseparator, og d. ureagert monosilan blir returnert til et reservoar for videre anvendelse i trinn a. c. the hydrogen gas, formed in the contactor, is separated from the other components of the process stream by means of a membrane separator, and d. unreacted monosilane is returned to a reservoir for further use in step a.

I en utførelsesform av prosessen ifølge oppfinnelsen er metallet V, Cr, Mn, Fe, Co eller Ni, og hvor foretrukket metall er Ni. In one embodiment of the process according to the invention, the metal is V, Cr, Mn, Fe, Co or Ni, and the preferred metal is Ni.

I en utførelsesform av prosessen ifølge oppfinnelsen er temperaturen til katalysatoren i området 290 K til 520 K, foretrukket 330 K til 470 K, mer foretrukket 400 - 470 og ytterligere foretrukket 410-430 K. In an embodiment of the process according to the invention, the temperature of the catalyst is in the range 290 K to 520 K, preferably 330 K to 470 K, more preferably 400-470 and further preferably 410-430 K.

I en utførelsesform av prosessen ifølge oppfinnelsen er trykket i reaktoren i området 0,1 - 100 bar, mer foretrukket i området 0,1-30 bar og ytterligere foretrukket i området 6-12 bar. In one embodiment of the process according to the invention, the pressure in the reactor is in the range 0.1-100 bar, more preferably in the range 0.1-30 bar and further preferred in the range 6-12 bar.

I en utførelsesform av prosessen ifølge oppfinnelsen blir separasjon av disilan fra ureagert monosilan gjort kryogent. In one embodiment of the process according to the invention, separation of disilane from unreacted monosilane is done cryogenically.

I en utførelsesform av prosessen ifølge oppfinnelsen er trykket i trinnet hvor disilan separeres høyt nok til å kondensere disilangassen ved en temperatur i området 300 In one embodiment of the process according to the invention, the pressure in the step where disilane is separated is high enough to condense the disilane gas at a temperature in the range of 300

- 350 K, foretrukket er 10 bar og 320 K. - 350 K, preferred is 10 bar and 320 K.

I en utførelsesform av prosessen ifølge oppfinnelsen er membranen benyttet i separasjonen av hydrogengass fra prosesstrømmen basert på utelukkelse pga størrelsen på molekylene. In one embodiment of the process according to the invention, the membrane is used in the separation of hydrogen gas from the process stream based on exclusion due to the size of the molecules.

I en utførelsesform av prosessen ifølge oppfinnelsen er membranen, benyttet i separasjonen av hydrogengass fra prosesstrømmen, i form av hule fibre. In one embodiment of the process according to the invention, the membrane, used in the separation of hydrogen gas from the process stream, is in the form of hollow fibers.

I en utførelsesform av prosessen ifølge oppfinnelsen er membranen benyttet i separasjonen av hydrogengass fra prosesstrømmen en del av katalysatorsenga i kontaktoren. In one embodiment of the process according to the invention, the membrane used in the separation of hydrogen gas from the process stream is part of the catalyst bed in the contactor.

I en utførelsesform av prosessen ifølge oppfinnelsen er den inerte gassen argon, nitrogen eller helium. In one embodiment of the process according to the invention, the inert gas is argon, nitrogen or helium.

Et viktig steg i oppfinnelsen er en katalysebasert reaksjon hvor disilan dannes ved dimerisering av monosilan. Katalysatoren inneholder et innskuddsmetall. An important step in the invention is a catalysis-based reaction where disilane is formed by dimerization of monosilane. The catalyst contains a deposit metal.

I reaksjonen Eq.3 betegner M et metall fra gruppene 5-10 eller en forbindelse hvor slikt inngår. Fra Eq.3 kan en se at hydrogen blir dannet i reaksjonen. Det er vel kjent fra termodynamikken at når kjemiske reaksjoner når likevekt vil vanligvis alle komponentene i reaksjonen være tilstede. Konsentrasjonene, dvs. aktivitetene, til de deltakende spedes avhenger av likevektskonstanten som kan beregnes fra massevirkningsloven. Ved å bruke denne loven kan vi utlede at å fjerne et av reaksjonsproduktene fører til en videre produksjon av det forønskede reaksjonsprodukt for å opprettholde likevekten. Dette kan utnyttes for å skape en mer effektiv prosess for å produsere disilan. In the reaction Eq.3, M denotes a metal from groups 5-10 or a compound in which such is included. From Eq.3 you can see that hydrogen is formed in the reaction. It is well known from thermodynamics that when chemical reactions reach equilibrium all the components of the reaction will usually be present. The concentrations, i.e. the activities, of the participating spedes depend on the equilibrium constant which can be calculated from the law of mass action. Using this law, we can deduce that removing one of the reaction products leads to further production of the desired reaction product to maintain the equilibrium. This can be exploited to create a more efficient process for producing disilane.

