NO332809B1 - Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium. - Google Patents

Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium. Download PDF

Info

Publication number
NO332809B1
NO332809B1 NO20101662A NO20101662A NO332809B1 NO 332809 B1 NO332809 B1 NO 332809B1 NO 20101662 A NO20101662 A NO 20101662A NO 20101662 A NO20101662 A NO 20101662A NO 332809 B1 NO332809 B1 NO 332809B1
Authority
NO
Norway
Prior art keywords
absorption medium
naf
mixture
carbon dioxide
gas
Prior art date
Application number
NO20101662A
Other languages
Norwegian (no)
Other versions
NO20101662A1 (en
Inventor
Espen Olsen
Original Assignee
Uni For Miljo Og Biovitenskap Inst For Mat Realfag Og Teknologi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni For Miljo Og Biovitenskap Inst For Mat Realfag Og Teknologi filed Critical Uni For Miljo Og Biovitenskap Inst For Mat Realfag Og Teknologi
Priority to NO20101662A priority Critical patent/NO332809B1/en
Priority to PCT/NO2011/000334 priority patent/WO2012070954A1/en
Publication of NO20101662A1 publication Critical patent/NO20101662A1/en
Publication of NO332809B1 publication Critical patent/NO332809B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

Foreliggende oppfinnelse vedrører en fremgangsmåte for innfangning av karbondioksid, CO2 fra avgass ved anvendelse av CaO oppløst i en blanding av NAF og CaF2 som absorpsjonsmedium.The present invention relates to a process for capturing carbon dioxide, CO 2 from exhaust gas using CaO dissolved in a mixture of NAF and CaF2 as the absorption medium.

Description

Foreliggende oppfinnelse vedrører innfangning av karbondioksid, CO2fra avgass ved anvendelse av kalsiumoksid oppløst i en saltsmelte som absorpsjonsmedium. The present invention relates to the capture of carbon dioxide, CO2 from exhaust gas using calcium oxide dissolved in a salt melt as an absorption medium.

I et konvensjonelt varmekraftverk oksideres kull med luft med et forholdstall »1.1 en slik konvensjonelt fyrt kjele er det 10-15% CO2i avgassen og temperaturen er ca 800°C ved utløp fra kjelen. Den varme avgassen varmeveksles med vann og genererer overopphetet damp med høyt trykk som benyttes til å drive en turbin som igjen driver en generator for elektrisk strøm. Den elektriske virkningsgraden er forholdsvis lav, ca. 40-60%. Den varme dampen kondenseres før den igjen varmeveksles med de varme avgassene fra forbrenningsprosessen. I kondensasjonsprosessen frigjøres mye varme som kan benyttes til fjernvarme-formål i såkalte CHP (combined heat and power)-anlegg. Dette øker den totale virkningsgraden i et anlegg til i området 70%. In a conventional thermal power plant, coal is oxidized with air with a ratio of »1.1 in such a conventionally fired boiler, there is 10-15% CO2 in the exhaust gas and the temperature is about 800°C at the outlet from the boiler. The hot exhaust gas is heat exchanged with water and generates superheated steam at high pressure which is used to drive a turbine which in turn drives a generator for electricity. The electrical efficiency is relatively low, approx. 40-60%. The hot steam is condensed before it is again exchanged for heat with the hot exhaust gases from the combustion process. In the condensation process, a lot of heat is released which can be used for district heating purposes in so-called CHP (combined heat and power) plants. This increases the total efficiency in a plant to around 70%.

Den mest aktuelle teknologien for rensing av CO2fra varmekraftverk er i dag basert på absorpsjon av CO2i aminer. Etter dekomprimering og avkjøling i turbinen føres avgassene gjennom en stor reaktor der CO2absorberes i en aminbasert væske ved 30-40°C. De øvrige avgassene slippes ut til atmosfæren, mens den C02-rike aminvæsken føres inn i et annet kammer der temperaturen heves til 120-130X og CO2frigjøres selektivt. Den frigjorte gassen kan deretter komprimeres til væske og deponeres på dertil egnet sted. Aminabsorbenten avkjøles til 30-40X og føres inn i absorpsjonskammeret der prosessen starter på nytt. Temperaturvekslingen av store mengder absorbent er energikrevende og senker den elektriske virkningsgraden for anlegget med ca 10%. The most current technology for cleaning CO2 from thermal power plants is currently based on the absorption of CO2i amines. After decompression and cooling in the turbine, the exhaust gases are passed through a large reactor where CO2 is absorbed in an amine-based liquid at 30-40°C. The other exhaust gases are released into the atmosphere, while the C02-rich amine liquid is fed into another chamber where the temperature is raised to 120-130X and CO2 is selectively released. The released gas can then be compressed into a liquid and deposited in a suitable place. The amine absorbent is cooled to 30-40X and fed into the absorption chamber where the process starts again. The temperature change of large amounts of absorbent is energy-intensive and lowers the electrical efficiency of the plant by about 10%.

En generell termisk energikonverteringsprosess kan representeres av skissen i Figur 2. Varme (Qh) flyter fra et reservoar med høy temperatur gjennom en maskin til et reservoar med lav temperatur. På veien utføres et arbeid W mens varme Ql tilføres lavtemperaturreservoaret. Effektiviteten til prosessen er gitt av likning (1). A general thermal energy conversion process can be represented by the sketch in Figure 2. Heat (Qh) flows from a reservoir of high temperature through a machine to a reservoir of low temperature. On the road, work W is performed while heat Ql is supplied to the low-temperature reservoir. The efficiency of the process is given by equation (1).

