NO332596B1 - Wind energy system with power rails - Google Patents
Wind energy system with power rails Download PDFInfo
- Publication number
- NO332596B1 NO332596B1 NO20054192A NO20054192A NO332596B1 NO 332596 B1 NO332596 B1 NO 332596B1 NO 20054192 A NO20054192 A NO 20054192A NO 20054192 A NO20054192 A NO 20054192A NO 332596 B1 NO332596 B1 NO 332596B1
- Authority
- NO
- Norway
- Prior art keywords
- tower
- wind energy
- energy plant
- power module
- segments
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 2
- 230000001681 protective effect Effects 0.000 description 9
- 238000009434 installation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
- F03D80/82—Arrangement of components within nacelles or towers of electrical components
- F03D80/85—Cabling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
- F03D80/82—Arrangement of components within nacelles or towers of electrical components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/14—Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/912—Mounting on supporting structures or systems on a stationary structure on a tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
Oppfinnelsen angår et vindenergianlegg til produksjon av en vekselspenning med et tårn bygget opp av flere tårnsegmenter, med en generator anordnet i området ved tårntoppen, med en effektmodul og med strømledningsmidler til bortleding av den produserte strømmen fra tårntoppen. For å muliggjøre en raskere enklere og dermed omkostningsgunstigere etablering av vindenergianlegget foreligger det ifølge oppfinnelsen at strømledningsmidlene er forhåndsmontert segmentert i tårnsegmentene og at effektmodulen i det minste delvis er anordnet i området til tårntoppen og/eller i en viss avstand fra tårnfoten.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a wind energy plant for producing an alternating voltage with a tower built up of several tower segments, with a generator arranged in the area at the tower top, with a power module and with power means for dissipating the produced current from the tower top. According to the invention, in order to enable a faster, easier and therefore more cost-effective establishment of the wind energy system, the current conduit means are segmented in the tower segments and that the power module is at least partially arranged in the area of the tower top and / or at some distance from the tower foot.
Description
Foreliggende oppfinnelse angår et vindenergianlegg, som angitt i krav 1, med et tårn bygget opp av flere tårnsegmenter, med en generator anordnet i området ved tårntoppen, med en effektmodul og med strømledningsmidler til bortleding av den produserte strømmen fra tårntoppen. The present invention relates to a wind energy plant, as stated in claim 1, with a tower built up of several tower segments, with a generator arranged in the area at the top of the tower, with a power module and with current conduction means for conducting away the produced current from the top of the tower.
Den elektriske effektmodulen i et vindenergianlegg, den elektriske enheten som omfatter transformator, bryterskap leilighetsvis vekselrettere, midtspenningsanlegg, lavspenningsfordeling osv. er i kjente vindenergianlegg anordnet under generatorplanet og hyppig i området ved tårnfoten til tårnet i vindenergianlegget. Til dette hhv. til noen av disse komponentene foreligger det for det meste et eget lite hus utenfor vindenergianlegget. The electrical power module in a wind energy plant, the electrical unit comprising transformer, switch cabinet occasionally inverters, medium voltage system, low voltage distribution, etc. is in known wind energy plants arranged below the generator plane and often in the area at the tower foot of the tower in the wind energy plant. For this, respectively for some of these components there is mostly a separate small house outside the wind energy plant.
For å overføre til effektmodulen den elektriske energien produsert i generatoren anordnet inne i en gondol i området ved tårntoppen foreligger det strømledningsmidler som for det meste forløper inne i tårnet og er utformet i form av kabler. Disse kablene blir brakt inn i tårnet etter at dette er satt opp. Dette er en omstendelig fremgangsmåte da kablene for hele tårnhøyden må bli installert i en separat arbeidsforløp. Videre er dette arbeidsforløpet avhengig av den foregående oppsettingen av tårnet. In order to transfer to the power module the electrical energy produced in the generator arranged inside a gondola in the area at the top of the tower, there are current conducting means which mostly run inside the tower and are designed in the form of cables. These cables are brought into the tower after it has been set up. This is a cumbersome procedure as the cables for the entire tower height must be installed in a separate workflow. Furthermore, this work process is dependent on the previous setting up of the tower.
Men det er ikke tvingende nødvendig å anordne effektmodulen (hele) i området ved tårnfoten. Også andre posisjoner er i utgangspunktet tenkelig. Strømledningsmidlene må derfor i alt vesentlig oppfylle det formålet å føre bort fra tårntoppen strømmen som er produsert og leilighetsvis bearbeidet i området ved tårntoppen. But it is not absolutely necessary to arrange the power module (entirely) in the area at the base of the tower. Other positions are also conceivable in principle. The power line means must therefore essentially fulfill the purpose of leading away from the top of the tower the current that is produced and occasionally processed in the area at the top of the tower.
Til grunn for den foreliggende oppfinnelsen ligger oppgaven å angi et vindenergianlegg som kan settes opp enklere og dermed også gunstigere og raskere, og hvor det ikke er tvingende nødvendig med en effektmodul i området ved tårnfoten. The present invention is based on the task of specifying a wind energy plant which can be set up more easily and thus also more favorably and faster, and where it is not absolutely necessary to have a power module in the area at the base of the tower.
Denne oppgaven blir ifølge oppfinnelsen løst ved at strømledningsmidlene på forhånd er montert segmentert i tårnsegmentene og at effektmodulen i det minste delvis er anordnet i området ved tårntoppen og/eller i en viss avstand fra tårnfoten. According to the invention, this task is solved by the fact that the current conducting means are mounted segmented in advance in the tower segments and that the power module is at least partially arranged in the area at the top of the tower and/or at a certain distance from the base of the tower.