Denne hypotesen ble bekreftet I vårt laboratorium ved å foreta tester med varierende mengder av hydrogen eller en inert gass, argon, tilstede. Når hydrogen ble tilsatt ble utbyttet av disilan redusert, helt i overensstemmelse med massevirkningsloven. This hypothesis was confirmed in our laboratory by carrying out tests with varying amounts of hydrogen or an inert gas, argon, present. When hydrogen was added, the yield of disilane was reduced, completely in accordance with the law of mass action.

Bruken av bæregass er ikke avgjørende for at prosessen skal gå, men enhver inert gass under prosessbetingelsene, slik som nitrogen, argon og helium, kan bli benyttet som bæregass. Som det framgikk av testreaksjonene er ikke hydrogen en inert gas i denne prosessen. The use of carrier gas is not essential for the process to proceed, but any inert gas under the process conditions, such as nitrogen, argon and helium, can be used as carrier gas. As was evident from the test reactions, hydrogen is not an inert gas in this process.

Hydrogengassen som produseres i reaksjonen hvor monosilan brukes for å produsere disilan blir fjernet ved å bruke en hydrogenselektiv membran. The hydrogen gas produced in the reaction where monosilane is used to produce disilane is removed using a hydrogen selective membrane.

Selektive membraner som bare er permeable for H2-molekyler, er kjent. Ett eksempel på slike membraner er beskrevet av Hsieh and Keller.<15>Denne membranen består av et aktivt lag (separasjonslag) av sulfonert polysulfon som er påført et bærelag av polysulfon. Som polysulfon anbefaler de polyaryletersulfon med minst en sulfonsyregruppe på aromatringene og et separasjonslag av sulfonert bisfenol A polysulfone. Ved hjelp av en slik membran kan separasjonsfaktorer for hydrogen relativt til monosilan på over 100 oppnås. Andre membraner for selektiv fjerning av hydrogengass finnes også. Disse er vanligvis basert på separasjon pga forskjell i størrelse på molekylene ("size exclusion"). Slike membraner er typisk laget av metallegeringer av palladium, så vell som mikroporøse keramer basert på for eksempel silika, zirkonia, SrCeOxog BaCeOx. Membraner av et mer robust materiale for lavtemperaturseparasjon av hydrogen fra silan kan også bli laget av SiC. SiC-membraner har flere fordeler som høy termisk ledningsevne, motstand mot termiske sjokk, motstand mot sure og basiske miljø, kjemisk inerthet og høy mekanisk styrke. De er derfor velegnede i membranereaktorer. Ytelsen til SiC- membraner har blitt testet ved 473 K av Dr Tsotsis gruppe ved USC<16>og de fant separasjonsfaktorer mellom metan og hydrogen på 29 - 78 i favør av hydrogen. Metan er et mindre molekyl enn silan. Selv om effektiviteten reduseres ved lavere temperatur er driftsbetingelser på 400 - 470 K akseptable. Selective membranes which are only permeable to H2 molecules are known. One example of such membranes is described by Hsieh and Keller.<15>This membrane consists of an active layer (separation layer) of sulfonated polysulfone which is applied to a carrier layer of polysulfone. As polysulfone, they recommend polyarylethersulfone with at least one sulfonic acid group on the aromatic rings and a separation layer of sulfonated bisphenol A polysulfone. With the help of such a membrane, separation factors for hydrogen relative to monosilane of over 100 can be achieved. Other membranes for the selective removal of hydrogen gas are also available. These are usually based on separation due to differences in the size of the molecules ("size exclusion"). Such membranes are typically made of metal alloys of palladium, as well as microporous ceramics based on, for example, silica, zirconia, SrCeOx and BaCeOx. Membranes of a more robust material for low-temperature separation of hydrogen from silane can also be made from SiC. SiC membranes have several advantages such as high thermal conductivity, resistance to thermal shocks, resistance to acidic and basic environments, chemical inertness and high mechanical strength. They are therefore suitable in membrane reactors. The performance of SiC membranes has been tested at 473 K by Dr Tsotsi's group at USC<16> and they found separation factors between methane and hydrogen of 29 - 78 in favor of hydrogen. Methane is a smaller molecule than silane. Although efficiency is reduced at lower temperatures, operating conditions of 400 - 470 K are acceptable.

Den her beskrevne oppfinnelse inneholder derfor følgende hovedtrinn: The invention described here therefore contains the following main steps:

1. Monosilangass, SiH4, med eller uten en inert bæregass føres over en katalysator i en kontaktor. 1. Monosilane gas, SiH4, with or without an inert carrier gas is passed over a catalyst in a contactor.

Kontaktoren kan være en pakket seng reaktor, en fluidisert seng reaktor, en membranereaktor, en kombinasjon av disse, for eksempel pakket seng katalytisk membranereaktor (PBCMR - packed bed catalytic membrane reaktor), så vel som andre anvendbare reaktorer. The contactor can be a packed bed reactor, a fluidized bed reactor, a membrane reactor, a combination of these, for example a packed bed catalytic membrane reactor (PBCMR), as well as other applicable reactors.

Katalysatoren består av et innskuddsmetall fra gruppene 5 til 10 eller en forbindelse av et slikt. Foretrukne metaller er V, Cr, Mn, Fe, Co og Ni. Kommersielle katalysatorer på substrater av aluminat og silikat har vist høy effektivitet. The catalyst consists of a deposit metal from groups 5 to 10 or a compound of such. Preferred metals are V, Cr, Mn, Fe, Co and Ni. Commercial catalysts on aluminate and silicate substrates have shown high efficiency.

Katalysatoren må tåle å bli oppvarmet til et temperaturområde fra 290 K til 520 K. For å oppnå en mer energieffektiv prosess foretrekkes det at katalysatoren er oppvarmet til et temperaturområde fra 330 K til 470 K, mer foretrukket 400 - 470 og enda mer foretrukket 410 - 430 K. Trykket i reaktoren er i området 0.1 - 100 bar, mer foretrukket i området 0.1- 30 bar og enda mer foretrukket i området 6-12 bar. The catalyst must withstand being heated to a temperature range from 290 K to 520 K. In order to achieve a more energy-efficient process, it is preferred that the catalyst is heated to a temperature range from 330 K to 470 K, more preferably 400 - 470 and even more preferably 410 - 430 K. The pressure in the reactor is in the range 0.1-100 bar, more preferably in the range 0.1-30 bar and even more preferably in the range 6-12 bar.

2. Den utgående gass fra kontaktoren føres inn i et separasjonstrinn for å fjerne disilan som væske fra ikke-reagert monosilan, eventuell bæregass og hydrogen som dannes i kontaktoren. Foretrukket separasjonmetode for disilan er destillasjon. Trykket i trinnet hvor disilan separeres er fortrinnsvis høyt nok til å kondensere disilangassen ved en temperatur i området 300 - 350 K, foretrukket er 10 bar og 320 K. 3. Den hydrogengass som genereres i reaksjonen i kontaktoren blir så separert fra den ikke-reagerte monosilan og de gjenværende komponenter i prosesstrømmen ved hjelp av en egnet membranseparator, for eksempel av typen hulfiber. Membranseparatoren plasseres i prosesstrømmen der det er mest egnet. Helst blir membranseparatoren inkorporert i kontaktoren/reaktoren eller, om ønskelig, etter destillasjonstrinnet. Foretrukket temperatur for membranen vil avhenge av hvor i prosessen den plasseres. Dersom den inkorporeres i kontaktoren/reaktoren, vil optimal operasjonstemperatur for membranen måtte være i samme område som for katalysatoren, dvs. tem peratu rom rådet fra 330 K til 470 K, mer foretrukket er 400 - 470 og enda mer foretrukket 410 - 430 K. Når membranen er plassert etter destillasjonstrinnet, er et foretrukket temperaturområde for membranen 300 - 350 K. 4. Ikke-reagert monosilan som er fjernet fra det dannede disilan og utarmet for hydrogen returneres til et reservoar (make-up tank) for ny reaksjon i kontaktoren. Nytt monosilan kan bli tilført i hver syklus i en mengde tilsvarende det omsatte monosilan slik at fødegassen har en konstant konsentrasjon av monosilan. 2. The outgoing gas from the contactor is fed into a separation step to remove disilane as a liquid from unreacted monosilane, any carrier gas and hydrogen formed in the contactor. The preferred separation method for disilane is distillation. The pressure in the step where disilane is separated is preferably high enough to condense the disilane gas at a temperature in the range 300 - 350 K, preferably 10 bar and 320 K. 3. The hydrogen gas generated in the reaction in the contactor is then separated from the unreacted monosilane and the remaining components in the process stream using a suitable membrane separator, for example of the hollow fiber type. The membrane separator is placed in the process stream where it is most suitable. Preferably, the membrane separator is incorporated into the contactor/reactor or, if desired, after the distillation step. Preferred temperature for the membrane will depend on where in the process it is placed. If it is incorporated in the contactor/reactor, the optimum operating temperature for the membrane will have to be in the same range as for the catalyst, i.e. temperatures ranging from 330 K to 470 K, more preferably 400 - 470 and even more preferably 410 - 430 K. When the membrane is placed after the distillation step, a preferred temperature range for the membrane is 300 - 350 K. 4. Unreacted monosilane that is removed from the formed disilane and depleted of hydrogen is returned to a reservoir (make-up tank) for a new reaction in the contactor . New monosilane can be added in each cycle in an amount corresponding to the converted monosilane so that the feed gas has a constant concentration of monosilane.

Prosessen som er presentert ovenfor har flere fordeler. Bruk av en membran for å fjerne hydrogen fra bæregassen/monosilangassen reduserer betydelig nødvendigheten for å tilføre ny inert bæregass i hver syklus siden bare hydrogen fjernes, i motsetning til bruk av et kondenseringstrinn hvor alt eller deler av den inerte bæregass er fjernet fra monosilan vha nedkjøling. I tillegg er ikke bruk av et kondensasjonstrinn en velegnet metode for å selektivt fjerne hydrogen fra bæregassen. Videre gir membranseparatoren en mer energieffektiv prosess idet en slipper å avkjøle monosilangassen med eventuell bæregass i et eget kondensasjonssteg. Fjerning av den hydrogengass som dannes i reaktoren gir også en prosess som har et høyere utbytte av disilan per syklus. Til slutt må det legges til at separasjon av hydrogen og silan gjør gassene mindre utsatt for antenning dersom en lekkasje fører til at gass får kontakt med oksygen/luft. Denne prosessen er derfor tryggere enn konkurrerende prosesser. The process presented above has several advantages. Using a membrane to remove hydrogen from the carrier gas/monosilane gas significantly reduces the need to add new inert carrier gas in each cycle since only hydrogen is removed, as opposed to using a condensation step where all or part of the inert carrier gas is removed from the monosilane by cooling . In addition, using a condensation step is not a suitable method for selectively removing hydrogen from the carrier gas. Furthermore, the membrane separator provides a more energy-efficient process as there is no need to cool the monosilane gas with any carrier gas in a separate condensation step. Removing the hydrogen gas that is formed in the reactor also provides a process that has a higher yield of disilane per cycle. Finally, it must be added that separation of hydrogen and silane makes the gases less susceptible to ignition if a leak causes gas to come into contact with oxygen/air. This process is therefore safer than competing processes.

Eksempler på brukte katalysatorer Examples of used catalysts

Eksempel 1 - Nikkel ( Ni) som katalysator Example 1 - Nickel (Ni) as catalyst

Kommersielt tilgjengelige og spesiallagede katalysatorer ble testet for katalytisk effektivitet ved å variere reaktortem peratu r, strøm og trykk på monosilan-fødegassen. De testede katalysatorer var Ni på substrater av aluminat, alumina-silika og et nanomateriale bestående av karbonkoner. Alle fungerte tilfredsstillende, men de beste resultater ble oppnådd med en sylinderisk reaktor med en pakket seng av en kommersiell katalysator med høyt nikkelinnhold. Utbyttene av disilan var påviselige selv ved 300 K. Optimal temperatur ble funnet å være lavere enn 450 K. Ingen tri- eller høyere silaner ble dannet. Commercially available and custom-made catalysts were tested for catalytic efficiency by varying the reactor temperature, current and pressure of the monosilane feed gas. The tested catalysts were Ni on substrates of aluminate, alumina-silica and a nanomaterial consisting of carbon cones. All worked satisfactorily, but the best results were obtained with a cylindrical packed bed reactor of a commercial catalyst with a high nickel content. The yields of disilane were detectable even at 300 K. The optimum temperature was found to be lower than 450 K. No tri- or higher silanes were formed.

Eksempel 2 - Palladium ( Pd) som katalysator Example 2 - Palladium (Pd) as catalyst

Kommersielt tilgjengelig katalysator ble testet for katalytisk effektivitet ved å variere reaktortemperatur, strøm og trykk på monosilan-fødegassen. Katalysatoren som ble testet var Pd på substrat av alumina-silika. Den fungerte bra, men Pd-katalysatoren var ikke mer effektiv enn Ni. Commercially available catalyst was tested for catalytic efficiency by varying reactor temperature, current and pressure of the monosilane feed gas. The catalyst tested was Pd on an alumina-silica substrate. It worked well, but the Pd catalyst was no more effective than Ni.

Kort beskrivelse av tegningene Brief description of the drawings

Figur 1 viser et flytekart av en prosess for produksjon av disilan hvor membranseparasjonsenheten (32) er plassert etter destillasjonstrinnet (23). Figur 2 viser et flytekart av en prosess for produksjon av disilan hvor membranseparasjonsenheten er inkludert i reaktoren (22). Figure 1 shows a flow chart of a process for the production of disilane where the membrane separation unit (32) is placed after the distillation step (23). Figure 2 shows a flow chart of a process for the production of disilane where the membrane separation unit is included in the reactor (22).

To detaljerte eksempler på foretrukket utføring av oppfinnelsen Two detailed examples of preferred embodiments of the invention

Utførelse 1: Prosess med en membranseparator ( 32) plassert etter destillasjonstrinnet ( 23) Embodiment 1: Process with a membrane separator ( 32) placed after the distillation step ( 23)

Figur 1 viser et prosessflytekart. Tank (2) er en "make-up"-tank for monosilan. Denne gir føde til reaktoren (22) hvor katalysatoren er. Gassblandingen fra reaktor (22) går inn i separator (23) hvor disilan separeres fra monosilan, eventuelt også inert bæregass og hydrogengass. Det nevnte disilan kondenseres og overføres som væske til en evakuert konteiner (25), som holdes kald vha en kjølemaskin (26). Det nevnte monosilan, eventuelt også inert bæregass og hydrogengass blir komprimert i en kompressor (33) for å kunne føres gjennom membranseparatoren (32) hvor den nevnte hydrogengass blir separert fra nevnte monosilan og den eventuelle inerte bæregass. Den nevnte hydrogengass blir overført til en trykktank (3) hvor den blir lagret og kan brukes til andre ting, for eksempel regenerering av katalysatoren, oppvarming eller annet. Det nevnte monosilan blir ført tilbake til make-uptanken (2). På denne måten kan monosilan bli resirkulert inntil det er brukt helt opp eller, ved å ha et reservoar med rent monosilan, kan den fjernede mengden av disilan bli erstattet av en tilsvarende mengde monosilan gjennom røret (12). Figure 1 shows a process flow chart. Tank (2) is a "make-up" tank for monosilane. This feeds the reactor (22) where the catalyst is. The gas mixture from reactor (22) goes into separator (23) where disilane is separated from monosilane, optionally also inert carrier gas and hydrogen gas. The aforementioned disilane is condensed and transferred as a liquid to an evacuated container (25), which is kept cold by a cooling machine (26). Said monosilane, possibly also inert carrier gas and hydrogen gas are compressed in a compressor (33) in order to be passed through the membrane separator (32) where said hydrogen gas is separated from said monosilane and the possible inert carrier gas. The aforementioned hydrogen gas is transferred to a pressure tank (3) where it is stored and can be used for other things, for example regeneration of the catalyst, heating or other. The mentioned monosilane is returned to the make-up tank (2). In this way, monosilane can be recycled until it is completely used up or, by having a reservoir of pure monosilane, the removed amount of disilane can be replaced by an equivalent amount of monosilane through the pipe (12).

Utførelse 2: Prosess med en pakket seng katalytisk membranreaktor ( PBCMR), dvs. den prosessen hvor membranseparatoren er inkludert i reaktoren ( 41). Embodiment 2: Process with a packed bed catalytic membrane reactor (PBCMR), i.e. the process where the membrane separator is included in the reactor (41).

Figur 2 viser et flytekart for en prosess hvor en pakket seng katalytisk membranreaktor (41) er benyttet. Figuren er tilsvarende figur 1 med det unntak at membranseparatoren (32) er fjernet. I denne prosessen blir hydrogengass fjernet av en membran i reaktoren. Den nevnte hydrogengass blir ført over til en trykktank (3) hvor den blir lagret for bruk i andre sammenhenger, for eksempel regenerering av katalysatoren, oppvarming eller annet. Figure 2 shows a flow chart for a process where a packed bed catalytic membrane reactor (41) is used. The figure is similar to figure 1 with the exception that the membrane separator (32) has been removed. In this process, hydrogen gas is removed by a membrane in the reactor. The aforementioned hydrogen gas is transferred to a pressure tank (3) where it is stored for use in other contexts, for example regeneration of the catalyst, heating or other.

Referanser: References:

<1>Lin, H.-Y. et. al. Solid- State Electron 39,1731, (1996) <1>Lin, H.-Y. a. eel. Solid-State Electron 39,1731, (1996)

<2>Wado, H. et. al. J. Cryst. Growth 169,457, (1996) <2>Wado, H. et al. eel. J. Cryst. Growth 169,457, (1996)

<3>Huange, G.W., et al. J. Appl. Physiol. 81,205, (1997) <3>Huange, G.W., et al. J. Appl. Physiol. 81,205, (1997)

<4>Y. Chen, H. Bu, S.W. Butler, KX.Cunningham, S.Wang, B. Spicer, IEEE Trans. <4>Y. Chen, H. Bu, S.W. Butler, KX. Cunningham, S. Wang, B. Spicer, IEEE Trans.

Semicond. Manufac. Vol. 18, No 1 (2005) Semicond. Manufac. Vol. 18, No. 1 (2005)

<5>R. Rogel, G. Gautier, N. Coulon, M. Sarret, O.Bonnaud, Thin solid Films 427, 108-112(2003)<6>A.A. Onischuk, V.P. Strutin, M.A. Ushiakova, V.N. Panfilov, Int J Chem Kinet Vol.30, 99-110(1998) <5>R. Rogel, G. Gautier, N. Coulon, M. Sarret, O. Bonnaud, Thin solid Films 427, 108-112(2003)<6>A.A. Onischuk, V.P. Strutin, M.A. Ushiakova, V.N. Panfilov, Int J Chem Kinet Vol.30, 99-110(1998)

<7>D.D. Pates MSc-thesis, Iowa State University, Ames, 2006 <7>D.D. Pate's MSc thesis, Iowa State University, Ames, 2006

<8>K. Tonokura, T. Murasaki, M. Koshi, J. Phys. Chem. B, 106, 555-563 (2002) <8>K. Tonokura, T. Murasaki, M. Koshi, J. Phys. Chem. B, 106, 555-563 (2002)

<9>K. Yoshida, K. Matsumoto, T. Oguchi, K. Tonokura, and M. Koshi, J. Phys. Chem. A <9>K. Yoshida, K. Matsumoto, T. Oguchi, K. Tonokura, and M. Koshi, J. Phys. Chem. A

(2006) 110(14), 4726-4731<10>Gmelin Handbuch der Anorganischen Chemie Si Bl, Springer-Verlag, Berlin (1982) (2006) 110(14), 4726-4731<10>Gmelin Handbuch der Anorganischen Chemie Si Bl, Springer-Verlag, Berlin (1982)

<11>Japansk ikke-undersøkt patentsøknad 2-184513 (1990) På j apansk. <11>Japanese Unexamined Patent Application 2-184513 (1990) In Japanese.

12Japansk patent 5-32785 På japansk. 12Japanese Patent 5-32785 In Japanese.

<13>Japansk ikke-undersøkt patentsøknad 3-183613 (1991) På japansk. <13>Japanese Unexamined Patent Application 3-183613 (1991) In Japanese.

<14>Y. Kitsuno, K. Yano, S. Tazawa, S. Matsuhira, T. Nakajo, US Patent No.: 6,027,705 <14>Y. Kitsuno, K. Yano, S. Tazawa, S. Matsuhira, T. Nakajo, US Patent No.: 6,027,705

(1998) (1998)

<15>S-T. Hsieh and G.E. Keller II, US 4,941,893 (1990) <15>S-T. Hsieh and G.E. Keller II, US 4,941,893 (1990)

<16>Elyassi, B., Sahimi, M., and Tsotsis, T. J.Membrane Sei. 288 (2007) 290-297 og Fayyaz, B., Harale, A., Park, B.-G., Liu, P.K.T., Sahimi, M, and Tsotsis, T. Ind.Eng.Chem. Res. (2005) 44, 9398-9408 <16>Elyassi, B., Sahimi, M., and Tsotsis, T. J. Membrane Sci. 288 (2007) 290-297 and Fayyaz, B., Harale, A., Park, B.-G., Liu, P.K.T., Sahimi, M, and Tsotsis, T. Ind.Eng.Chem. Res. (2005) 44, 9398-9408

Claims (10)

1. Kontinuerlig prosess for produksjon av disilankarakterisert vedat: a. en strøm av monosilan, eventuelt sammen med en inert bæregass, føres over en katalysator i en kontaktor, hvor katalysatoren omfatter et metall fra gruppe 5 - 10 i det periodiske system, eller en forbindelse hvor et slikt metall inngår, b. det dannede disilan separeres fra det ureagerte monosilan, c. hydrogengassen, dannet i kontaktoren, separeres fra de andre komponenter i prosesstrømmen ved hjelp av en membranseparator, og d. ureagert monosilan blir returnert til et reservoar for videre anvendelse i trinn a.1. Continuous process for the production of disilane characterized by: a. a stream of monosilane, possibly together with an inert carrier gas, is passed over a catalyst in a contactor, where the catalyst comprises a metal from group 5 - 10 in the periodic table, or a compound where such a metal is included, b. the formed disilane is separated from the unreacted monosilane, c. the hydrogen gas, formed in the contactor, is separated from the other components of the process stream by means of a membrane separator, and d. the unreacted monosilane is returned to a reservoir for further application in step a. 2. Prosess i henhold til krav 1 hvor metallet er V, Cr, Mn, Fe, Co eller Ni, og hvor foretrukket metall er Ni.2. Process according to claim 1 where the metal is V, Cr, Mn, Fe, Co or Ni, and where the preferred metal is Ni. 3. Prosess i henhold til krav 1, hvor temperaturen til katalysatoren er i området 290 K til 520 K, foretrukket 330 K til 470 K, mer foretrukket 400 - 470 og ytterligere foretrukket 410-430 K.3. Process according to claim 1, where the temperature of the catalyst is in the range 290 K to 520 K, preferably 330 K to 470 K, more preferably 400-470 and further preferred 410-430 K. 4. Prosess i henhold til hvilket som helst av kravene 1-4, hvor trykket i reaktoren er i området 0,1 - 100 bar, mer foretrukket i området 0,1-30 bar og ytterligere foretrukket i området 6-12 bar.4. Process according to any one of claims 1-4, where the pressure in the reactor is in the range 0.1-100 bar, more preferably in the range 0.1-30 bar and further preferably in the range 6-12 bar. 5. Prosess i henhold til krav 1, hvor separasjon av disilan fra ureagert monosilan blir gjort kryogent.5. Process according to claim 1, where separation of disilane from unreacted monosilane is done cryogenically. 6. Prosess i henhold til krav 5, hvor trykket i trinnet hvor disilan separeres er høyt nok til å kondensere disilangassen ved en temperatur i området 300 - 350 K, foretrukket er 10 bar og 320 K.6. Process according to claim 5, where the pressure in the step where disilane is separated is high enough to condense the disilane gas at a temperature in the range 300 - 350 K, preferably 10 bar and 320 K. 7. Prosess i henhold til krav 1 hvor membranen benyttet i separasjonen av hydrogengass fra prosesstrømmen er basert på utelukkelse pga størrelsen på molekylene.7. Process according to claim 1 where the membrane used in the separation of hydrogen gas from the process stream is based on exclusion due to the size of the molecules. 8. Prosess i henhold til krav 1 og 7 hvor membranen benyttet i separasjonen av hydrogengass fra prosesstrømmen er i form av hule fibre.8. Process according to claims 1 and 7 where the membrane used in the separation of hydrogen gas from the process stream is in the form of hollow fibres. 9. Prosess i henhold til krav 1, 7 og 8 hvor membranen benyttet i separasjonen av hydrogengass fra prosesstrømmen er en del av katalysatorsenga i kontaktoren.9. Process according to claims 1, 7 and 8 where the membrane used in the separation of hydrogen gas from the process stream is part of the catalyst bed in the contactor. 10. Prosess i henhold til krav 1-9, hvor den inerte gass er argon, nitrogen eller helium.10. Process according to claims 1-9, where the inert gas is argon, nitrogen or helium.
NO20100466A 2010-03-30 2010-03-30 Process for the production of disilane NO334627B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20100466A NO334627B1 (en) 2010-03-30 2010-03-30 Process for the production of disilane
PCT/NO2011/000112 WO2011122959A1 (en) 2010-03-30 2011-03-30 Process for the production of disilane
NO20121263A NO20121263A1 (en) 2010-03-30 2012-10-29 Process for producing disilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20100466A NO334627B1 (en) 2010-03-30 2010-03-30 Process for the production of disilane

Publications (2)

Publication Number Publication Date
NO20100466A1 NO20100466A1 (en) 2011-10-03
NO334627B1 true NO334627B1 (en) 2014-04-28

Family

ID=44169020

Family Applications (2)

Application Number Title Priority Date Filing Date
NO20100466A NO334627B1 (en) 2010-03-30 2010-03-30 Process for the production of disilane
NO20121263A NO20121263A1 (en) 2010-03-30 2012-10-29 Process for producing disilane

Family Applications After (1)

Application Number Title Priority Date Filing Date
NO20121263A NO20121263A1 (en) 2010-03-30 2012-10-29 Process for producing disilane

Country Status (2)

Country Link
NO (2) NO334627B1 (en)
WO (1) WO2011122959A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231370B1 (en) 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 Method and device for producing disilane through pyrolysis of monosilane
DE102013207442A1 (en) 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for the production of silanes
DE102013226033A1 (en) * 2013-12-16 2015-06-18 Evonik Industries Ag Process for the preparation of high-purity semi-metal compounds
CN105797671A (en) * 2016-06-03 2016-07-27 山西广宇通科技股份有限公司 Humate reaction system device
KR101810498B1 (en) * 2017-07-25 2017-12-20 오션브릿지 주식회사 Synthesizing and purification apparatus of disilane
CN113083166A (en) * 2021-03-16 2021-07-09 洛阳中硅高科技有限公司 Disilane preparation equipment and preparation method
CN114105148B (en) * 2021-12-01 2022-08-12 全椒亚格泰电子新材料科技有限公司 Method for synthesizing high-order silane by utilizing plasma ball milling and cracking
CN115403048B (en) * 2022-10-13 2023-11-07 中船(邯郸)派瑞特种气体股份有限公司 Disilane purification method
CN115477305A (en) * 2022-10-19 2022-12-16 浙江中宁硅业有限公司 Disilane and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941893A (en) * 1989-09-19 1990-07-17 Union Carbide Chemicals And Plastics Company, Inc. Gas separation by semi-permeable membranes
JPH02184513A (en) * 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk Production of disilane and trisilane
JPH03183613A (en) * 1989-12-08 1991-08-09 Showa Denko Kk Production of disilane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918310B (en) * 2007-12-18 2013-08-21 琳德北美股份有限公司 Methods of recovering silane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184513A (en) * 1989-01-11 1990-07-19 Tonen Sekiyukagaku Kk Production of disilane and trisilane
US4941893A (en) * 1989-09-19 1990-07-17 Union Carbide Chemicals And Plastics Company, Inc. Gas separation by semi-permeable membranes
US4941893B1 (en) * 1989-09-19 1996-07-30 Advanced Silicon Materials Inc Gas separation by semi-permeable membranes
JPH03183613A (en) * 1989-12-08 1991-08-09 Showa Denko Kk Production of disilane

Also Published As

Publication number Publication date
NO20100466A1 (en) 2011-10-03
WO2011122959A1 (en) 2011-10-06
NO20121263A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
NO334627B1 (en) Process for the production of disilane
TWI477447B (en) Method and apparatus for producing disilane through pyrolysis of monosilane
FR2526048A1 (en) PROCESS FOR RECOVERING OXYGEN FROM CARBON DIOXIDE CLEARANCE
CN102229426B (en) Preparation method of equiangular hexagonal graphene arranged in single layer sequentially
CN101285175B (en) Process for preparing graphenes by chemical vapour deposition method
CN102459066B (en) Method for electrochemically removing hydrogen from a reaction mixture
EA200870558A1 (en) METHODS OF PREPARING POLYCRYSTALLIC SILICON SILICONS OF HIGH DEGREE OF PURITY WITH THE USE OF METAL MEANS-BASIS
CN103352202B (en) A kind of controllable method for preparing of normal-pressure chemical-vapor-deposlarge-area large-area high-quality double-layer graphene film
KR20120081996A (en) Method for producing higher hydridosilane
CN102583337A (en) Preparation method for graphene material with porous structure
US20030017092A1 (en) Method and apparatus for chemical synthesis
KR101377935B1 (en) Method for manufacturing methane and hydrogen from biogas
US9833773B2 (en) Hydrogen production catalyst containing Ni3Si-based intermetallic compound, method for activating the catalyst, and hydrogen production method and device using the catalyst
Pham Atmospheric pressure chemical vapor deposition of graphene
CN103935996A (en) Method for directly synthesizing graphene by using CO2
Zhou et al. Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell
Xue et al. Amorphous Ni–B alloy membrane: preparation and application in ethanol dehydrogenation
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
WO2007077957A1 (en) Process for the production of polycrystalline silicon
TW201536798A (en) Process for preparing trichlorosilane
CN106316915B (en) A kind of method of o ethyl aniline dehydrocyclization indoles
WO2019092112A1 (en) Method for continuous production of 2,3-butanediol
CA2686640A1 (en) Polycrystalline germanium-alloyed silicon and a method for the production thereof
Akhmedov et al. Metal-free graphitic carbon nitrides as a catalysts for hydrogenation of phenol
CN116281956A (en) Method and system for preparing ultra-high purity single-walled carbon nanotubes

Legal Events

Date Code Title Description
CREP Change of representative

Representative=s name: ONSAGERS AS, POSTBOKS 1813 VIKA, 0123

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: PRIMUS.INTER.PARES AS, NO

MM1K Lapsed by not paying the annual fees