Den teoretiske virkningsgraden (carnotvirkningsgraden) for en termisk energikonverteringsprosess generelt er gitt ved ligning (2) der TH og TL er henholdsvis høy- og lav temperatur i energikonverteringsprosessen. The theoretical efficiency (carnot efficiency) for a thermal energy conversion process in general is given by equation (2) where TH and TL are respectively high and low temperature in the energy conversion process.

Denne representerer en fundamental grense for effektiviteten i termiske prosesser. Generelt er det gunstig med så store temperaturforskjeller som mulig for økt effektivitet. This represents a fundamental limit for the efficiency of thermal processes. In general, it is beneficial to have as large temperature differences as possible for increased efficiency.

Ved energigjenvinning fra temperaturvekslingen mellom 130°C og 40°C i en aminrenseprosess er den teoretiske virkningsgraden i henhold til ligning (2) 66,9%. I praksis er den langt lavere samtidig som energien fra gjenvinnings-prosessen foreligger som forholdsvis lavkvalitets varmeenergi som primært bare kan benyttes til varmeformål. Et gasskraftverk med aminrensing er skissert i Figur 3. When recovering energy from the temperature change between 130°C and 40°C in an amine purification process, the theoretical efficiency according to equation (2) is 66.9%. In practice, it is far lower, while the energy from the recovery process is available as relatively low-quality heat energy that can primarily only be used for heating purposes. A gas power plant with amine purification is outlined in Figure 3.

RU2229335 C1 vedrører ved et CO2absorpsjonsmiddel som er en blanding av kalsiumoksid med eutektisk blanding av alkalimetallkarbonater fremstilt i form av korn. RU2229335 C1 relates to a CO2 absorbent which is a mixture of calcium oxide with a eutectic mixture of alkali metal carbonates produced in the form of grains.

JP11028331 A omhandler elektrokjemisk separering av CO2, hvor CO2omdannes til COaved katoden gjennom en elektrokjemisk reaksjon. JP11028331 A deals with electrochemical separation of CO2, where CO2 is converted to CO at the cathode through an electrochemical reaction.

JP 10085553 omhandler separering av CO2, ved å bringe avgassen gjennom en membran hvor fibrene består av et sammensatt oksid som danner CO2gjennom en kjemisk reaksjon med C02og et oksid. JP 10085553 deals with the separation of CO2, by bringing the exhaust gas through a membrane where the fibers consist of a compound oxide that forms CO2 through a chemical reaction with C02 and an oxide.

US2005036932 omhandler en fremgangsmåte for å absorbere og fjerne C02fra en avgass. Avgassen blåses gjennom et agglomerat av faste partikler inneholdende CaO og eller Ca(OH)2slik at CO2i avgassen omdannes til CaC03. US2005036932 deals with a method for absorbing and removing C02 from an exhaust gas. The exhaust gas is blown through an agglomerate of solid particles containing CaO and or Ca(OH)2 so that the CO2 in the exhaust gas is converted to CaC03.

Terasaka et al. (Chem. Eng. Technol. 2006, 29 No 9, sider 1118-1121) har beskrevet en prosess der CO2absorberes av fast, partikulært litiumsilikat (LiSi04) i en slurry med smeltet salt som arbeidsmedium. Det dannes U2CO3og Li2Si03som foreligger som faste partikler i slurryen. Terasaka et al. (Chem. Eng. Technol. 2006, 29 No 9, pages 1118-1121) has described a process in which CO2 is absorbed by solid, particulate lithium silicate (LiSiO4) in a slurry with molten salt as working medium. U2CO3 and Li2Si03 are formed, which are present as solid particles in the slurry.

Kjent teknikk beskriver mange ulike metoder for innfangning av CO2. Ulempene er i hovedsak størrelsen på renseanleggene og lav energieffektivitet for energikonverteringsprosessen. Known technology describes many different methods for capturing CO2. The disadvantages are mainly the size of the treatment plants and low energy efficiency for the energy conversion process.

Det er et formål med oppfinnelsen å komme frem til en fremgangsmåte for rensing av C02fra avgasser fra forbrenningsanlegg som vil gi en økt virkningsgrad og energikvalitet for energigjenvinningen fra renseprosessen. I tillegg vil det være ønskelig å øke effektiviteten for rensingen av CO2ved å benytte raskere kjemiske reaksjoner slik at et renseanlegg kan gjøres fysisk mindre. It is an aim of the invention to come up with a method for cleaning C02 from exhaust gases from combustion plants which will provide an increased degree of efficiency and energy quality for the energy recovery from the cleaning process. In addition, it would be desirable to increase the efficiency of cleaning CO2 by using faster chemical reactions so that a treatment plant can be made physically smaller.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for fjerning av karbondioksid fra en gasstrøm, der gasstrømmen i et første trinn i et reaksjonskammer bringes i kontakt med et absorpsjonsmedium i smeltet tilstand som omfatter 99-50 vekt% av en blanding av NaF og CaF2og 1-50 vekt% av oppløst CaO som reagerer med karbondioksidet og danner et kalsiumkarbonat. Fremgangsmåten utføres ved et trykk nær atmosfæretrykket over absorpsjonsmediet. The present invention provides a method for removing carbon dioxide from a gas stream, where the gas stream in a first step in a reaction chamber is brought into contact with an absorption medium in a molten state comprising 99-50% by weight of a mixture of NaF and CaF2 and 1-50% by weight of dissolved CaO which reacts with the carbon dioxide to form a calcium carbonate. The method is carried out at a pressure close to atmospheric pressure above the absorption medium.

Videre vedrører oppfinnelsen anvendelse av et absorpsjonsmedium som omfatter 99 - 50 vekt% av en saltsmelte som er en blanding av NaF og CaF2og 1-50 vekt% av oppløst CaO for fjerning av karbondioksid fra en gasstrøm. Furthermore, the invention relates to the use of an absorption medium comprising 99-50% by weight of a salt melt which is a mixture of NaF and CaF2 and 1-50% by weight of dissolved CaO for the removal of carbon dioxide from a gas stream.

Oppfinnelsen tilveiebringer også et absorpsjonsmedium for fjerning av karbondioksid fra en gasstrøm som omfatter 99 - 50 vekt% av en saltsmelte som er en blanding av NaF og CaF2og 1-50 vekt% av oppløst CaO. The invention also provides an absorption medium for removing carbon dioxide from a gas stream comprising 99-50% by weight of a salt melt which is a mixture of NaF and CaF2 and 1-50% by weight of dissolved CaO.

Figurer: Figures:

Fig. 1: Skjematisk fremstilling av konvensjonelt varmekraftverk (B. Sørensen) Fig. 1: Schematic representation of a conventional thermal power plant (B. Sørensen)

Fig. 2: Skjematisk visualisering av en generell energikonverteringsprosess. Fig. 2: Schematic visualization of a general energy conversion process.

Fig. 3: Skjematisk fremstilling av gasskraftverk med aminrenseanlegg, fra SINTEF Fig. 4: Gibbs fri energi for reaksjon (5). Positive verdier tilsier at reaksjonen går mot venstre. Ved negative verdier går reaksjonen mot høyre. Fig. 5: Prinsippskisse for høytemperatur saltsmelteabsorpsjon av C02fra gasskraftverk. Fig. 3: Schematic representation of gas power plant with amine purification plant, from SINTEF Fig. 4: Gibbs free energy for reaction (5). Positive values indicate that the reaction goes to the left. For negative values, the reaction goes to the right. Fig. 5: Principle sketch for high-temperature salt melt absorption of C02 from gas power plants.

Fig. 6: Fasediagram CaF2-NaF. Fig. 6: Phase diagram CaF2-NaF.

Fig. 7: Skisse av eksperimentell apparatur (celle). Fig. 7: Sketch of experimental apparatus (cell).

Fig. 8: Gassammensetning ut fra cella ved absorpsjonsforsøk. Fig. 8: Gas composition from the cell during absorption experiments.

Fig. 9: Gassammensetning ved desorpsjonsforsøk. Fig. 9: Gas composition during desorption experiments.

Saltsmelter er benyttet i kjemisk prosessindustri i en rekke sammenhenger. Konkret kan nevnes: Elektrolytt i elektrolyseprosesser, som katalytisk medium i pyrolyseprosesser og som elektrolytt i batterier og fotoelektrokjemiske solceller. Generelt består saltsmelter av metall-anionforbindelser av forskjellig sammen-setning. Disse er svært termodynamisk stabile i seg selv samtidig som de er effektive løsemidler for andre stoffer og elementer. Enkelte saltsmelter viser en viss løselighet av karbon i form av C02. Dette gjelder spesielt klorider som M-CIX, fluorider M-Fx, nitrater M-(N03)y der M er et metall med valens x eller y/2. Salt smelters are used in the chemical process industry in a number of contexts. Specifically, the following can be mentioned: Electrolyte in electrolysis processes, as a catalytic medium in pyrolysis processes and as electrolyte in batteries and photoelectrochemical solar cells. In general, salt melts consist of metal-anion compounds of different composition. These are very thermodynamically stable in themselves at the same time as they are effective solvents for other substances and elements. Some salt melts show a certain solubility of carbon in the form of C02. This particularly applies to chlorides such as M-CIX, fluorides M-Fx, nitrates M-(N03)y where M is a metal with valence x or y/2.

Generelt vil oksider være løselige i saltsmelter med motsatt Lewis syre-basekarakteristikk slik at sure smelter løser basiske oksider og vise versa. Et godt eksempel er CaCb som i seg selv viser svakt sur karakteristikk. Dette gjør at basiske (CaO, MgO) og tildels amfotære oksider løses lett mens sure oksider (Si02, Ti02) vil løses bare i liten grad. Basiske oksider har affinitet for CO2under dannelse av karbonater i henhold til likning (3) In general, oxides will be soluble in salt melts with opposite Lewis acid-base characteristics so that acidic melts dissolve basic oxides and vice versa. A good example is CaCb, which in itself shows slightly acidic characteristics. This means that basic (CaO, MgO) and partially amphoteric oxides dissolve easily, while acidic oxides (SiO2, Ti02) will dissolve only to a small extent. Basic oxides have an affinity for CO2 during the formation of carbonates according to equation (3)

Kalsiumkarbonat har i likhet med kalsiumoksid, basiske egenskaper og løses generelt i sure smelter. Dette er imidlertid ikke eksklusivt gyldig siden både CaO og CaC03også løses i fluorider som CaF2som oppviser basiske egenskaper. Kalsiumkarbonat er svært stabilt ved romtemperatur, men dekomponerer til CaO og C02i henhold til likning (4) ved temperaturer over 850-900°C. Tabell 1 viser AG for reaksjon (3) som funksjon av temperatur. Dette er den motsatte reaksjonen av (4) slik at de samme tallene gjelder for (4) med motsatt fortegn. Calcium carbonate, like calcium oxide, has basic properties and is generally dissolved in acidic melts. However, this is not exclusively valid since both CaO and CaCO3 also dissolve in fluorides such as CaF2 which exhibit basic properties. Calcium carbonate is very stable at room temperature, but decomposes to CaO and C02 according to equation (4) at temperatures above 850-900°C. Table 1 shows AG for reaction (3) as a function of temperature. This is the opposite reaction of (4) so that the same numbers apply to (4) with the opposite sign.

Tabell 1: Gibbs fri energi for reaksjon (3) som funksjon av temperatur. Table 1: Gibbs free energy for reaction (3) as a function of temperature.

Ved å benytte CaO sin affinitet for CO2, kan reaksjon (3) og (4) benyttes til innfanging av slik gass fra en fortynnet gassblanding, for eksempel fra et kullkraftverk, ved å føre gassblandingen gjennom en saltsmelte med løst CaO som dermed vil trekke til seg karbondioksidet fra gassblandingen og danne CaC03. Temperaturen på saltsmelter er normalt i området 600-1500°C, og den høye temperaturen kombinert med katalytiske egenskaper ved saltsmeltene gjør at slik innfanging kan bli meget effektiv. By using CaO's affinity for CO2, reactions (3) and (4) can be used to capture such gas from a diluted gas mixture, for example from a coal-fired power station, by passing the gas mixture through a salt melt with dissolved CaO, which will thus attract separate the carbon dioxide from the gas mixture and form CaC03. The temperature of salt melts is normally in the range of 600-1500°C, and the high temperature combined with the catalytic properties of the salt melts means that such capture can be very effective.

Gibbs fri energi for reaksjon (3) og (4) for de andre jordalkalimetalloksidene er beregnet ved hjelp av HSC Thermodynamic software tool, Outotech 2008. The Gibbs free energy for reaction (3) and (4) for the other alkaline earth metal oxides has been calculated using the HSC Thermodynamic software tool, Outotech 2008.

I Figur 4 fremkommer at den fri energi i henhold til (4) for de forskjellige jordalkalimetalloksidene skifter fortegn ved høyere temperatur ettersom vi beveger oss nedover i det periodiske system. Dette kan utnyttes på den måten at de tyngre oksidene benyttes ved absorpsjon i forbrenningsprosesser der avgass-temperaturen er høy. Det er ønskelig med en stor drivende kraft (stor, negativ AG) for at prosessene skal gå hurtig. Samtidig er prosesshastighet normalt økende med økende temperatur. Dette utgjør motstridende effekter ved absorpsjon av CO2i saltsmelter og et optimalt arbeidspunkt må finnes eksperimentelt i hvert enkelt tilfelle. Når oksid og korresponderende karbonat foreligger oppløst i en saltsmelte vil dette utgjøre et annet medium og omgivelser enn når de foreligger i fri form ved enhetsaktivitet som forutsatt i (4), men kvalitativt vil oppførselen være lik for de forskjellige kationene. Tilsvarende beregninger for alkalimetalloksidene viser at disse er mer stabile slik at vi ikke oppnår skifte i fortegn for reaksjon (4) ved aktuelle driftstemperaturer. Dette gjelder ved de forhold som beregningene er gjort ved (STP, enhetsaktivitet, fast fase) og er ikke nødvendigvis representativt når reaktantene foreligger oppløst i en saltsmelte. I denne tilstanden vil stabiliteten til forbindelsene være lavere slik at alkalimetalloksider/karbonater også fungerer som aktive forbindelser. CC-2-løseligheten i gassform i saltsmelter er en funksjon av temperatur på den måten at løseligheten går ned ved økende T. Dette er delvis beskrevet i E. Saido, et al., J Chem Eng, Data, 25, (1), 1980, sider 45-47. Løseligheten av gassformig CO2er i størrelsesorden 0,1-1% og kan føre til tap i prosesseffektivitet ved dannelse og dekomponering av CaC03. In Figure 4 it appears that the free energy according to (4) for the different alkaline earth metal oxides changes sign at higher temperature as we move down the periodic table. This can be exploited in the way that the heavier oxides are used for absorption in combustion processes where the exhaust gas temperature is high. It is desirable to have a large driving force (large, negative AG) in order for the processes to go quickly. At the same time, process speed normally increases with increasing temperature. This constitutes conflicting effects in the absorption of CO2 in salt melts and an optimal operating point must be found experimentally in each individual case. When oxide and corresponding carbonate are present dissolved in a salt melt, this will constitute a different medium and environment than when they are present in free form at unit activity as assumed in (4), but qualitatively the behavior will be the same for the different cations. Corresponding calculations for the alkali metal oxides show that these are more stable so that we do not achieve a change in sign for reaction (4) at relevant operating temperatures. This applies to the conditions at which the calculations were made (STP, unit activity, solid phase) and is not necessarily representative when the reactants are dissolved in a salt melt. In this state, the stability of the compounds will be lower so that alkali metal oxides/carbonates also function as active compounds. The gaseous CC-2 solubility in salt melts is a function of temperature in that the solubility decreases with increasing T. This is partially described in E. Saido, et al., J Chem Eng, Data, 25, (1), 1980, pages 45-47. The solubility of gaseous CO2 is in the order of 0.1-1% and can lead to a loss in process efficiency through the formation and decomposition of CaC03.

I foreliggende oppfinnelse inngår ikke noen fast-fase reaksjoner siden reaktantene foreligger løst som kompleksioner i den beskrevne saltsmelten. Dette gjør at kinetikken blir langt raskere enn tidligere teknikk og man slipper å forholde seg til en slurry, men holder alt i væskeform. I stedet for å absorbere CO2fra forbrenningsgassene i lavtemperatursonen etter varmeveksling med damp kan man gjøre dette før forbrenningsgassene avkjøles. Umiddelbart etter forbrenning holder gassene temperaturer i området 800-1400°C. For et kullkraftverk foreligger gassene ved tilnærmet atmosfæretrykk og uttak av energi skjer i en konvensjonell dampkjel der vann varmes opp til tilnærmet samme temperatur som avgassene for drift av en dampturbin som igjen driver en elektrisk generator (Figur 1). Det er ingen prinsipielle grunner til at C02ikke skal kunne absorberes fra avgassene i varm og/eller trykksatt tilstand. Saltsmelter som beskrevet over har typisk smeltepunkt i området 600-1412°C, nettopp i temperaturområdet for forbrenningsprosessen. En slik absorpsjonsprosess kan tenkes utført i prinsippet som et aminanlegg, men ved høyere prosesstemperatur. Absorpsjonstemperaturen vil være i området 600 - 1600°C. Den høyere temperaturen antas å gjøre kinetikken i prosessen langt raskere slik at et slikt anlegg kan gjøres fysisk langt mindre enn et aminabsorpsjonsanlegg som fysisk er svært stort. Et slikt anlegg er skissert i Figur 5. For et gasskraftverk vil forbrenningsgassene før turbinen i tillegg foreligge under høyt trykk, noe som ytterligere vil øke effektiviteten til prosessen hvis den plasseres her siden partialtrykket til CO2i gassblandingen vil være langt høyere enn ved atmosfæretrykk (10-20 atm). The present invention does not include any solid-phase reactions since the reactants are present dissolved as complexions in the described salt melt. This means that the kinetics are much faster than previous techniques and you don't have to deal with a slurry, but keep everything in liquid form. Instead of absorbing CO2 from the combustion gases in the low-temperature zone after heat exchange with steam, this can be done before the combustion gases cool down. Immediately after combustion, the gases maintain temperatures in the range of 800-1400°C. For a coal-fired power plant, the gases are present at approximately atmospheric pressure and energy is extracted in a conventional steam boiler where water is heated to approximately the same temperature as the exhaust gases for operation of a steam turbine which in turn drives an electric generator (Figure 1). There are no fundamental reasons why C02 should not be able to be absorbed from the exhaust gases in a hot and/or pressurized state. Salt smelters as described above typically have a melting point in the range 600-1412°C, precisely in the temperature range for the combustion process. Such an absorption process can be thought of as carried out in principle as an amine plant, but at a higher process temperature. The absorption temperature will be in the range 600 - 1600°C. The higher temperature is believed to make the kinetics of the process much faster so that such a plant can be made physically much smaller than an amine absorption plant which is physically very large. Such a plant is outlined in Figure 5. For a gas power plant, the combustion gases before the turbine will also be under high pressure, which will further increase the efficiency of the process if it is placed here since the partial pressure of CO2 in the gas mixture will be far higher than at atmospheric pressure (10- 20 atm).

I følge oppfinnelsen kan varme avgasser ledes gjennom saltsmelter bestående av NaF og CaF2ved ca. 850°C der CO2absorberes av løst CaO i saltsmelten i et kammer under dannelse av CaC03. Smeiten med høyt innhold av CaC03føres deretter til et desorpsjonskammer og varmes opp til ca. 950°C for frigjøring av gass. According to the invention, hot exhaust gases can be passed through salt melts consisting of NaF and CaF2 at approx. 850°C where CO2 is absorbed by dissolved CaO in the salt melt in a chamber with the formation of CaC03. The melt with a high content of CaC03 is then fed to a desorption chamber and heated to approx. 950°C for release of gas.

Teoretisk forklares dette ved likning (5) som forskyves mot venstre ved T>850°C nårAG>0 (se Tabell 1). Theoretically, this is explained by equation (5) which shifts to the left at T>850°C when AG>0 (see Table 1).

De rensede avgassene og CO2varmeveksles så i separate kretser med vann for generering av høytemperatur damp som driver en dampturbin for drift av en elektrisk generator. Saltsmelten med løst, regenerert CaO kjøles ned til 800°C før den igjen føres inn i absorpsjonskammeret. I denne prosessen varmeveksles smeiten med damp som igjen kan drive en turbin for generering av elektrisk strøm - gjerne den samme som drives av damp generert av de varme avgassene. Fordelen med å rense gassen mens den har høy temperatur vil være en høyere elektrisk virkningsgrad fra den totale energikonverteringsprosessen. Den teoretiske carnotvirkningsgraden (se ligning 2) i en slik prosess for gjenvinning av prosessvarme fra avkjøling av saltsmeltemediet fra 950°C til 800°C i absorpsjons-anlegget vil, - hvis vi antar TL ca 40°C etter energiuttak fra avkjølingsmediet (og kondensasjon i tilfelle damp) til elektrisk energi samt TH ca. 800°C, være 95%. Dessuten vil dette kunne generere høykvalitets elektrisk energi i stedet for lavkvalitets vannbåren varme. The cleaned exhaust gases and CO2 heat are then exchanged in separate circuits with water to generate high temperature steam which drives a steam turbine to operate an electric generator. The salt melt with dissolved, regenerated CaO is cooled to 800°C before it is fed back into the absorption chamber. In this process, heat is exchanged with steam, which in turn can drive a turbine to generate electricity - preferably the same one that is driven by steam generated by the hot exhaust gases. The benefit of cleaning the gas while it is at high temperature will be a higher electrical efficiency from the overall energy conversion process. The theoretical Carnot efficiency (see equation 2) in such a process for the recovery of process heat from cooling the salt melting medium from 950°C to 800°C in the absorption plant will, - if we assume TL about 40°C after energy withdrawal from the cooling medium (and condensation in the case of steam) to electrical energy as well as TH approx. 800°C, be 95%. Moreover, this will be able to generate high-quality electrical energy instead of low-quality water-borne heat.