Segmentene til strømledningsmidlene er dermed produsert på forhånd og blir fortrinnsvis anbrakt på tårnsegmentene før tårnet blir satt sammen av de enkelte tårnsegmentene. Det er derfor ikke lenger nødvendig, etter oppsettingen å trekke omstendelig kabler gjennom tårnet. Med forholdsreglene ifølge oppfinnelsen kan hele oppsettingstiden for vindenergianlegget forkortes og omkostningene for oppsettingen reduseres, uten at det skulle kunne bli noen tekniske ulemper. The segments for the power line means are thus produced in advance and are preferably placed on the tower segments before the tower is assembled from the individual tower segments. It is therefore no longer necessary, after installation, to pull cables through the tower. With the precautions according to the invention, the entire set-up time for the wind energy plant can be shortened and the costs for the set-up can be reduced, without there being any technical disadvantages.
For å unngå en effektmodul anordnet i området ved tårnfoten, blir det dessuten foreslått å anordne effektmodulen i det minste delvis i området ved tårntoppen og/eller i en viss avstand fra tårnfoten. Fortrinnsvis foreligger det her at effektmodulen - delvis eller fullstendig - en anbrakt inne i eller utenfor på gondolen. For offshore-vindenergianlegg er det derimot å foretrekke å anordne effektmodulen - delvis eller fullstendig - på land, eksempelvis i det nærmeste fastlandsområdet eller på en øy som ligger i nærheten og å forbinde vindenergianlegget med effektmodulen med sjøkabler. In order to avoid a power module arranged in the area at the base of the tower, it is also suggested to arrange the power module at least partially in the area at the top of the tower and/or at a certain distance from the base of the tower. Preferably, it is here that the power module - partially or completely - is placed inside or outside the nacelle. For offshore wind power plants, on the other hand, it is preferable to arrange the power module - partially or completely - on land, for example in the nearest mainland area or on a nearby island, and to connect the wind power plant to the power module with sea cables.
I en annen utvalgt utforming foreligger det at effektmodulen i det minste har to effektmodulenheter, hvorav den ene er anordnet i området ved tårntoppen og den andre under tårntoppen, altså i området ved tårnfoten eller i en viss avstand fra tårnfoten. Strømledningsmidlene foreligger i det vesentlige til å forbinde de to effektmodulenhetene. In another selected design, the power module has at least two power module units, one of which is arranged in the area at the tower top and the other below the tower top, i.e. in the area at the base of the tower or at a certain distance from the base of the tower. The power line means are essentially there to connect the two power module units.
Andre fordelaktige utforminger av vindenergianlegg ifølge oppfinnelsen er angitt i underkravene. Fortrinnsvis er det forutsatt at segmentene til strømledningsmidlene bare i et område, fortrinnsvis i oppsatt tilstand i det øverste området er fast forbundet med det tilhørende tårnsegmentet. Denne festingen til tårnsegmentet foregår fortrinnsvis før tårnet blir satt opp, slik at tårnsegmentet inklusiv segmentet for strømledningsmidlene festet til dette blir forhåndsprodusert. Da segmentet til strømmidlene bare er anbrakt fast på ett punkt på tårnet henger det riktignok fast men dog innenfor visse grensen bevegelig på innerveggen til tårnsegmentet og kan dermed ennå bli rettet inn for enklest mulig å bli forbundet godt med de neste segmentene for strømmidlene i det neste tårnsegmentet. Other advantageous designs of wind energy systems according to the invention are specified in the subclaims. Preferably, it is assumed that the segments of the power line means are only in one area, preferably in the installed state in the uppermost area, firmly connected to the associated tower segment. This attachment to the tower segment preferably takes place before the tower is set up, so that the tower segment including the segment for the power line means attached to it is pre-produced. As the segment for the current means is only fixed at one point on the tower, it is indeed fixed, but still within certain limits movable on the inner wall of the tower segment and can thus still be aligned in order to be connected well with the next segments for the current means in the next the tower segment.
For videre festing av segmentene til strømmidlene inne i tårnsegmentet kan allikevel også ytterligere holdeelementer foreligge på innerveggen i tårnet, som segmentene til strømledningsmidlene blir forbundet fast til, før eller etter at tårnet er satt opp, for å fiksere dem best mulig. For further fastening of the segments to the current means inside the tower segment, additional holding elements can nevertheless also be present on the inner wall of the tower, to which the segments of the current means are connected firmly, before or after the tower is set up, in order to fix them as best as possible.
Når strømledningsmidlene er utformet som kabler kan det for å bygge bro over flensene eller fra deler som stikker ut fra innerveggen i tårnet lengden på kabelavsnittene i tårnsegmentet være utmålt slik at en brobygging i dette området er mulig uten problemer. When the power line means are designed as cables, in order to build a bridge over the flanges or from parts that protrude from the inner wall of the tower, the length of the cable sections in the tower segment can be measured so that a bridge is possible in this area without problems.
Ved anvendelse av strømskinner som strømledningsmidler kan det for å bygge bro over deler som stikker ut fra innerveggen i tårnet og/eller for å forbinde strømskinne-segmenter fortrinnsvis foreligge fleksible forbindelseskinner. Etter at tårnet er satt opp blir disse anvendt til å forbinde strømskinnesegmenter, dersom disse ikke umiddelbart når bort til hverandre eller i tilfelle åpninger eller andre hindringer mellom strømskinne-segmentene, eksempelvis en flens på strømskinnesegmentet som det må bli bygd bro over. When using busbars as current conducting means, in order to bridge parts that protrude from the inner wall of the tower and/or to connect busbar segments, flexible connection bars may preferably be present. After the tower has been set up, these are used to connect busbar segments, if these do not immediately reach each other or in the case of openings or other obstacles between the busbar segments, for example a flange on the busbar segment that must be bridged over.
For på den ene siden å beskytte tilsynspersonalet mot kontakt med strømskinnene når de går opp i tårnet gjennom innerrommet og å sikre en elektrisk isolasjon og på den andre siden å beskytte strømledningsmidlene mot skader foreligger det i en annen utforming en beskyttelseskappe, spesielt et beskyttelsesblikk som eksempelvis er fast forbundet med innerveggen i tårnet og beskytter strømledningene helt mot berøring. Også denne beskyttelseskappen kan være delt opp i enkelte segmenter som likeledes som segmentene til strømledningsmidlene er forhåndsmontert på tårnsegmentene. Deri-gjennom blir det oppnådd enda en forkorting og forenkling av oppsettingen av vindenergianlegget. In order, on the one hand, to protect the supervisory staff from contact with the power rails when they go up the tower through the inner space and to ensure electrical insulation and on the other hand to protect the power line means from damage, a protective cover is available in another design, in particular a protective sheet such as is firmly connected to the inner wall of the tower and protects the power cables completely from contact. This protective cover can also be divided into individual segments which, like the segments for the power line means, are pre-mounted on the tower segments. Through this, a further shortening and simplification of the installation of the wind energy plant is achieved.
Oppfinnelsen angår dessuten også et tårnsegment, som angitt i krav 10, for et tårn i et vindenergianlegg bygget opp av flere tårnsegmenter, som i området ved tårntoppen har en generator til strømproduksjon. Tårnsegmentet er kjennetegnet ved at det inne i det er forhåndsmontert et strømledningsmiddelsegment til bortleding av den produserte strømmen fra tårntoppen. The invention also relates to a tower segment, as stated in claim 10, for a tower in a wind energy plant built up of several tower segments, which in the area at the top of the tower has a generator for electricity production. The tower segment is characterized by the fact that inside it there is a pre-assembled current conducting means segment for conducting away the produced current from the tower top.
Oppfinnelsen blir i det etterfølgende beskrevet nærmere ved hjelp av tegningene. Her viser figur 1 et vindenergianlegg, figur 2 et utsnitt av et slikt vindenergianlegg med to tårnsegmenter, figur 3 viser i perspektiv strømskinner forutsatt ifølge oppfinnelsen, figur 4 viser et første vindenergianlegg ifølge oppfinnelsen, figur 5 viser et andre vindenergianlegg ifølge oppfinnelsen, figur 6 viser et tredje vindenergianlegg ifølge oppfinnelsen. Vindenergianlegget 1 vist i figur 1, beskrevet i DE 10 152 557 har et tårn 2 ed et fundament 3, en gondol 4 lagret dreibar i området ved tårntoppen og også en effektmodul 7 anordnet i området ved tårnfoten, eksempelvis i et separat lite hus. Inne i gondolen 4 er det anordnet en rotor med flere rotorblader 5 lagret dreibar på en horisontal akse og også en elektrisk generator 6. Gjennom vindkraften som virker på rotorbladene 5 blir rotoren satt i dreiebevegelse og driver generatoren 6 for produksjon av elektrisk energi. The invention is subsequently described in more detail with the help of the drawings. Here figure 1 shows a wind energy plant, figure 2 a section of such a wind energy plant with two tower segments, figure 3 shows in perspective power rails provided according to the invention, figure 4 shows a first wind energy plant according to the invention, figure 5 shows a second wind energy plant according to the invention, figure 6 shows a third wind energy plant according to the invention. The wind energy plant 1 shown in Figure 1, described in DE 10 152 557 has a tower 2 and a foundation 3, a gondola 4 stored rotatably in the area at the top of the tower and also a power module 7 arranged in the area at the foot of the tower, for example in a separate small house. Inside the nacelle 4 is arranged a rotor with several rotor blades 5 stored rotatably on a horizontal axis and also an electric generator 6. Through the wind force acting on the rotor blades 5, the rotor is set in a turning motion and drives the generator 6 for the production of electrical energy.
Til overføring av energien produsert av generatoren 6 til effektmodulen 7, som har tallrike elektriske enheter, som en transformator eller leilighetsvis en vekselretter til viderebearbeiding av den elektriske strømmen før denne blir matet inn på nettet hhv. ledet videre til en forbruker, foreligger det i innerrommet 8 i tårnet 2 ifølge oppfinnelsen anbrakt på veggen ved hjelp av festeelementer 10 strømskinner, fortrinnsvis to strøm-skinner. Disse er elektrisk ledende og over en kabel 11 med generatoren og også over en forbindelsesledning 12 som fortrinnsvis fører gjennom fundamentet 3 og ned i grunnen og forbundet elektrisk med effektmodulen 7. For transferring the energy produced by the generator 6 to the power module 7, which has numerous electrical units, such as a transformer or occasionally an inverter for further processing of the electrical current before it is fed into the network or led on to a consumer, in the inner space 8 of the tower 2 according to the invention there are power rails, preferably two power rails, placed on the wall by means of fastening elements 10. These are electrically conductive and over a cable 11 with the generator and also over a connection line 12 which preferably leads through the foundation 3 and into the ground and connected electrically to the power module 7.
Strømskinnene 9 er utformet stive og består fortrinnsvis av enkle strømskinne-segmenter, slik dette eksempelvis er vist nærmere i figur 2. Der er to tårnsegmenter 21, 22 vist som tårnet 2 fortrinnsvis blir bygget opp av. Slike tårnsegmenter 21, 22 kan eksempelvis bestå av stål eller også av betong. The busbars 9 are designed to be rigid and preferably consist of simple busbar segments, as shown for example in more detail in figure 2. Two tower segments 21, 22 are shown from which the tower 2 is preferably built up. Such tower segments 21, 22 can for example consist of steel or concrete.
Disse tårnsegmentene 21, 22 blir forhåndsfremstilt og sammenføyet til tårnet på standplassen for vindenergianlegget. For å forkorte innredningstiden enda mer og å forenkle arbeidet og dermed også redusere omkostningene for hele vindenergianlegget, blir strømskinnesegmentene 91, 92 likeledes før tårnet blir reist anbrakt fast på de tilsvarende stedene i hvert enkelt tårnsegment. Fortrinnsvis foregår festingen av strømskinnesegmentene 91, 92 bare i det øvre området av hvert av tårnsegmentene 21, 22 ved hjelp av en festeinnretning 10, mens den resterende delen av strømskinnesegmentene 91, 92 ennå innen visse grenser er bevegelige, for å forenkle forbindelsen med de etterfølgende strømskinnesegmentene. Gjennom denne oppbygningen kan også relativbevegelser mellom tårnet 2 og strømskinnene 91, 92 f.eks. som følge av forskjellige utvidelseskoeffisienter bli utlignet. Men det kan også foreligge at andre holdeelementer 14 bli anvendt som fører strømskinnesegmentene 91, 92 i hele deres lengde. Til dette kan tverrsnittet på åpningen til strømskinnesegmentene 91, 92 i holdeelementene 14 være utmålt større enn tverrsnittet på selve strømskinnesegmentene 91, 92. På denne måten blir en relativbevegelse for strømskinnesegmentene i holdelementene 14 muliggjort og samtidig blir strømskinnene 91, 92 ført og begrenset i sin bevegelighet. These tower segments 21, 22 are pre-fabricated and joined to the tower on the stand for the wind energy plant. In order to shorten the fit-out time even more and to simplify the work and thus also reduce the costs for the entire wind energy plant, the busbar segments 91, 92 are also fixed in the corresponding places in each individual tower segment before the tower is erected. Preferably, the fastening of the busbar segments 91, 92 only takes place in the upper area of each of the tower segments 21, 22 by means of a fastening device 10, while the remaining part of the busbar segments 91, 92 are still within certain limits movable, in order to simplify the connection with the subsequent the busbar segments. Through this structure, relative movements between the tower 2 and the busbars 91, 92, e.g. as a result of different expansion coefficients be equalised. But it can also be the case that other holding elements 14 are used which guide the busbar segments 91, 92 along their entire length. For this, the cross-section of the opening of the busbar segments 91, 92 in the holding elements 14 can be measured larger than the cross-section of the busbar segments 91, 92 themselves. In this way, a relative movement of the busbar segments in the holding elements 14 is made possible and at the same time the busbars 91, 92 are guided and limited in their mobility.
For å forbinde strømskinnesegmentene 91, 92 elektrisk og her leilighetsvis å bygge bro over deler som måtte stikke frem i innerrommet, som eksempelvis flenser 211, 212 som måtte forekomme på nedre og øvre kant av tårnsegmentene 21, 22, bli isolerte fleksible forbindelsesskinner 13 anvendt, hvor formen lar seg forandre for hånd ved anbringelsen på de to strømskinnesegmentene 91, 92. Gjennom disse forbindelses-skinnene 13 kan også materialutvidelser hhv. kontraksjonen, f.eks. ved temperatur-svingninger bli utlignet. In order to connect the busbar segments 91, 92 electrically and here occasionally to bridge parts that had to protrude into the inner space, such as for example flanges 211, 212 that had to occur on the lower and upper edges of the tower segments 21, 22, insulated flexible connecting rails 13 are used, where the shape can be changed by hand when placed on the two busbar segments 91, 92. Through these connecting rails 13, material extensions or the contraction, e.g. in the event of temperature fluctuations be equalised.
I figur 3 er det vist i perspektiv to parallelle strømskinnesegmenter 911,912. Disse er skrudd fast ved hjelp av skruer 15 til holdeinnretningen 14. Her kan isoleringsmidler foreligge for å isolere strømskinnesegmentene 911, 912 i forhold til holdeinnretningene 14. Alternativt kan naturligvis også selve holdeinnretningene 14 være fremstilt av et isolerende materiale. Selve holdeinnretningen 14 er skrudd fast til innerveggen i tårnsegmentet. Figure 3 shows two parallel busbar segments 911,912 in perspective. These are screwed by means of screws 15 to the holding device 14. Insulating means can be present here to insulate the busbar segments 911, 912 in relation to the holding devices 14. Alternatively, of course, the holding devices 14 themselves can also be made of an insulating material. The holding device 14 itself is screwed to the inner wall of the tower segment.
Til beskyttelse mot berøring av strømskinnene 911, 912 under driften av vindenergianlegget foreligger det dessuten et beskyttelsesblikk 16 som likeledes med strømskinnesegmentene 911, 912 kan bli bygget inn i hvert enkelt tårnsegment allerede før tårnet blir reist. Ved hjelp av en føringsskinne 17, som eksempelvis kan bestå av fast gummi, blir på den ene siden denne beskyttelseskappen fiksert og på den andre siden isolert i forhold til tårnsegmentet. Men til å feste beskyttelsesblikket 16 kan det også være forutsatt andre midler som ikke foreliggende blir vist. For protection against touching the busbars 911, 912 during the operation of the wind energy plant, there is also a protective sheet 16 which, like the busbar segments 911, 912, can be built into each individual tower segment already before the tower is erected. By means of a guide rail 17, which can for example consist of solid rubber, this protective cover is fixed on one side and isolated in relation to the tower segment on the other side. But to attach the protective sheet 16, other means may also be provided which are not currently shown.
Videre kan det i og/eller på disse beskyttelsesblikkene 16 forutsatt som beskyttelseskapper bli anbrakt andre innretninger som stikkontakter, lamper, etc., slik at disse likeledes på en enkel måte kan bli forhåndsmontert. Dessuten unngår spesielt en innbygging av disse innretningene i beskyttelseskappen 16 en eksponert montering på tårninnerveggen og fører dermed til en redusert fare for skade, f.eks. ved gjenstander som faller ned under og etter at tårnet er reist. Furthermore, other devices such as sockets, lamps, etc., can be placed in and/or on these protective sheets 16 provided that they are protective covers, so that these can likewise be pre-assembled in a simple way. Moreover, in particular, an installation of these devices in the protective cover 16 avoids an exposed assembly on the inner wall of the tower and thus leads to a reduced risk of damage, e.g. by objects falling during and after the tower is erected.
Figur 4 viser en første utforming av et vindenergianlegg ifølge oppfinnelsen. Her er effektmodulen 7 fortrinnsvis anordnet inne i gondolen 4 og over kabler 18 forbundet direkte med generatoren 6. Etter at den produserte strømmen ble bearbeidet i effektmodulen 7 blir den gjennom en annen kabel 19 ført bort til strømskinnene 9, der ledet gjennom tårnet til tårnfoten, hvorfra den over en forbindelsesledning 12 blir ført bort, eksempelvis til en omspenningsstasjon 40 som kan ligge i nærheten eller langt borte fra vindenergianlegget. Stiplet er det vist en alternativ plassering av effektmodulen T som også kan være anbrakt utenfor på gondolen 4. Forbindelseskabler fra generatoren 6 til effektmodulen 7 og også derfra til strømskinnene 9 er utelatt av hensyn til oversikten. Figur 5 viser en annen utforming av et vindenergianlegg ifølge oppfinnelsen. Her består effektmodulen i det minste av to effektmodulenheter 71 og 72. Den første effektmodulenheten 71 er her igjen anordnet inne i gondolen 4 og foretar en første bearbeiding av den produserte strømmen, eksempelvis en første transformering til et annet spenningsområde. En videre bearbeiding av den produserte strømmen finner så sted i den andre effektmodulenheten 72, som er anordnet under tårntoppen, eksempelvis som vist i området ved tårnfoten. Men den andre effektmodulenheten 72 kan også stå anordnet inne i tårnet 2 på fundamentet 3 eller være anordnet langs borte fra tårnfoten. Likeledes kan naturligvis den første effektmodulenheten 71 være anordnet utenfor på gondolen 4 som vist i figur 4. Figur 6 viser en utforming av et vindenergianlegg ifølge oppfinnelsen som er utformet som et såkalt offshore-vindenergianlegg. Dette vindenergianlegget 1 står her på et annet fundament 3' forankret på havbunnen 25. Riktignok kan også for slike offshore-vindenergianlegg effektmodulen være anordnet i området ved tårntoppen eller inne i tårnet i området ved tårnfoten. Fortrinnsvis er det forutsatt at effektmodulen 7 er anordnet på land 30 og at strømmen som blir ført bort fra tårntoppen ved hjelp av strømskinnene 9 blir overført til effektmodulen 7 over sjøkabelen 12'. Dette har den fordelen at effektmodulen 7 ikke må bli beskyttet ekstra mot påvirkningen fra havvann og at tilsynet med effektmodulen 7 er vesentlig enklere. Figure 4 shows a first design of a wind energy plant according to the invention. Here, the power module 7 is preferably arranged inside the gondola 4 and via cables 18 is connected directly to the generator 6. After the produced current has been processed in the power module 7, it is led through another cable 19 to the power rails 9, where it is led through the tower to the base of the tower, from where it is led away via a connecting line 12, for example to a transformer station 40 which can be located nearby or far away from the wind energy plant. Dotted, an alternative location of the power module T is shown which can also be placed outside on the nacelle 4. Connection cables from the generator 6 to the power module 7 and also from there to the power rails 9 are omitted for the sake of clarity. Figure 5 shows another design of a wind energy plant according to the invention. Here, the power module consists of at least two power module units 71 and 72. The first power module unit 71 is here again arranged inside the nacelle 4 and carries out a first processing of the produced current, for example a first transformation to a different voltage range. Further processing of the produced current then takes place in the second power module unit 72, which is arranged below the tower top, for example as shown in the area at the tower foot. But the second power module unit 72 can also be arranged inside the tower 2 on the foundation 3 or be arranged lengthwise away from the tower base. Likewise, of course, the first power module unit 71 can be arranged outside the nacelle 4 as shown in figure 4. Figure 6 shows a design of a wind energy plant according to the invention which is designed as a so-called offshore wind energy plant. This wind energy plant 1 stands here on another foundation 3' anchored to the seabed 25. Admittedly, also for such offshore wind energy plants, the power module can be arranged in the area at the top of the tower or inside the tower in the area at the base of the tower. Preferably, it is assumed that the power module 7 is arranged on land 30 and that the current which is led away from the tower top by means of the power rails 9 is transferred to the power module 7 via the submarine cable 12'. This has the advantage that the power module 7 does not have to be additionally protected against the influence of seawater and that the inspection of the power module 7 is significantly easier.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10305689A DE10305689A1 (en) | 2001-10-24 | 2003-02-12 | Wind energy plant with bus bars has current conductor arrangement pre-mounted in segments in tower segments, power module at least partly arranged near tower head and/or emote from tower foot |
PCT/EP2003/012446 WO2004072474A1 (en) | 2003-02-12 | 2003-11-07 | Wind energy installation comprising conductor rails |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20054192L NO20054192L (en) | 2005-09-09 |
NO20054192D0 NO20054192D0 (en) | 2005-09-09 |
NO332596B1 true NO332596B1 (en) | 2012-11-12 |
Family
ID=32863796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20054192A NO332596B1 (en) | 2003-02-12 | 2005-09-09 | Wind energy system with power rails |
Country Status (19)
Country | Link |
---|---|
US (1) | US20060233645A1 (en) |
EP (1) | EP1595076B1 (en) |
JP (2) | JP4414347B2 (en) |
KR (1) | KR100702336B1 (en) |
CN (1) | CN1320273C (en) |
AR (1) | AR043146A1 (en) |
AU (1) | AU2003283369B2 (en) |
BR (1) | BR0318080B1 (en) |
CA (1) | CA2514991C (en) |
CY (1) | CY1113111T1 (en) |
DK (1) | DK1595076T3 (en) |
ES (1) | ES2391890T3 (en) |
NO (1) | NO332596B1 (en) |
NZ (1) | NZ541555A (en) |
PL (1) | PL216196B1 (en) |
PT (1) | PT1595076E (en) |
SI (1) | SI1595076T1 (en) |
WO (1) | WO2004072474A1 (en) |
ZA (1) | ZA200505948B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10152557C1 (en) * | 2001-10-24 | 2003-06-18 | Aloys Wobben | Wind energy plant with busbars |
DE102008018790A1 (en) * | 2008-04-15 | 2009-10-22 | Wobben, Aloys | Wind energy plant with busbars |
DE102009013186B4 (en) * | 2008-12-19 | 2015-05-28 | Senvion Se | Tower of a wind turbine |
JP2010268595A (en) * | 2009-05-14 | 2010-11-25 | Furukawa Denko Sangyo Densen Kk | Wind power generator and power cable laying method to wind-power generator |
DE102010015075A1 (en) * | 2010-04-15 | 2011-10-20 | Repower Systems Ag | Wind turbine with modular tower system |
DE102010027498B4 (en) | 2010-07-16 | 2012-08-23 | Flyteg Gmbh & Co. Kg | Method and device for repairing or replacing busbars on wind turbines |
SG188384A1 (en) * | 2010-09-14 | 2013-04-30 | Daewoo Shipbuilding & Marine | Wind turbine assembly moving device and method for loading/unloading wind turbine assembly using same |
EP2518844B1 (en) * | 2011-04-27 | 2013-11-13 | Siemens Aktiengesellschaft | Arrangement and method for installing cables |
DE102012202435A1 (en) * | 2012-02-17 | 2013-08-22 | Siemens Aktiengesellschaft | Busbar system |
DE102012206076A1 (en) * | 2012-04-13 | 2013-10-17 | Siemens Aktiengesellschaft | Busbar system |
KR101835192B1 (en) * | 2013-02-28 | 2018-03-06 | 지멘스 악티엔게젤샤프트 | Converter station with diode rectifier |
JP2017089447A (en) * | 2015-11-06 | 2017-05-25 | 株式会社日立製作所 | Construction method for offshore wind turbine, offshore wind turbine and offshore wind power generator facility |
CN105390993B (en) * | 2015-12-11 | 2018-02-16 | 新誉集团有限公司 | Wind power generating set large-sized cable laying method |
WO2018158961A1 (en) * | 2017-03-03 | 2018-09-07 | 中国電力株式会社 | Wind power generation apparatus |
US10570889B2 (en) | 2018-04-23 | 2020-02-25 | General Electric Company | Adaptor for wind turbine refurbishment and associated methods |
EP4198302A1 (en) * | 2021-12-15 | 2023-06-21 | Siemens Gamesa Renewable Energy A/S | Wind turbine with segmented cable arrangement |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2941026A (en) * | 1956-03-22 | 1960-06-14 | Lambert Emile Pierre Claudius | Prefabricated electric line elements, comprising conductors embedded in an insulating material |
US3265934A (en) * | 1964-01-30 | 1966-08-09 | Westinghouse Electric Corp | Capacitor stacking unit |
US3952467A (en) * | 1971-03-05 | 1976-04-27 | Zip-Up Lighting Tower Company, Inc. | Extendible tower structure |
US3768016A (en) * | 1972-06-01 | 1973-10-23 | Pittsburgh Des Moines Steel | Modular, prefabricated, integrated communications relay tower |
DE2354663C3 (en) * | 1973-10-31 | 1976-07-15 | Siemens Ag | CONVERTER |
US3958376A (en) * | 1974-02-15 | 1976-05-25 | Zip Up, Inc. | Extendible tower structure |
FR2345600A1 (en) * | 1975-06-09 | 1977-10-21 | Bourquardez Gaston | FLUID BEARING WIND TURBINE |
SU656559A3 (en) * | 1975-08-25 | 1979-04-05 | Сименс Аг (Фирма) | Twelve-phase rectifying unit |
US4357542A (en) * | 1979-07-12 | 1982-11-02 | Westinghouse Electric Corp. | Wind turbine generator system |
US4272929A (en) * | 1979-08-23 | 1981-06-16 | Hanson Bror H | Tower and method of construction |
US4386487A (en) * | 1981-06-08 | 1983-06-07 | United Technologies Corporation | Low torsion mounting construction |
US4887397A (en) * | 1984-06-29 | 1989-12-19 | Teledyne Industries, Inc. | Fast, erectable, easily transportable structures |
JPS61112780A (en) * | 1984-10-25 | 1986-05-30 | Naomi Kikuchi | Wind power generator |
US4799279A (en) * | 1985-12-02 | 1989-01-24 | Figg And Muller Engineers, Inc. | Method of constructing the approach and main spans of a cable stayed segmental bridge |
US4777686A (en) * | 1986-01-29 | 1988-10-18 | Figg And Muller Engineers, Inc. | Method of constructing a cable stayed segmental bridge |
US4710850A (en) * | 1986-02-19 | 1987-12-01 | Siemens Aktiengesellschaft | Tower design for high-voltage systems |
US4966525A (en) * | 1988-02-01 | 1990-10-30 | Erik Nielsen | Yawing device and method of controlling it |
US5063473A (en) * | 1989-11-06 | 1991-11-05 | At&T Bell Laboratories | Modular electrical service distribution system |
US5075564A (en) * | 1989-12-19 | 1991-12-24 | Hickey John J | Combined solar and wind powered generator with spiral surface pattern |
US5506453A (en) * | 1990-02-09 | 1996-04-09 | Mccombs; John C. | Machine for converting wind energy to electrical energy |
US5254876A (en) * | 1992-05-28 | 1993-10-19 | Hickey John J | Combined solar and wind powered generator with spiral blades |
DE4325570B4 (en) * | 1992-08-05 | 2006-08-24 | Ciama Busbar, S.L. | Support for supporting a duct for an electrical line |
DE9417738U1 (en) * | 1994-10-27 | 1994-12-22 | Rudersdorf, Friedemann, Dipl.-Ing., 50968 Köln | Wind power mast with transformer station |
US5808368A (en) * | 1996-11-05 | 1998-09-15 | Brown; Clifford H. | Ocean wave energy conversion device |
US5794387A (en) * | 1997-03-20 | 1998-08-18 | Musco Corporation | Device and method to lift and manipulate poles which are mounted onto a base |
US6023105A (en) * | 1997-03-24 | 2000-02-08 | Youssef; Wasfi | Hybrid wind-hydro power plant |
JPH1146107A (en) * | 1997-07-25 | 1999-02-16 | Fujitsu Ltd | Portable communication equipment with telescopic iron tower |
GB2331858A (en) * | 1997-11-28 | 1999-06-02 | Asea Brown Boveri | A wind power plant |
DE19816483C2 (en) * | 1998-04-14 | 2003-12-11 | Aloys Wobben | Wind turbine |
DE19839423A1 (en) * | 1998-05-22 | 1999-11-25 | Abb Ind Ag Baden | Flexible high current connector |
NL1009543C2 (en) * | 1998-07-02 | 2000-01-07 | Lagerwey Windturbine B V | Device for converting wind energy into electrical energy. |
AU1772400A (en) * | 1998-12-17 | 2000-07-03 | Dancontrol Engineering A/S | Wind mill with a suspension for cables and the like, such suspension for cables and the like and a holder for such suspension |
DE19859628C1 (en) * | 1998-12-23 | 2000-03-23 | Aerodyn Eng Gmbh | Prevention of salt ingress in offshore wind turbine generators comprises pressurizing generator housing |
DE19860211C1 (en) * | 1998-12-24 | 2000-11-23 | Aerodyn Energiesysteme Gmbh | Method for laying electrical cables from a first offshore wind turbine to a second offshore wind turbine |
JP2000283018A (en) * | 1999-03-30 | 2000-10-10 | Fuji Heavy Ind Ltd | Horizontal shaft windmill and construction method thereof |
AU758953B2 (en) * | 1999-07-14 | 2003-04-03 | Aloys Wobben | Wind energy facility with a closed cooling circuit |
DE19962453C1 (en) * | 1999-12-22 | 2001-07-12 | Aerodyn Eng Gmbh | Offshore wind turbine with interchangeable containers |
DE10013442C1 (en) * | 2000-03-17 | 2001-10-31 | Tacke Windenergie Gmbh | Offshore wind turbine power plant has container housing electrical operating component positioned at side of machine housing provided with helicopter landing platform |
US6979171B2 (en) * | 2000-03-28 | 2005-12-27 | Per Lauritsen | Maritime energy generating device |
DE10016912C1 (en) * | 2000-04-05 | 2001-12-13 | Aerodyn Eng Gmbh | Operation of offshore wind turbines dependent on the natural frequency of the tower |
US6467233B1 (en) * | 2000-11-09 | 2002-10-22 | Beaird Industries, Inc | Wind tower |
US6532700B1 (en) * | 2000-11-09 | 2003-03-18 | Beaird Industries, Inc. | Flange with cut for wind tower |
US6470645B1 (en) * | 2000-11-09 | 2002-10-29 | Beaird Industries, Inc. | Method for making and erecting a wind tower |
DE10105181C1 (en) * | 2001-02-06 | 2002-07-11 | Aerodyn Eng Gmbh | Wind-powered energy plant for water desalination has mechanical energy provided by rotor used for driving pressure pump for reverse osmosis system |
DE10106208C2 (en) * | 2001-02-10 | 2002-12-19 | Aloys Wobben | Wind turbine |
FR2827015B1 (en) * | 2001-07-06 | 2005-12-23 | Bouygues Offshore | OFFSHORE WIND TURBINE AND METHOD OF CONSTRUCTION |
DE10152557C1 (en) * | 2001-10-24 | 2003-06-18 | Aloys Wobben | Wind energy plant with busbars |
DE60323977D1 (en) * | 2002-05-28 | 2008-11-20 | Iti Scotland Ltd | CRANE AND METHOD FOR INSTALLING, MAINTAINING AND REMOVING WIND TURBINES |
DE10245078B4 (en) * | 2002-09-27 | 2005-08-11 | Aloys Wobben | Wind turbine |
US6868646B1 (en) * | 2002-12-13 | 2005-03-22 | Valmont Industries, Inc. | Method and means for erecting a wind energy tower |
US7234409B2 (en) * | 2003-04-04 | 2007-06-26 | Logima V/Svend Erik Hansen | Vessel for transporting wind turbines, methods of moving a wind turbine, and a wind turbine for an off-shore wind farm |
DE10339438C5 (en) * | 2003-08-25 | 2011-09-15 | Repower Systems Ag | Tower for a wind turbine |
DE10341759A1 (en) * | 2003-09-10 | 2005-04-21 | Gen Electric | Wind turbine with external sound enclosure |
US20050134050A1 (en) * | 2003-12-18 | 2005-06-23 | Salls Darwin A.Jr. | Offshore energy platform |
US20050230980A1 (en) * | 2004-04-15 | 2005-10-20 | Andre Brunet | Wind turbine mounted on power transmission tower |
US7238009B2 (en) * | 2004-05-06 | 2007-07-03 | Grand Vent Power, Llc | Offshore windmill electric generators |
US20060082160A1 (en) * | 2004-10-14 | 2006-04-20 | Lee Tommy L | Wind powered generator platform |
US7360340B2 (en) * | 2005-04-12 | 2008-04-22 | Grundman Curtis M | Means for securing the lower end of a wind turbine tower to a foundation |
CN101351606A (en) * | 2005-05-13 | 2009-01-21 | 特雷西·利文斯顿 | Structural tower |
US7508088B2 (en) * | 2005-06-30 | 2009-03-24 | General Electric Company | System and method for installing a wind turbine at an offshore location |
US7230347B2 (en) * | 2005-10-14 | 2007-06-12 | General Electric Company | Corrosion protection for wind turbine units in a marine environment |
-
2003
- 2003-11-07 KR KR1020057014254A patent/KR100702336B1/en active IP Right Review Request
- 2003-11-07 WO PCT/EP2003/012446 patent/WO2004072474A1/en active Application Filing
- 2003-11-07 EP EP03775316A patent/EP1595076B1/en not_active Revoked
- 2003-11-07 SI SI200332187T patent/SI1595076T1/en unknown
- 2003-11-07 DK DK03775316.7T patent/DK1595076T3/en active
- 2003-11-07 ES ES03775316T patent/ES2391890T3/en not_active Expired - Lifetime
- 2003-11-07 AU AU2003283369A patent/AU2003283369B2/en not_active Ceased
- 2003-11-07 CN CNB200380109555XA patent/CN1320273C/en not_active Expired - Lifetime
- 2003-11-07 NZ NZ541555A patent/NZ541555A/en not_active IP Right Cessation
- 2003-11-07 JP JP2004568115A patent/JP4414347B2/en not_active Expired - Fee Related
- 2003-11-07 PT PT03775316T patent/PT1595076E/en unknown
- 2003-11-07 PL PL377508A patent/PL216196B1/en unknown
- 2003-11-07 US US10/544,315 patent/US20060233645A1/en not_active Abandoned
- 2003-11-07 CA CA2514991A patent/CA2514991C/en not_active Expired - Lifetime
- 2003-11-07 BR BRPI0318080-8A patent/BR0318080B1/en not_active IP Right Cessation
-
2004
- 2004-02-11 AR ARP040100413A patent/AR043146A1/en not_active Application Discontinuation
-
2005
- 2005-07-22 ZA ZA200505948A patent/ZA200505948B/en unknown
- 2005-09-09 NO NO20054192A patent/NO332596B1/en not_active IP Right Cessation
-
2009
- 2009-08-11 JP JP2009186325A patent/JP5438428B2/en not_active Expired - Fee Related
-
2012
- 2012-09-13 CY CY20121100832T patent/CY1113111T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP1595076A1 (en) | 2005-11-16 |
BR0318080A (en) | 2005-12-20 |
PL216196B1 (en) | 2014-03-31 |
EP1595076B1 (en) | 2012-08-15 |
WO2004072474A1 (en) | 2004-08-26 |
AU2003283369B2 (en) | 2006-09-21 |
JP2009299689A (en) | 2009-12-24 |
CA2514991A1 (en) | 2004-08-26 |
CY1113111T1 (en) | 2016-04-13 |
KR20050096175A (en) | 2005-10-05 |
DK1595076T3 (en) | 2012-09-17 |
ZA200505948B (en) | 2006-08-30 |
AR043146A1 (en) | 2005-07-20 |
US20060233645A1 (en) | 2006-10-19 |
PL377508A1 (en) | 2006-02-06 |
CN1320273C (en) | 2007-06-06 |
NO20054192L (en) | 2005-09-09 |
AU2003283369A1 (en) | 2004-09-06 |
KR100702336B1 (en) | 2007-04-03 |
PT1595076E (en) | 2012-10-31 |
CA2514991C (en) | 2011-04-05 |
JP2006514196A (en) | 2006-04-27 |
NO20054192D0 (en) | 2005-09-09 |
JP4414347B2 (en) | 2010-02-10 |
ES2391890T3 (en) | 2012-11-30 |
SI1595076T1 (en) | 2012-10-30 |
JP5438428B2 (en) | 2014-03-12 |
BR0318080B1 (en) | 2013-02-19 |
CN1745247A (en) | 2006-03-08 |
NZ541555A (en) | 2006-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO332596B1 (en) | Wind energy system with power rails | |
NO342971B1 (en) | Wind energy system with power conductors arranged pre-mounted in the tower | |
EP2863053B1 (en) | Single piece electric assembly for connecting an off-shore wind turbine with an electric subsea cable and mounting method therefor | |
AU2009237750B2 (en) | Wind energy system comprising busbars | |
US7989984B2 (en) | Underwater substation | |
US8901773B2 (en) | Power supply system and photovoltaic device therefor | |
WO2009003508A1 (en) | Switchgear for a wind turbine and system for arranging electrical connections in a wind farm | |
US20240332938A1 (en) | Power Collection System for Subsea Transfer of Power from Offshore Power Generation Units | |
WO2022189965A1 (en) | Offshore array of high voltage turbines | |
JP5603118B2 (en) | Underwater substation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |