NO333040B1 - Power supply system - Google Patents

Power supply system

Info

Publication number
NO333040B1
NO333040B1 NO20110847A NO20110847A NO333040B1 NO 333040 B1 NO333040 B1 NO 333040B1 NO 20110847 A NO20110847 A NO 20110847A NO 20110847 A NO20110847 A NO 20110847A NO 333040 B1 NO333040 B1 NO 333040B1
Authority
NO
Norway
Prior art keywords
electrolysis plant
fuel cell
farm
voltage
convert
Prior art date
Application number
NO20110847A
Other languages
Norwegian (no)
Other versions
NO20110847A1 (en
Inventor
Harry Tobiassen
Richard Espeseth
Original Assignee
Hydrogenpartner As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrogenpartner As filed Critical Hydrogenpartner As
Priority to NO20110847A priority Critical patent/NO333040B1/en
Priority to PCT/NO2012/050107 priority patent/WO2012169902A1/en
Publication of NO20110847A1 publication Critical patent/NO20110847A1/en
Publication of NO333040B1 publication Critical patent/NO333040B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

Et system for å levere elektrisitet i fjerntliggende områder, hvor systemet omfatter: - en primær solcellefarm (1) bestående av et antall paneler med individuelle solceller, idet den primære solcellefarmen er koblet direkte til - en omformer (2) innrettet til å konvertere en DC spenning fra den primæresolcellefarmen (1) til en AC nettspenning for levering til et konsumentnettverk (3), - en sekundær solcellefarm (4) bestående av et antall paneler med individuelle solceller, idet den sekundære solcellefarmen (4) er koblet direkte til - et elektrolyseanlegg (5), - første lagringsmiddel (7) for lagring av hydrogen produsert av elektrolyseanlegget (5), og - en brenselcelle (8) innrettet til å konvertere hydrogen fra det første lagringsmiddelet (7) og luft eller oksygen til vann og elektrisitet, idet elektrolyseanlegget (5) er koblet til omformeren (2) for å konvertere DC spenning fra brenselcellen (8) til AC nettspenning og levere denne AC nettspenningen til konsumentnettverketA system for supplying electricity in remote areas, the system comprising: - a primary solar cell farm (1) consisting of a number of panels with individual solar cells, the primary solar cell farm being connected directly to - a converter (2) arranged to convert a DC voltage from the primary solar cell farm (1) to an AC mains voltage for supply to a consumer network (3), - a secondary solar cell farm (4) consisting of a number of panels with individual solar cells, the secondary solar cell farm (4) being connected directly to - an electrolysis plant (5), - first storage means (7) for storing hydrogen produced by the electrolysis plant (5), and - a fuel cell (8) arranged to convert hydrogen from the first storage means (7) and air or oxygen to water and electricity, the electrolysis plant (5) is connected to the converter (2) to convert DC voltage from the fuel cell (8) to AC mains voltage and supply this AC mains voltage to the consumer network

Description

Oppfinnelsens område Field of the invention

Foreliggende oppfinnelse vedrører et frittstående system for strømforsyning i fjerntliggende områder uten tilgang til et strømforsyningsnett. The present invention relates to a stand-alone system for power supply in remote areas without access to a power supply network.

Bakgrunn Background

Fjerntliggende hytter i fjellet har i mange år blitt utstyrt med solpaneler for strøm-forsyning. Solpanelet er koblet til et batteri som lades under dagen for å levere strøm også under natten og på overskyede dager når panelet ikke kan levere nok energi. Dette er en tilfredsstillende oppstilling for å drive noen få lamper og et fjernsynsapparat, men er ikke egnet for å møte større behov. Slike behov kan opp-stå i tynt befolkede områder, f.eks. visse områder i Afrika og Asia med en redusert infrastruktur for å levere elektrisitet. I slike områder har det blitt foreslått å bruke større «farmer» av solceller. «Farmene» leverer elektrisitet til konsumenten under dagen, mens en del av elektrisiteten føres til en elektrolysecelle som produserer hydrogen. Hydrogenet lagres og føres deretter til en brenselcelle for produksjon av elektrisitet om natta. Hydrogenet brukes som et mellomlagringsmedium. Et slikt system har mye større lagringskapasitet enn batteribaserte systemer og har også større effektivitet, dvs. at mindre energi tapes ved konverteringene. Tidligere kjente systemer for produksjon av elektrisitet med bufring basert på lagring av hydrogen har imidlertid noen ulemper, særlig det at det er nødvendig med kompliserte kontrollsystemer, at elektrolysecellene som brukes viser seg å være en flaskehals som begrenser systemets kapasitet, og ved at det er nødvendig med kompressorer for å komprimere hydrogenet for lagring. Kompressorene behøver på sin side energi for å virke, hvilket introduserer tap i effektiviteten. Det er kjent systemer av denne typen som bruker PEM elektrolysører (PEM - Proton Exchange Membrane). Slike elektrolysører har langt for liten kapasitet for å utgjøre et lønnsomt alternativ og er kostbare å produsere. Remote cabins in the mountains have for many years been equipped with solar panels for power supply. The solar panel is connected to a battery that is charged during the day to supply power also during the night and on cloudy days when the panel cannot supply enough energy. This is a satisfactory arrangement for powering a few lamps and a television set, but is not suitable for meeting larger needs. Such needs may arise in sparsely populated areas, e.g. certain areas in Africa and Asia with a reduced infrastructure to supply electricity. In such areas, it has been proposed to use larger "farms" of solar cells. "Farmene" delivers electricity to the consumer during the day, while part of the electricity is fed to an electrolysis cell that produces hydrogen. The hydrogen is stored and then fed to a fuel cell for the production of electricity at night. The hydrogen is used as an intermediate storage medium. Such a system has a much larger storage capacity than battery-based systems and also has greater efficiency, i.e. less energy is lost during the conversions. However, previously known systems for the production of electricity with buffering based on the storage of hydrogen have some disadvantages, in particular that complicated control systems are necessary, that the electrolysis cells used turn out to be a bottleneck that limits the system's capacity, and that it is necessary with compressors to compress the hydrogen for storage. The compressors, in turn, require energy to operate, which introduces a loss in efficiency. There are known systems of this type that use PEM electrolysers (PEM - Proton Exchange Membrane). Such electrolysers have far too little capacity to be a profitable alternative and are expensive to produce.

US 2002/0063552 Al beskriver et kraftforsyningssystem med en første fotovoltaisk generator som leverer strøm til en last via en DC/DC-omformer og en andre fotovoltaisk generator som er koblet til en vannelektrolysør. De to grenene av systemet er koblet sammen via en kontrollenhet. Systemet vil bare levere kraft når solen skinner. Hydrogenet som produseres av vannelektrolysøren leveres til eksterne konsumenter og brukes ikke som mellomlagringsmedium. US 2002/0063552 Al describes a power supply system with a first photovoltaic generator which supplies power to a load via a DC/DC converter and a second photovoltaic generator which is connected to a water electrolyser. The two branches of the system are connected via a control unit. The system will only supply power when the sun is shining. The hydrogen produced by the water electrolyser is delivered to external consumers and is not used as an intermediate storage medium.

I tillegg er det kjent flere andre systemer som kombinerer solceller og hydrogen-produserende elektrolysører: US 2011/0081586 Al In addition, several other systems are known which combine solar cells and hydrogen-producing electrolysers: US 2011/0081586 Al

McAllister, R. & Harris, S.: «Solar Hydrogen Fuel Cell and Electrolyser Demonstra-tion», video på Youtube McAllister, R. & Harris, S.: "Solar Hydrogen Fuel Cell and Electrolyser Demonstration", video on Youtube

WO 2008/115933 Al WO 2008/115933 Al

WO 2006/009673 A2 WO 2006/009673 A2

US 2002/056637 Al US 2002/056637 Al

Pyle, W. et al.: «Solar Hydrogen Production by Electrolysis», Home Power #39, fe-bruar/mars 1990, side 32-38. Pyle, W. et al.: "Solar Hydrogen Production by Electrolysis", Home Power #39, Feb-Feb/Mar 1990, pp. 32-38.

Sammenfatning av oppfinnelsen Summary of the Invention

Det er en hensikt med foreliggende oppfinnelse å frembringe et system for å levere elektrisitet ved bruk av solteknologi som er enklere å kontrollere enn tidligere kjente løsninger, som kan skaleres for å gi større kapasitet og som er kostnadseffekti-ve. It is an aim of the present invention to produce a system for supplying electricity using solar technology which is easier to control than previously known solutions, which can be scaled to provide greater capacity and which is cost-effective.

Dette oppnås i et system som dekket av de etterfølgende patentkrav. This is achieved in a system covered by the subsequent patent claims.

Systemet er basert på bruk av to separate solcellefarmer, hvor én leverer elektrisitet til konsumenten på dagtid, og den annen leverer elektrisitet til en elektrolysecelle, også på dagtid. Elektrolysecellen leverer hydrogen og oksygen ved relativt høyt trykk, hvilket gjør bruk av kompressorer unødvendig. The system is based on the use of two separate solar farms, where one supplies electricity to the consumer during the day, and the other supplies electricity to an electrolysis cell, also during the day. The electrolysis cell delivers hydrogen and oxygen at relatively high pressure, which makes the use of compressors unnecessary.

Kortfattet beskrivelse av tegningene Brief description of the drawings

Ytterligere egenskaper og fordeler vil fremgå av den etterfølgende detaljerte beskrivelse med henvisning til den vedføyde tegning, som er en skisse som viser prin-sippene bak foreliggende oppfinneriske system. Further properties and advantages will be apparent from the following detailed description with reference to the attached drawing, which is a sketch showing the principles behind the present inventive system.

Detaljert beskrivelse Detailed description

Som figurene viser omfatter systemet en primær solcellefarm 1 bestående av et antall individuelle solceller koblet i serie og parallell for å utvikle en forhåndsbe-stemt DC spenning. DC strømmen fra den primære solcellefarmen 1 leveres til en omformer 2, idet omformeren konverterer lav likespenning fra den primære solcel lefarmen 1 til standard AC nettspenning. AC nettspenningen leveres til konsumen-tene) via et lokalt nett 3. As the figures show, the system comprises a primary solar cell farm 1 consisting of a number of individual solar cells connected in series and parallel to develop a predetermined DC voltage. The DC current from the primary solar cell farm 1 is delivered to a converter 2, the converter converting low direct voltage from the primary solar cell farm 1 to standard AC mains voltage. The AC mains voltage is delivered to the consumers) via a local network 3.

Systemet inkluderer også en sekundær solcellefarm 4 med et antall individuelle solceller, igjen koblet i serie/parallell. Den sekundære farmen er koblet til et elektrolyseanlegg 5. Elektrolysøren 5 er en såkalt alkalin trykkelektrolysør som produserer hydrogen og oksygen ved 1-5 MPa (10-50 bar) eller mer. Andre elektrolys-ører, hvis eller når de blir tilgjengelige, kan erstatte den alkaline trykkelektrolys-øren benyttet i den illustrerte utførelse av oppfinnelsen, men elektrolysøren bør fortrinnsvis produsere hydrogen og oksygen under trykk. Da kan man unngå kompressorer, hvilket betyr en forbedret effektivitet sammenlignet med tidligere kjente systemer. Elektrolysøren vil produsere gass så lenge som den sekundære solcellefarmen kan produsere noe signifikant kraft. Gassene lagres i egnede lagringsmidler, slik som tanker 6, 7 for respektivt oksygen og hydrogen. Ved solnedgang vil gassene blir levert til en brenselcelle 8, for å produsere elektrisitet under natten. DC kraften fra brenselcellen blir deretter levert til omformeren 2 for konvertering til AC nett. The system also includes a secondary solar farm 4 with a number of individual solar cells, again connected in series/parallel. The secondary farm is connected to an electrolysis plant 5. The electrolyser 5 is a so-called alkaline pressure electrolyser that produces hydrogen and oxygen at 1-5 MPa (10-50 bar) or more. Other electrolysers, if or when they become available, may replace the alkaline pressure electrolyser used in the illustrated embodiment of the invention, but the electrolyser should preferably produce hydrogen and oxygen under pressure. Compressors can then be avoided, which means an improved efficiency compared to previously known systems. The electrolyser will produce gas as long as the secondary solar farm can produce some significant power. The gases are stored in suitable storage means, such as tanks 6, 7 for oxygen and hydrogen respectively. At sunset, the gases will be delivered to a fuel cell 8, to produce electricity during the night. The DC power from the fuel cell is then delivered to converter 2 for conversion to the AC grid.

Den primære solcellefarmen 1 er direkte koblet til omformeren 2, og den sekundære solcellefarmen er direkte koblet til elektrolysøren. Ved bruk av to separate solcellefarmer og direkte forbindelser kan kontrollsystemer unngås helt, hvilket betyr en stor forenkling av systemet. Solsyklusen vil kontrollere driften av systemet. The primary solar farm 1 is directly connected to the inverter 2, and the secondary solar farm is directly connected to the electrolyser. By using two separate solar farms and direct connections, control systems can be completely avoided, which means a great simplification of the system. The solar cycle will control the operation of the system.

Brenselcellen 8 kan kjøre på hydrogen fra tanken 7 og oksygen fra den omgivende luft. Bruk av oksygen fra elektrolysøren 5 i brenselcellen 8, i stedet for luft, vil for-bedre effektiviteten av brenselcellen. Brenselcellen kombinerer det leverte hydrogen og oksygen til vann, som damp. Dampen kondenseres til vann i kollektoren 9 og lagres. Brenselcellen vil produsere vann under natten og vannet lagres og leveres til elektrolysøren for gjenbruk på dagtid. Gjenbruk av vann er fordelaktig av flere årsaker. For det første må anlegget bare fylles opp med vann innledningsvis når det installeres. Senere vil systemet være en lukket prosess. Dette er en fordel i tørre klima hvor et konstant behov for vann kan være et problem. Bruk av vann fra kollektoren 9, som er rent og sterilt, vil forlenge levetiden til elektrolysøren. The fuel cell 8 can run on hydrogen from the tank 7 and oxygen from the surrounding air. Using oxygen from the electrolyser 5 in the fuel cell 8, instead of air, will improve the efficiency of the fuel cell. The fuel cell combines the supplied hydrogen and oxygen into water, as steam. The steam is condensed to water in the collector 9 and stored. The fuel cell will produce water during the night and the water is stored and delivered to the electrolyser for reuse during the day. Water reuse is beneficial for several reasons. Firstly, the system only needs to be filled with water initially when it is installed. Later, the system will be a closed process. This is an advantage in dry climates where a constant need for water can be a problem. Using water from the collector 9, which is clean and sterile, will extend the life of the electrolyser.

Claims (4)

1. System for strømforsyning, omfattende: en primær solcellefarm (1) bestående av et antall paneler med individuelle solceller, en sekundær solcellefarm (4) bestående av et antall paneler med individuelle solceller, et elektrolyseanlegg (5),karakterisert vedat den primære solcellefarmen er koblet direkte til en omformer (2) innrettet til å konvertere en DC spenning fra den primære solcellefarmen (1) til en AC nettspenning for levering til et konsumentnettverk (3), den sekundære solcellefarmen (4) er koblet direkte til elektrolyseanlegget (5), idet systemet videre omfatter første lagringsmiddel (7) for lagring av hydrogen produsert av elektrolyseanlegget (5), og en brenselcelle (8) innrettet til å konvertere hydrogen fra det første lagringsmiddelet (7) og luft eller oksygen til vann og elektrisitet, idet elektrolyseanlegget (5) er koblet til omformeren (2) for å konvertere DC spenning fra brenselcellen (8) til AC nettspenning og levere denne AC nettspenningen til konsumentnettverket (3).1. System for power supply, comprising: a primary solar farm (1) consisting of a number of panels with individual solar cells, a secondary solar farm (4) consisting of a number of panels with individual solar cells, an electrolysis plant (5), characterized in that the primary solar farm is connected directly to a converter (2) arranged to convert a DC voltage from the primary solar farm (1) to an AC mains voltage for delivery to a consumer network (3), the secondary solar farm (4) is connected directly to the electrolysis plant (5), the system further comprising first storage means (7) for storing hydrogen produced by the electrolysis plant (5), and a fuel cell (8) arranged to convert hydrogen from the first storage means (7) and air or oxygen into water and electricity, the electrolysis plant ( 5) is connected to the converter (2) to convert DC voltage from the fuel cell (8) to AC mains voltage and deliver this AC mains voltage to the consumer network (3) . 2. System ifølge krav 1, hvor elektrolyseanlegget (5) er en alkalin trykkelektro-lysør.2. System according to claim 1, where the electrolysis plant (5) is an alkaline pressure electrolyser. 3. system ifølge krav 1, videre omfattende et andre lagringsmiddel (6) for å fange opp og lagre oksygen produsert av elektrolyseanlegget (5), idet oksy-genet leveres til brenselcellen (8).3. system according to claim 1, further comprising a second storage means (6) for capturing and storing oxygen produced by the electrolysis plant (5), the oxygen being delivered to the fuel cell (8). 4. System ifølge krav 1, videre omfattende en kollektor (9) for lagring av vann produsert i brenselcellen (8), idet kollektoren (9) er koblet til elektrolyseanlegget (5) for å levere nevnte vann til elektrolyseanlegget (5).4. System according to claim 1, further comprising a collector (9) for storing water produced in the fuel cell (8), the collector (9) being connected to the electrolysis plant (5) to deliver said water to the electrolysis plant (5).
NO20110847A 2011-06-10 2011-06-10 Power supply system NO333040B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20110847A NO333040B1 (en) 2011-06-10 2011-06-10 Power supply system
PCT/NO2012/050107 WO2012169902A1 (en) 2011-06-10 2012-06-08 System for supplying electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20110847A NO333040B1 (en) 2011-06-10 2011-06-10 Power supply system

Publications (2)

Publication Number Publication Date
NO20110847A1 NO20110847A1 (en) 2012-12-11
NO333040B1 true NO333040B1 (en) 2013-02-18

Family

ID=46354460

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20110847A NO333040B1 (en) 2011-06-10 2011-06-10 Power supply system

Country Status (2)

Country Link
NO (1) NO333040B1 (en)
WO (1) WO2012169902A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1273894Y (en) * 2021-06-13 2021-10-19 Hernandez Angel Horacio Lagrana Lagrana DISTRIBUTED INTELLIGENT CONTROL DEVICE FOR THE GENERATION AND RECOVERY OF ENERGY THROUGH SOLAR AND HYDROGEN RADIATION

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605326B2 (en) * 2003-11-24 2009-10-20 Anderson Christopher M Solar electrolysis power co-generation system
DE102007042711B4 (en) * 2007-09-07 2011-03-17 Karlsruher Institut für Technologie Plant for superconducting magnetic energy storage, electrolytic water separation and water-synthesizing power generation
EP2048759A1 (en) * 2007-10-09 2009-04-15 EM Microelectronic-Marin SA Facility for producing and storing renewable energy
US9534303B2 (en) * 2009-04-30 2017-01-03 GM Global Technology Operations LLC High pressure electrolysis cell for hydrogen production from water

Also Published As

Publication number Publication date
NO20110847A1 (en) 2012-12-11
WO2012169902A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
DK2751307T3 (en) ENERGY SUPPLY PLANT NAMELY FOR THE HOME ENGINEERING AREA.
AU2012350362B2 (en) A renewal energy power generation system
Barbir PEM electrolysis for production of hydrogen from renewable energy sources
US20180287179A1 (en) Heat management method in a high-temperature steam electrolysis (soec), solid oxide fuel cell (sofc) and/or reversible high-temperature fuel cell (rsoc), and high-temperature steam electrolysis (soec), solid oxide fuel cell (sofc) and/or reversible high-temperature fuel cell (rsoc) arrangement
JP3163946U (en) Equipment for generating and storing renewable energy
US11111195B2 (en) Bio-methanol production
CN215856359U (en) Independent offshore hydrogen refueling station for wind power generation and water electrolysis hydrogen production
CN112448413A (en) Distributed energy supply system and method with near-zero carbon emission
WO2011060953A2 (en) End-to-end energy management system
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
JP2015206060A (en) Hydrogen gas generating system
US20160372775A1 (en) Method for Temporarily Storing the Electric Energy of an Energy Supply System and Regenerative Energy Storage Device
US20180254498A1 (en) Fuel cell-fuel cell hybrid system for energy storage
Troncoso et al. Off-grid test results of a solar-powered hydrogen refuelling station for fuel cell powered Unmanned Aerial Vehicles
ES2325848B1 (en) HYDROGEN AND ELECTRICAL ENERGY PRODUCTION SYSTEM FROM PHOTOVOLTAIC ENERGY.
EP3936717A1 (en) Wind park with heat recovery piping
NO333040B1 (en) Power supply system
CN213341659U (en) Distributed energy supply system with near-zero carbon emission
EP3936715A1 (en) Wind park with limited transmission capacity
US11742670B2 (en) Energy transmission system and wind farm
US20120301801A1 (en) Systems and methods for converting received stored energy
Briot et al. Design and Analysis of a Renewable Hydrogen system for biogas production
KR102547415B1 (en) Hydrogen production system in nuclear power plant
EP3957852A1 (en) Wind park with data processing centres
EP3936716B1 (en) Wind park with wind turbine generators having reduced inverter capacity

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: OY WOIKOSKI AB, FI

MM1K Lapsed by not paying the annual fees