Alternativt kan veksling av trykk mellom absorpsjons- og desorpsjons-kamrene i prinsippet fungere på samme måte som en veksling i temperatur. For et gasskraftverk der en stor andel av energien i brennstoffet knytter seg til hydrogeninnholdet i gassen vil det dessuten eksistere en tredje måte å fjerne CO2-utslippet til atmosfæren på, nemlig ved å felle ut karbonet elektrokjemisk fra løst karbonatform i saltsmelten i desorpsjonskammeret. I dette tilfellet vil det genereres elementært karbon som kan tas ut av prosessveien og deponeres. Dette vil være et alternativ til preforbrenningsreformasjon av naturgass til karbon (carbon black) og hydrogen før forbrenning av hydrogenet. Alternatively, changing pressure between the absorption and desorption chambers can in principle function in the same way as changing temperature. For a gas power plant where a large proportion of the energy in the fuel is linked to the hydrogen content in the gas, there will also be a third way to remove the CO2 emission to the atmosphere, namely by precipitating the carbon electrochemically from dissolved carbonate form in the molten salt in the desorption chamber. In this case, elemental carbon will be generated which can be taken out of the process path and deposited. This will be an alternative to pre-combustion reformation of natural gas into carbon (carbon black) and hydrogen before burning the hydrogen.

En umiddelbar utfordring med konseptet beskrevet over er at vann i forbrenningsgassen som skal renses kan føre til hydrolyse av enkelte saltsmelter - primært klorider, til oksyhydroklorider. Dette kan unngås ved å benytte smelter som ikke er utsatt for dette, fortrinnsvis basiske fluorider eller man kan kjøre en kontinuerlig regenereringsprosess der noe smelte til enhver tid tas ut for behandling. An immediate challenge with the concept described above is that water in the combustion gas to be cleaned can lead to the hydrolysis of certain salt melts - primarily chlorides, into oxyhydrochlorides. This can be avoided by using melts that are not exposed to this, preferably basic fluorides, or you can run a continuous regeneration process where some melt is taken out for treatment at any time.

Saltsmelten som benyttes i fremgangsmåten ifølge foreliggende oppfinnelse omfatter NaF og CaF2der innholdet av NaF fortrinnsvis er i området fra 45-95 mol%, foretrukket fra 55-85 mol%, mer foretrukket fra 60-75 mol%. The salt melt used in the method according to the present invention comprises NaF and CaF2, where the content of NaF is preferably in the range from 45-95 mol%, preferably from 55-85 mol%, more preferably from 60-75 mol%.

Mengden av CaO oppløst i saltblandingen fortrinnsvis er i området fra 1-50 vekt%, foretrukket fra 5-35 vekt%, mer foretrukket fra 10-25 vekt%. The amount of CaO dissolved in the salt mixture is preferably in the range from 1-50% by weight, preferably from 5-35% by weight, more preferably from 10-25% by weight.

Smeltepunktet for absorpsjonsmediet (blandingen av salt + oksid/karbonat) må ligge under temperaturen der metalloksid og metallkarbonat skifter på å være de stabile fasene. Dette fremgår av Tabell 1 og Figur 4. Det er viktig å ha kontroll på smeltepunktet til blandingen. Tilsats av et oksid skal normalt tilsi senkning i smeltepunktet. I foreliggende fremgangsmåte vil temperaturen i reaksjonskammeret fortrinnsvis ligge i området fra 700-1200°C. Det absolutte trykket i reaksjonskammeret vil ligge i området 0,5-200 bar. The melting point of the absorption medium (the mixture of salt + oxide/carbonate) must lie below the temperature at which metal oxide and metal carbonate change to be the stable phases. This can be seen from Table 1 and Figure 4. It is important to have control over the melting point of the mixture. Addition of an oxide should normally mean a lowering of the melting point. In the present method, the temperature in the reaction chamber will preferably be in the range from 700-1200°C. The absolute pressure in the reaction chamber will lie in the range 0.5-200 bar.

Eksperimentelt og resultater Experimental and results

En saltblanding bestående av 65 mol% NaF og 35 mol% CaF2ble preparert ved å smelte sammen substanser av kjemikaliegrad (Merck) ved 900°C i en digel av Ni. Dette er i nærheten av det eutektiske minimum i systemet NaF-CaF2som er skissert i Figur 6. Blandingen ble etter størkning knust til mindre biter for preparering til elektrolytt. 850 g saltblanding ble deretter tilsatt 150 g CaO og fylt i en digel av Ni. Blandingen ble smeltet ned ved 850°C i en gasstett celle skissert i Figur 7. Høyden på smeltefasen var ca 20 cm. En simulert røykgass bestående av 22 vekt% C02+ 78 vekt% N2(200 ml/min) ble først ført inn i området over smeltefasen gjennom et sentralt plassert nikkelrør og deretter ut gjennom et rør i rustfritt stål. Gassammensetningen ble monitorert ved hjelp av en FTIR-analysator (Thermo Nicolet 6700) utstyrt for gassanalyse for svært nøyaktige målinger av C02. Cella hadde et analysevolum på ca 200 ml, noe som sammen med volumet over saltsmelta gjorde at stabile analyser først ble oppnådd etter en viss tid når hele volumet var blitt fylt med gassen fra cella. Trykket i cella vil dermed være tilnærmet atmosfæretrykk over smelteblandingen, mens et visst overtrykk vil eksistere i bunn av cella der gass bobles gjennom smelta. Overtrykket kan anslås til ca 0,03 atm og skyldes tyngden av 20 cm smeltesøyle med tetthet ca 2,2 g/cm<3>. Da stabile verdier samsvarende med gassblandingens spesifikasjoner ble oppnådd (22 vekt% C02) ble det sentrale gasstilførselsrøret senket ned i smelta til 1 cm over bunnen mens gass hele tiden ble tilført. Gasstrømmens sammen-setning ble monitorert og etter kort tid ble C02-innholdet i gasstrømmen observert å synke. Etter ca 20 minutter var C02- innholdet i gasstrømmen sunket til ca 500 ppm. Ni-røret ble deretter hevet over smelta igjen og gassammensetningen ble igjen funnet å stige for så å stabilisere seg ved 22 vekt%. Resultatene fra gass-analysene er skissert i Figur 8. Cella ble deretter etterlatt i varm tilstand over natta uten gasstrøm. A salt mixture consisting of 65 mol% NaF and 35 mol% CaF2 was prepared by fusing chemical grade substances (Merck) at 900°C in a Ni crucible. This is close to the eutectic minimum in the system NaF-CaF2, which is outlined in Figure 6. After solidification, the mixture was crushed into smaller pieces for preparation into electrolyte. 850 g of salt mixture was then added to 150 g of CaO and filled into a Ni crucible. The mixture was melted down at 850°C in a gas-tight cell outlined in Figure 7. The height of the melting phase was about 20 cm. A simulated flue gas consisting of 22 wt% C02 + 78 wt% N2 (200 ml/min) was first introduced into the area above the melt phase through a centrally placed nickel tube and then out through a stainless steel tube. The gas composition was monitored using an FTIR analyzer (Thermo Nicolet 6700) equipped for gas analysis for highly accurate measurements of CO 2 . The cell had an analysis volume of approximately 200 ml, which, together with the volume above the molten salt, meant that stable analyzes were only achieved after a certain time when the entire volume had been filled with the gas from the cell. The pressure in the cell will thus be approximately atmospheric pressure above the melt mixture, while a certain overpressure will exist at the bottom of the cell where gas is bubbled through the melt. The overpressure can be estimated at about 0.03 atm and is due to the weight of a 20 cm molten column with a density of about 2.2 g/cm<3>. When stable values corresponding to the specifications of the gas mixture were achieved (22% by weight C02), the central gas supply pipe was lowered into the melt to 1 cm above the bottom while gas was continuously supplied. The composition of the gas stream was monitored and after a short time the C02 content in the gas stream was observed to decrease. After about 20 minutes, the C02 content in the gas stream had dropped to about 500 ppm. The Ni tube was then raised above the melt again and the gas composition was again found to rise and then stabilize at 22 wt%. The results from the gas analyzes are outlined in Figure 8. The cell was then left in a warm state overnight without gas flow.

Dagen etter ble gasstilførselen endret til argon (Ar 5.0) og 250 ml/min ført gjennom Ni-røret som igjen var nedsenket i saltsmelteblandingen. Et visst initielt innhold av C02ble målt - noe som sannsynligvis skyldtes rester fra gårsdagen som fortsatt fantes i rørføringer og analysevolum. Dette sank imidlertid raskt og da C02-innholdet ble målt til under 100 ppm ble temperaturen på ovnskontrolleren økt til 950°C. Temperatur i området over smelteblandingen ble monitorert og da denne steg over ca 900°C ble C02igjen observert i gasstrømmen som nå besto av Ar. Ettersom temperaturen økte til 950°C steg innholdet av C02og nådde en topp ved ca 0,3% for så å falle. Dette ble tolket som at C02nå ble frigjort ved at reaksjon [9] nå gikk mot venstre pga endret termodynamikk i henhold til Tabell 1 og Figur 4. Forløpet er skissert i Figur 9. The following day, the gas supply was changed to argon (Ar 5.0) and 250 ml/min was passed through the Ni tube which was again immersed in the salt melt mixture. A certain initial content of C02 was measured - which was probably due to residues from yesterday that were still present in the pipelines and analysis volume. However, this decreased quickly and when the C02 content was measured below 100 ppm, the temperature of the furnace controller was increased to 950°C. Temperature in the area above the melt mixture was monitored and when this rose above about 900°C, C02 was again observed in the gas stream, which now consisted of Ar. As the temperature increased to 950°C, the C02 content rose and peaked at about 0.3% before falling. This was interpreted as that C02 was now released by reaction [9] now going to the left due to changed thermodynamics according to Table 1 and Figure 4. The course is outlined in Figure 9.

De eksperimentelle parametre er oppsummert nedenfor. The experimental parameters are summarized below.

Smelte: 35% CaF2/65% NaF tilsatt 15% CaO. Melt: 35% CaF2/65% NaF added 15% CaO.

Absorpsjonstemperatur: 850°C, Desorpsjonstemperatur: 950°C. Absorption temperature: 850°C, Desorption temperature: 950°C.

Trykk: Tilnærmet atmosfæretrykk, anslått overtrykk i innløp 0,03 bar. Pressure: Approximate atmospheric pressure, estimated excess pressure in inlet 0.03 bar.

Gassammensetning inn: Absorpsjon - 22% C02rest N2, Gas composition in: Absorption - 22% C02residual N2,

Desorpsjon 100% Ar (5.0). Renhetsgrad >99.995%. Desorption 100% Ar (5.0). Degree of purity >99.995%.

Claims (8)

1. Fremgangsmåte for fjerning av karbondioksid fra en gasstrøm,karakterisert vedat gasstrømmen i et første trinn i et reaksjonskammer bringes i kontakt med et absorpsjonsmedium i smeltet tilstand som omfatter 99 - 50 vekt% av en blanding av NaF og CaF2og 1 - 50 vekt% av oppløst CaO som reagerer med karbondioksidet og danner kalsiumkarbonat, fremgangsmåten utføres ved et trykk nær atmosfæretrykket over absorpsjonsmediet.1. Method for removing carbon dioxide from a gas stream, characterized in that the gas stream is brought in a first step in a reaction chamber into contact with an absorption medium in a molten state comprising 99 - 50% by weight of a mixture of NaF and CaF2 and 1 - 50% by weight of dissolved CaO which reacts with the carbon dioxide and forms calcium carbonate, the process is carried out at a pressure close to atmospheric pressure above the absorption medium. 2. Fremgangsmåte ifølge krav 1, hvor blandingen av NaF og CaF2inneholder 45 - 95 mol% NaF.2. Method according to claim 1, where the mixture of NaF and CaF2 contains 45 - 95 mol% NaF. 3. Fremgangsmåte ifølge kravene 1 eller 2, der det absolutte trykket i reaksjonskammeret befinner seg i området 0,5 - 200 bar.3. Method according to claims 1 or 2, where the absolute pressure in the reaction chamber is in the range 0.5 - 200 bar. 4. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 3, der temperaturen i reaksjonskammeret befinner seg i området 700 - 1200 °C.4. Method according to any one of claims 1 to 3, where the temperature in the reaction chamber is in the range 700 - 1200 °C. 5. Fremgangsmåte ifølge kravene 1 til 4, hvor absorpsjonsmediet i et neste trinn føres til et desorpsjonskammer, oppvarmes over smeltepunktet og frigjør CaO og karbondioksid.5. Method according to claims 1 to 4, where in a next step the absorption medium is fed to a desorption chamber, heated above the melting point and releases CaO and carbon dioxide. 6. Anvendelse av et absorpsjonsmedium som omfatter 99 - 50 vekt% av en saltsmelte som er en blanding av NaF og CaF2og 1 - 50 vekt% av oppløst CaO for fjerning av karbondioksid fra en gasstrøm.6. Use of an absorption medium comprising 99-50% by weight of a salt melt which is a mixture of NaF and CaF2 and 1-50% by weight of dissolved CaO for the removal of carbon dioxide from a gas stream. 7. Absorpsjonsmedium for fjerning av karbondioksid fra en gasstrøm,karakterisert vedat det består av 99 - 50 vekt% av en saltsmelte som er en blanding av NaF og CaF2og 1- 50 vekt% av oppløst CaO.7. Absorption medium for removing carbon dioxide from a gas stream, characterized in that it consists of 99-50% by weight of a salt melt which is a mixture of NaF and CaF2 and 1-50% by weight of dissolved CaO. 8. Absorpsjonsmedium ifølge krav 7, hvor blandingen av NaF og CaF2inneholder 45 - 95 mol% NaF.8. Absorption medium according to claim 7, where the mixture of NaF and CaF2 contains 45 - 95 mol% NaF.
NO20101662A 2010-11-26 2010-11-26 Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium. NO332809B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20101662A NO332809B1 (en) 2010-11-26 2010-11-26 Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium.
PCT/NO2011/000334 WO2012070954A1 (en) 2010-11-26 2011-11-25 Method for removal of carbon dioxide from a gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20101662A NO332809B1 (en) 2010-11-26 2010-11-26 Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium.

Publications (2)

Publication Number Publication Date
NO20101662A1 NO20101662A1 (en) 2012-05-28
NO332809B1 true NO332809B1 (en) 2013-01-14

Family

ID=46146094

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20101662A NO332809B1 (en) 2010-11-26 2010-11-26 Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium.

Country Status (2)

Country Link
NO (1) NO332809B1 (en)
WO (1) WO2012070954A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO343140B1 (en) * 2013-06-14 2018-11-19 Zeg Power As Process for sustainable energy production in a power plant comprising a solid oxide fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248514B2 (en) * 1998-10-29 2002-01-21 日本鋼管株式会社 How to reduce carbon dioxide emissions
RU2293350C2 (en) * 2005-04-26 2007-02-10 Федеральное Государственное Унитарное Предприятие "Нижегородский Научно-Исследовательский Институт Радиотехники" Device for detection and classification of flying and hovering helicopters
NO330584B1 (en) * 2009-05-28 2011-05-23 Univ For Miljo Og Biovitenskap Inst For Mat Realfag Og Teknologi CO2 capture in salt melts

Also Published As

Publication number Publication date
NO20101662A1 (en) 2012-05-28
WO2012070954A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
NO20092083L (en) CO2 capture in salt melts
ES2599411T3 (en) Method and system to convert carbon dioxide into chemical starting materials
CA2574633C (en) Ultra cleaning of combustion gas including the removal of co2
TWI429476B (en) An apparatus for removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
Baciocchi et al. Process design and energy requirements for the capture of carbon dioxide from air
ES2566913T3 (en) A method and apparatus for carrying out a simultaneous energy efficient desulfurization and decarbonization of a chimney gas with an electropositive metal
Tomkute et al. CO2 capture by CaO in molten CaF2–CaCl2: optimization of the process and cyclability of CO2 capture
AU2011333125B2 (en) System and method for recovering gas containing C02 and H2S
US20160059179A1 (en) Carbon dioxide removal system
NO332809B1 (en) Absorption medium and method for removing carbon dioxide from a gas stream, as well as using the absorption medium.
US10625204B2 (en) Method for flue gas desulfurization with molten carbonate
Arachchige et al. Simulation of carbon dioxide capture for aluminium production process
Schneider et al. Environmentally friendly and economic carbon capture from power plant flue gases: The SIEMENS PostCap technology
Feron et al. Amine based post-combustion capture technology advancement for application in Chinese coal fired power stations
RU2569093C2 (en) Removing carbon dioxide from waste streams through combined production of carbonate and/or bicarbonate minerals
WO2020124184A1 (en) Process for capturing co2 and process for continuously regenerating solvent
CN104607016A (en) Thermal power plant carbon dioxide recovery method
Olsen et al. CO 2—capture in molten salts
Grøtan et al. Carbon capture with metal oxides in molten salts: MgO, SrO and CaO as sorbents
Lerøen Carbon capture in molten salts: an extensive survey of chemical systems with MgO as sorbent
Sturgeon et al. Reduction of carbon dioxide emissions by mineral carbonation
Tomkute et al. Parametric Studies of Carbonation/Decarbonation Process and Cyclability of CO2 Capture by CaO in Molten Halide Salts
Tomkute et al. Highly Efficient CO 2 Capture Technology by CaO Dispersed in CaF 2/NaF Molten Salt
AU2011297370A1 (en) Reclaiming apparatus and reclaiming method

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees