NO328251B1 - Use of A1 adenosine receptor antagonist for the preparation of drugs suitable for the treatment of pulmonary disease - Google Patents

Use of A1 adenosine receptor antagonist for the preparation of drugs suitable for the treatment of pulmonary disease Download PDF

Info

Publication number
NO328251B1
NO328251B1 NO20040982A NO20040982A NO328251B1 NO 328251 B1 NO328251 B1 NO 328251B1 NO 20040982 A NO20040982 A NO 20040982A NO 20040982 A NO20040982 A NO 20040982A NO 328251 B1 NO328251 B1 NO 328251B1
Authority
NO
Norway
Prior art keywords
pulmonary
hypertension
use according
disease
group
Prior art date
Application number
NO20040982A
Other languages
Norwegian (no)
Other versions
NO20040982L (en
Inventor
Glenn J Smits
Francis G Spinale
Original Assignee
Biogen Ldec Ma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2002/028580 external-priority patent/WO2003022284A1/en
Application filed by Biogen Ldec Ma Inc filed Critical Biogen Ldec Ma Inc
Publication of NO20040982L publication Critical patent/NO20040982L/en
Publication of NO328251B1 publication Critical patent/NO328251B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Teknisk område for oppfinnelsen Technical field of the invention

Foreliggende oppfinnelse angår anvendelse av en Al adenosinreseptorantagonist som angitt i krav 1 for fremstilling av medikamenter innen kardiologi, medisinsk kjemi og far-makologi og spesielt slike Ai-adenosinreseptorantagonister til redusering av pulmonar vasokonstriksjon eller forbedring av pulmonar hemodynamikk. The present invention relates to the use of an A1 adenosine receptor antagonist as stated in claim 1 for the production of drugs in cardiology, medicinal chemistry and pharmacology and in particular such A1 adenosine receptor antagonists for reducing pulmonary vasoconstriction or improving pulmonary hemodynamics.

Bakgrunn for oppfinnelsen Background for the invention

Pulmonare sykdommer kan være livstruende. Pulmonart ødem og pulmonar hypertensjon er to slike sykdommer. Pulmonart ødem kan bli forårsaket av en mengde fysiske tilstander, for eksempel endret alveolarkapillar membranpermeabilitet, akutt respiratorisk nødsyndrom, øket pulmonart kapillartrykk, minsket onkotisk trykk og lymfatisk insuffisiens. Årsakene for pulmonar hypertensjon innbefatter, hypoksemi, respiratoriske systemlidelser, hjertesykdom, trombotisk sykdom og embolisk sykdom. Pulmonary diseases can be life-threatening. Pulmonary edema and pulmonary hypertension are two such diseases. Pulmonary edema can be caused by a number of physical conditions, for example altered alveolar capillary membrane permeability, acute respiratory distress syndrome, increased pulmonary capillary pressure, decreased oncotic pressure and lymphatic insufficiency. The causes of pulmonary hypertension include, hypoxemia, respiratory system disorders, heart disease, thrombotic disease and embolic disease.

Konvensjonell behandling av disse pulmonare sykdommer involverer medikamenter så som kalsium kanalblokkerere, diu-retika, morfinsulfat, vasodilatorer så som nitrater, posi-tive jonotropiske midler, prostasyklin og antikoagulerende midler. Conventional treatment of these pulmonary diseases involves drugs such as calcium channel blockers, diuretics, morphine sulfate, vasodilators such as nitrates, positive ionotropic agents, prostacyclin and anticoagulants.

Adenosin er en intracellulært og ekstracellulært meddeler-stoff dannet av alle celler i kroppen. Det blir også dannet ekstracellulært ved enzymatisk omdannelse. Adenosinreseptorer er delt i fire kjente subtyper (det vil si, Ai, A2a, A2b og A3) basert på deres relative affinitet for forskjellige adenosinreseptorligander og ved sekvensanalyse av gener som koder for disse reseptorer. Aktiveringen av hver av subty-pene fremskaffer enestående og enkelte ganger motstridende effekter. Adenosin er assosiert med koronar og systemisk vasodilasjon. Tilstedeværelsen av adenosinreseptorer og funksjonen av disse reseptorer i pulmonar vaskulatur har blitt vist i flere arter, innbefattende mennesker (se for eksempel, Kucukhuseyin et al., J. Basic Clin. Physiol. Pharmacol., 8(4), s. 287-299 (1997); Hong, J.L., et al., J. Physiol., 508(Ptl), s. 109-118 (1998)). Disse studier indikerer at bade Ai og A2 subtypereseptorer er til stede i den pulmonare vaskulatur. Aktivering av A2-reseptorer fører til dilatasjon og relaksasjon av disse kar (se for eksempel McCormack et al., Am. J. Physiol., 256(1 Pt 2), s. H41-H46 Adenosine is an intracellular and extracellular messenger substance formed by all cells in the body. It is also formed extracellularly by enzymatic conversion. Adenosine receptors are divided into four known subtypes (ie, Ai, A2a, A2b, and A3) based on their relative affinity for different adenosine receptor ligands and by sequence analysis of genes encoding these receptors. The activation of each of the subtypes produces unique and sometimes conflicting effects. Adenosine is associated with coronary and systemic vasodilation. The presence of adenosine receptors and the function of these receptors in the pulmonary vasculature has been demonstrated in several species, including humans (see, for example, Kucukhuseyin et al., J. Basic Clin. Physiol. Pharmacol., 8(4), pp. 287-299 (1997); Hong, J.L., et al., J. Physiol., 508(Ptl), pp. 109-118 (1998)). These studies indicate that both A1 and A2 subtype receptors are present in the pulmonary vasculature. Activation of A2 receptors leads to dilation and relaxation of these vessels (see, for example, McCormack et al., Am. J. Physiol., 256(1 Pt 2), pp. H41-H46

(1989); Szentmiklosi et al., Naunyn Schmiedebergs Arch. Pharmacol., 351(4), s. 417-425 (1995); Cheng et al., Am. J. Physiol., 270(1 Pt 2), s. H200-H207 (1996); Neely et al., Am. J. Physiol., 270(2 Pt 2), s. H610-H619 (1996)). I mot-setning til dette har disse studier vist at aktivering av Ai-reseptorer fører til konstriksjon og kontraksjon av disse kar, noe som resulterer i øket motstand mot blodstrøm (se Neely et al., J. Pharmacol. Exp. Ther., 258(3), s. 753-761 (1991); Broadly et al., J. Auton. Pharmacol., 16(6), s. 363-366 (1996); se også Szentmiklosi (1995), Cheng (1996) (1989); Szentmiklosi et al., Naunyn Schmiedeberg's Arch. Pharmacol., 351(4), pp. 417-425 (1995); Cheng et al., Am. J. Physiol., 270(1 Pt 2), pp. H200-H207 (1996); Neely et al., Am. J. Physiol., 270(2 Pt 2), pp. H610-H619 (1996)). In contrast, these studies have shown that activation of Ai receptors leads to constriction and contraction of these vessels, resulting in increased resistance to blood flow (see Neely et al., J. Pharmacol. Exp. Ther., 258 (3), pp. 753-761 (1991); Broadly et al., J. Auton. Pharmacol., 16(6), pp. 363-366 (1996); see also Szentmiklosi (1995), Cheng (1996)

og Neely (1996), supra). and Neely (1996), supra).

Til tross for tilgjengeligheten av et antall medikamenter til å behandle pulmonare sykdommer, så som pulmonart ødem og pulmonary hypertensjon, er den midlere varighet av over-levelse etter diagnosen primær pulmonary hypertensjon 2,8 år (D'Alonzo et al., Ann. Intern. Med., 115, s. 343-349 Despite the availability of a number of drugs to treat pulmonary diseases, such as pulmonary edema and pulmonary hypertension, the median duration of survival after the diagnosis of primary pulmonary hypertension is 2.8 years (D'Alonzo et al., Ann. Intern Med., 115, pp. 343-349

(1991)). De fleste av de for tiden aktuelle behandlinger involverer ikke-spesifikk vasodilatasjon og reduksjon i perifer (systemisk) vaskulær motstand. Disse reduksjoner i blodkarspenning i andre deler av kroppen kan resultere i redusert blodtrykk som forverrer den kliniske situasjonen ved å forårsake underperfusjon av vevet. Således er det tilbake et behov for nye, farmasøytisk akseptable forbindelser og sammensetninger og forbedrede metoder for å redusere vasokonstriksjon og forbedre pulmonar hemodynamikk i pasienter som lider av pulmonart ødem og pulmonar hypertensjon . (1991)). Most of the current treatments involve non-specific vasodilatation and a reduction in peripheral (systemic) vascular resistance. These reductions in blood vessel tension in other parts of the body can result in reduced blood pressure that worsens the clinical situation by causing tissue underperfusion. Thus, there remains a need for new, pharmaceutically acceptable compounds and compositions and improved methods for reducing vasoconstriction and improving pulmonary hemodynamics in patients suffering from pulmonary edema and pulmonary hypertension.

Oppsummering av oppfinnelsen Summary of the invention

Søkerne har løst det ovennevnte problem ved å oppdage at Ax-adenosinreseptorantagonister med struktur som angitt i krav 1 er i stand til å redusere pulmonar vasokonstriksjon og forbedre pulmonar hemodynamikk uten en medfølgende reduksjon i perifer, vaskulær motstand. Forbindelsene som er anvendelige i anvendelsen ifølge foreliggende oppfinnelse oppviser sine ønskede effekter via spesifikt å antagonisere eller blokkere Ai-adenosinreseptoren. Applicants have solved the above problem by discovering that Ax-adenosine receptor antagonists having a structure as set forth in claim 1 are capable of reducing pulmonary vasoconstriction and improving pulmonary hemodynamics without an accompanying reduction in peripheral vascular resistance. The compounds useful in the application according to the present invention exhibit their desired effects via specifically antagonizing or blocking the Ai adenosine receptor.

I anvendelsen ifølge oppfinnelsen er Ax-adenosinreseptorantagonisten valgt fra: In the application according to the invention, the Ax adenosine receptor antagonist is selected from:

en forbindelse av formel I: a compound of formula I:

hvor Ri og R2 uavhengig av hverandre er valgt fra gruppen bestående av alkyl, med fra 1-6 C-atomer, where Ri and R2 are independently selected from the group consisting of alkyl, with from 1-6 C atoms,

R3 er valgt fra en polycyklisk gruppe valgt fra 3-oksa-tricyklo[3.2.1.0<2-4>]okt-6-yl og bicyklo [2 . 2 . 2 ] okt-l-yl-4-propionsyre, R 3 is selected from a polycyclic group selected from 3-oxa-tricyclo[3.2.1.0<2-4>]oct-6-yl and bicyclo [2 . 2. 2 ] oct-1-yl-4-propionic acid,

Xi og X2 er 0, og Xi and X2 are 0, and

R6 er hydrogen: R6 is hydrogen:

I enkelte utførelsesformer av foreliggende oppfinnelse er forbindelsene av formel I valgt fra: 3-[4-(2,6-Diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]oct-l-yl]-propionsyre; In certain embodiments of the present invention, the compounds of formula I are selected from: 3-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl) -bicyclo[2.2.2]oct-1-yl]-propionic acid;

I mer foretrukne utførelsesformer er Ax-adenosinreseptorantagonisten anvendt ifølge foreliggende oppfinnelse valgt fra gruppen bestående av: 3-[4-(2,6-Diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]oct-l-yl]-propionsyre; In more preferred embodiments, the Ax-adenosine receptor antagonist used according to the present invention is selected from the group consisting of: 3-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purine- 8-yl)-bicyclo[2.2.2]oct-1-yl]-propionic acid;

8- (3-0xa-tricyklo [3 . 2.1.0 2'4] oct-6-yl) -1, 3-dipropyl-3,7-dihydro-purin-2,6-dion; 8-(3-Oxa-tricyclo[3.2.1.0 2'4]oct-6-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione;

I de mest foretrukne utførelsesformer er A2-adenosinreseptorantagonisten anvendt i fremgangsmåten ifølge foreliggende oppfinnelse 3-[4-(2,4-Diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]oct-l-yl]-propionsyre . In the most preferred embodiments, the A2-adenosine receptor antagonist used in the method according to the present invention is 3-[4-(2,4-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl )-bicyclo[2.2.2]oct-1-yl]-propionic acid.

I enkelte utførelsesformer blir Ai-adenosinreseptoren anvendt til fremstilling av medikamenter som er egnet til å bli administrert til et menneske. In some embodiments, the Ai adenosine receptor is used in the preparation of medicaments suitable for administration to a human.

I enkelte utførelsesformer er Ai-adenosinreseptorantagonisten anvendt ifølge foreliggende oppfinnelse formulert sammen med et farmasøytisk egnet bæremiddel til en farma-søytisk akseptabel sammensetning. In some embodiments, the A1 adenosine receptor antagonist used according to the present invention is formulated together with a pharmaceutically suitable carrier into a pharmaceutically acceptable composition.

De aktuelle medikamenter er anvendelige ved behandling av pasienter som oppviser tegn eller symptomer på pulmonare sykdommer. Eksempler på pulmonare sykdommer som kan bli behandlet innbefatter pulmonart ødem, pulmonar hypertensjon og en kombinasjon derav. The drugs in question are applicable in the treatment of patients who show signs or symptoms of pulmonary diseases. Examples of pulmonary diseases that can be treated include pulmonary edema, pulmonary hypertension and a combination thereof.

I enkelte utførelsesformer blir de aktuelle medikamenter benyttet ved behandling av pulmonart ødem fulgt av en tilstand valgt fra gruppen bestående av en ubalanse av Starlingkrefter endret av veolar-kapillær membranpermeabilitet, lymfatisk insuffisiens. In some embodiments, the relevant drugs are used in the treatment of pulmonary edema followed by a condition selected from the group consisting of an imbalance of Starling forces altered by veolar-capillary membrane permeability, lymphatic insufficiency.

I enkelte utførelsesformer blir de aktuelle medikamenter benyttet ved behandling av pulmonar hypertensjon fulgt av en tilstand valgt fra gruppen bestående av pulmonar arterien hypertensjon, pulmonar hypertensjon assosiert med sykdommer av det respiratoriske system eller hypoksemi, pulmonar venøs hypertensjon, pulmonar hypertensjon som stammer fra kronisk, trombotisk eller embolisk sykdom, pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur. In some embodiments, the relevant drugs are used in the treatment of pulmonary hypertension followed by a condition selected from the group consisting of pulmonary arterial hypertension, pulmonary hypertension associated with diseases of the respiratory system or hypoxemia, pulmonary venous hypertension, pulmonary hypertension originating from chronic, thrombotic or embolic disease, pulmonary hypertension arising from disorders directly affecting the pulmonary vasculature.

I enkelte utførelsesformer blir de aktuelle medikamenter benyttet ved behandling av en pasient som oppviser tegn eller symptomer på pulmonar sykdom karakterisert ved minst en av de følgende tilstander: global pulmonar hypoksi, regional pulmonar hypoksi, pulmonart ødem, økt pulmonart arterietrykk, økt pulmonar vaskulær resistens, økt sentralt ve-nøst trykk, minst arteriell oksygenmetning, andpustenhet "ralling" og "kakling". In some embodiments, the relevant drugs are used in the treatment of a patient who exhibits signs or symptoms of pulmonary disease characterized by at least one of the following conditions: global pulmonary hypoxia, regional pulmonary hypoxia, pulmonary edema, increased pulmonary arterial pressure, increased pulmonary vascular resistance, increased central venous pressure, minimal arterial oxygen saturation, shortness of breath "rattles" and "cackles".

Kort beskrivelse av tegningene Brief description of the drawings

Figur 1 viser effekten av en Ai-adenosinreseptorantagonist B9719, 1 mg/kg) på gjennomsnittlig arterielt trykk (MAP) og hjertefrekvens (HR). Ingen endring i hjertefrekvens eller gjennomsnittlig arterielt trykk ble funnet etter behandling med BG9719. Figur 2 viser effekten av en Ax-adenosinreseptorantagonist (BG9719, 1 mg/kg) på hjerteeffekt (CO), pulmonart arterietrykk (PAP) og pulmonart kapillærkiletrykk (PCWP). Ingen endring i hjerteeffekt ble funnet etter behandling med BG9719. Pulmonart arterietrykk minsket 30 minutter etter behandling med BG9719 og forble lavt. Pulmonart kapillært kiletrykk minsket 90 minutter etter behandling med BG9719. Figur 3 viser målingen av pulmonar vaskulær resistens (PVC) i følgende hjertesviktpreparater etter intravenøs infusjon av en Ai-adenosinreseptorantagonist (BG9719, 1 mg/kg). PVR minsker med 38 % fra basislinje og vender tilbake til basislinjenivåer (+p<0,05 mot basislinje). Figur 4. Systemisk vaskulær resistens (SVR) og pulmonar vaskulær resistens ble målt i følgende HV-preparater ved basislinje og etter intravenøs infusjon av en Ax-adenosinreseptorantagonist (3-[4-(2,6-diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]oct-l-yl]-propionsyre (BG9928), 1 mg/kg). Resultater uttrykt som % endring fra basislinje. Ved 10 minutter etter behandling med BG9928 falt PVR 18 % fra basislinjenivå mens det ikke var noen endring i SVR (+ p<0,05 mot basislinje). Figure 1 shows the effect of an A1 adenosine receptor antagonist B9719, 1 mg/kg) on mean arterial pressure (MAP) and heart rate (HR). No change in heart rate or mean arterial pressure was found after treatment with BG9719. Figure 2 shows the effect of an Ax adenosine receptor antagonist (BG9719, 1 mg/kg) on cardiac output (CO), pulmonary artery pressure (PAP) and pulmonary capillary wedge pressure (PCWP). No change in cardiac output was found after treatment with BG9719. Pulmonary artery pressure decreased 30 minutes after treatment with BG9719 and remained low. Pulmonary capillary wedge pressure decreased 90 minutes after treatment with BG9719. Figure 3 shows the measurement of pulmonary vascular resistance (PVC) in the following heart failure preparations after intravenous infusion of an A1 adenosine receptor antagonist (BG9719, 1 mg/kg). PVR decreases by 38% from baseline and returns to baseline levels (+p<0.05 vs. baseline). Figure 4. Systemic vascular resistance (SVR) and pulmonary vascular resistance were measured in the following HV preparations at baseline and after intravenous infusion of an Ax adenosine receptor antagonist (3-[4-(2,6-dioxo-1,3-dipropyl- 2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-propionic acid (BG9928), 1 mg/kg). Results expressed as % change from baseline. At 10 minutes post-treatment with BG9928, PVR decreased 18% from baseline while there was no change in SVR (+ p<0.05 vs. baseline).

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Med mindre annet er definert, har alle tekniske og viten-skapelige uttrykk benyttet heri den samme betydning som vanligvis blir forstått av fagpersonen til hvilken oppfinnelse tilhører. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as is usually understood by the professional to which the invention belongs.

Selv om metoder og materialer som ligner eller er ekviva-lente med dem beskrevet heri kan bli brukt ved utføringen eller testingen av foreliggende oppfinnelse, er egnede metoder og materialer beskrevet nedenfor. Although methods and materials similar to or equivalent to those described herein may be used in the practice or testing of the present invention, suitable methods and materials are described below.

For videre å definere oppfinnelsen er de følgende uttrykk og definisjoner gitt heri. To further define the invention, the following terms and definitions are given herein.

Som benyttet heri betyr en "alkyl"-gruppe en mettet, alifa-tisk hydrokarbongruppe. En alkylgruppe kan være rett eller forgrenet og kan for eksempel ha fra 1 til 6 karbonatomer i en kjede. Eksempler på rettkjedede alkylgrupper innbefatter, men er ikke begrenset til, etyl og butyl. Eksempler på forgrenede alkylgrupper innbefatter, men er ikke begrenset til, isopropyl og t-butyl. As used herein, an "alkyl" group means a saturated aliphatic hydrocarbon group. An alkyl group can be straight or branched and can, for example, have from 1 to 6 carbon atoms in a chain. Examples of straight chain alkyl groups include, but are not limited to, ethyl and butyl. Examples of branched alkyl groups include, but are not limited to, isopropyl and t-butyl.

Som benyttet heri betyr en "antagonist" et molekyl som binder til en reseptor uten å aktivere reseptoren eller sette i gang signaltransduksjon. En antagonist konkurrerer med den endogene ligand for bindingssete for derved å interfe-rere med stimuleringen eller aktiveringen av reseptoren av den endogene ligand. Antagonister innbefatter antistoff fremskaffet mot Ai-adenosinreseptoren og som blokkerer ade-nosinbindingssetet eller forhindrer adenosin fra å binde seg til reseptoren. As used herein, an "antagonist" means a molecule that binds to a receptor without activating the receptor or initiating signal transduction. An antagonist competes with the endogenous ligand for binding sites, thereby interfering with the stimulation or activation of the receptor by the endogenous ligand. Antagonists include antibodies raised against the A1 adenosine receptor that block the adenosine binding site or prevent adenosine from binding to the receptor.

Som benyttet heri betyr "selektiv antagonist" en antagonist som binder til en spesifikk subtype av adenosinreseptor med høyere affinitet enn til andre subtyper. For eksempel har en selektiv Ai-reseptorantagonist høy affinitet for Ai-reseptorer og har a) nanomolar bindingsaffinitet for Ai-reseptorsubtypen og b) minst 10 ganger, mer foretrukket 50 ganger og mest foretrukket 100 ganger store affinitet for Ai-reseptorsubtypen enn for en annen subtype. As used herein, "selective antagonist" means an antagonist that binds to a specific subtype of adenosine receptor with higher affinity than to other subtypes. For example, a selective Ai receptor antagonist has high affinity for Ai receptors and has a) nanomolar binding affinity for the Ai receptor subtype and b) at least 10-fold, more preferably 50-fold and most preferably 100-fold greater affinity for the Ai receptor subtype than for another subtype.

Som benyttet heri, betyr "antistoff" et polypeptid kodet av et immunoglobulingen, gener eller fragmenter derav. Immuno-globulingene innbefatter kappa, lambda, alfa, gamma, delta, epsilon og mu konstante områder, så vel som et stort antall immunoglobulin variable områder. Lette kjeder klassifiseres som enten kappa eller lambda. Tunge kjeder klassifiseres som gamma, mu, alfa, delta, eller epsilon, som i sin tur definerer immunoglobulinklassene henholdsvis IgG, IgM, IgA, IgD og IgE. As used herein, "antibody" means a polypeptide encoded by an immunoglobulin gene, genes or fragments thereof. The immunoglobulin genes include kappa, lambda, alpha, gamma, delta, epsilon and mu constant regions, as well as a large number of immunoglobulin variable regions. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes IgG, IgM, IgA, IgD and IgE respectively.

Antistoff eksisterer for eksempel som intakte immunoglobu-liner (bestående av to tunge kjeder og to lette kjeder) eller som et antall av velkarakteriserte fragmenter derav. Slike fragmenter innbefatter slike fremstilt ved spaltning med forskjellige proteaser, slike fremstilt ved kjemisk spaltning og/eller kjemisk dissosiasjon, og slike fremstilt rekombinant, så lenge fragmentet forblir i stand til spesifikk binding til et antigen. Blant disse fragmenter er Fab, Fab', F(ab')2/ og enkeltkjedede Fv(scFv)-fragmenter. Se Fundamental Immunology, tredje utgave, W.E. Paul, ed. Raven Press, N.Y. (1993) for en detaljert beskrivelse av epito-per, antistoff og antistoff-fragmenter. Slike Fab'-fragmenter kan lett bli fremstilt ved å bruke konvensjonell kjemisk syntese eller rekombinant DNA-teknologi. Således innbefatter som benyttet heri uttrykket antistoff anti-stof f-f ragmenter fremstilt ved modifikasjonen av hele antistoff eller slike syntetisert de novo. Antistoff som er an-vendelig i den foreliggende oppfinnelse er eventuelt avledet fra bibliotek av rekombinante antistoff i fag eller lignende vektorer (se for eksempel Huse et al., Science, 246, s. 1275-81 (1989); Ward et al., Nature, 341, s. 544-46 Antibodies exist, for example, as intact immunoglobulins (consisting of two heavy chains and two light chains) or as a number of well-characterized fragments thereof. Such fragments include those produced by cleavage with various proteases, those produced by chemical cleavage and/or chemical dissociation, and those produced recombinantly, as long as the fragment remains capable of specific binding to an antigen. Among these fragments are Fab, Fab', F(ab')2/ and single-chain Fv(scFv) fragments. See Fundamental Immunology, Third Edition, W.E. Paul, ed. Raven Press, N.Y. (1993) for a detailed description of epitopes, antibody and antibody fragments. Such Fab' fragments can be readily prepared using conventional chemical synthesis or recombinant DNA technology. Thus, as used herein, the term antibody includes anti-substance fragments produced by the modification of whole antibody or such synthesized de novo. Antibodies that are useful in the present invention are optionally derived from libraries of recombinant antibodies in phage or similar vectors (see for example Huse et al., Science, 246, pp. 1275-81 (1989); Ward et al., Nature, 341, pp. 544-46

(1989); Vaughan et al., Nature Biotech., 14, s. 309-14 (1989); Vaughan et al., Nature Biotech., 14, pp. 309-14

(1996). (1996).

Som benyttet heri betyr "farmasøytisk effektiv mengde" mengden som er nødvendig for å redusere eller minske alvorligheten av vasokonstriksjon og/eller forbedre pulmonar hemodynamikk over en tidsperiode. En farmasøytisk effektiv mengde betyr også mengden som er nødvendig for å forbedre de kliniske symptomer hos en pasient. As used herein, "pharmaceutically effective amount" means the amount necessary to reduce or decrease the severity of vasoconstriction and/or improve pulmonary hemodynamics over a period of time. A pharmaceutically effective amount also means the amount necessary to improve the clinical symptoms in a patient.

Som benyttet heri betyr "farmasøytisk akseptabelt bæremiddel eller adjuvant" et ikke-toksisk bæremiddel eller adjuvant som kan bli administrert til en pasient, sammen med en forbindelse ifølge foreliggende oppfinnelse, og som ikke ødelegger den farmakologiske aktivitet derav. As used herein, "pharmaceutically acceptable carrier or adjuvant" means a non-toxic carrier or adjuvant which can be administered to a patient, together with a compound of the present invention, and which does not destroy the pharmacological activity thereof.

Som benyttet heri betyr "pulmonart ødem" en tilstand hvor væsken blir akkumulert i lungene. De kliniske tegn og symptomer på pulmonart ødem kan starte som en primær manifesta-sjon av en viss patologi eller som en utvikling av en på forhånd eksisterende sykdom. Pasienter presenterer seg selv med en mengde symptomer innbefattende dyspnea, tachypnea, ortopnea, tachykardia, hypertensjon, torakisk oppresjon, kalde ekstremiteter med eller uten cyanose, hoste med skum-aktige eller rosaspytt, utstrakt bruk av tilleggsmuskler ved pusting, fuktig ralling med eller uten hvesing. Diagnose på pulmonart ødem ligger innenfor den ordinære fagmanns kompetanse. As used herein, "pulmonary edema" means a condition in which fluid accumulates in the lungs. The clinical signs and symptoms of pulmonary edema can start as a primary manifestation of a certain pathology or as a development of a pre-existing disease. Patients present with a variety of symptoms including dyspnea, tachypnea, orthopnea, tachycardia, hypertension, chest tightness, cold extremities with or without cyanosis, cough with frothy or rose-colored sputum, extensive use of accessory muscles when breathing, moist rales with or without wheezing . Diagnosis of pulmonary edema is within the competence of ordinary professionals.

Som benyttet heri betyr "pulmonar hemodynamikk" kreftene eller mekanismene som er involvert i å sirkulere blod gjennom lungene. "Forbedret pulmonar hemodynamikk" eller "forbedring av pulmonar hemodynamikk" innbefatter men er ikke begrenset til en reduksjon i pulmonar vaskulær motstand, reduksjon i pulmonart arterietrykk, reduksjon i pulmonart kapillært kiletrykk, økning i arteriell oksygenmetning, reduksjon i "ralling", forbedring i "andpustenhet", og økning i treningskapasitet når begrenset av pulmonar funksjon. As used herein, "pulmonary hemodynamics" means the forces or mechanisms involved in circulating blood through the lungs. "Improved pulmonary hemodynamics" or "improvement of pulmonary hemodynamics" includes but is not limited to a decrease in pulmonary vascular resistance, decrease in pulmonary artery pressure, decrease in pulmonary capillary wedge pressure, increase in arterial oxygen saturation, decrease in "rattle", improvement in " shortness of breath", and increase in training capacity when limited by pulmonary function.

Som benyttet heri betyr "pulmonar hypertensjon" abnormalt øket blodtrykk innen i den pulmonare krets (pulmonar arterier) . Pulmonar hypertensjon kan være sekundær til et annet sykdomsforløp eller opptre som en primær sykdomsprosess som er kjent som primær pulmonar hypertensjon. Diagnose av pulmonar hypertensjon ligger innenfor den vanlige fagmanns As used herein, "pulmonary hypertension" means abnormally increased blood pressure within the pulmonary circuit (pulmonary arteries). Pulmonary hypertension can be secondary to another disease process or occur as a primary disease process known as primary pulmonary hypertension. Diagnosis of pulmonary hypertension is within the skill of the ordinary person

kompetanse. competence.

Som benyttet heri betyr "pulmonar vasokonstriksjon" inn-snevringen av lumen i blodkar i lungene, spesielt som et resultat av vasomotorisk virkning. Pulmonar vasokonstriksjon resulterer en minskning i blodstrømmen gjennom lungene eller en økning i motstanden mot blodstrøm gjennom den pulmonare vaskulatur. "Reduksjon av pulmonar vasokonstriksjon" innbefatter en minskning i vasokonstriksjon eller en økning i pulmonar vasodilatasjon. "Pulmonar vasodilatasjon" refe-rerer til en utvidelse av lumen i blodkarene. Dette er en økning av den innvendige diameter av et blodkar som stammer fra avslapping av glatt muskulatur innen veggen av kammeret. Dette forårsaker en økning i blodstrøm og/eller en minskning i trykk i det pulmonare arterietrykk. As used herein, "pulmonary vasoconstriction" means the narrowing of the lumen of blood vessels in the lungs, particularly as a result of vasomotor action. Pulmonary vasoconstriction results in a decrease in blood flow through the lungs or an increase in resistance to blood flow through the pulmonary vasculature. "Reduction of pulmonary vasoconstriction" includes a decrease in vasoconstriction or an increase in pulmonary vasodilation. "Pulmonary vasodilatation" refers to an expansion of the lumen of the blood vessels. This is an increase in the internal diameter of a blood vessel that originates from the relaxation of smooth muscle within the wall of the chamber. This causes an increase in blood flow and/or a decrease in pulmonary artery pressure.

Syntese av adenosinantagonistforbindelsene Synthesis of the Adenosine Antagonist Compounds

Forbindelser som er anvendelige i oppfinnelsen kan bli fremstilt ved konvensjonelle metoder som er kjent innen faget. For eksempel er syntesen av forbindelsene av formel I beskrevet i internasjonal publikasjon nr. WO 01/34604 og WO 01/34610. Compounds that are applicable in the invention can be prepared by conventional methods known in the art. For example, the synthesis of the compounds of formula I is described in International Publication Nos. WO 01/34604 and WO 01/34610.

Syntesen av forbindelsene 8-(3-oksa-tricyklo[3.2.1.0 2'4] okt-6-yl)-1, 3-dipropyl-3, 7-dihydro-purin-2, 6-dion og 8-bicyklo[2.2.1]hept-5-en-2-yl-l,3-dipropyl-3,7-dihydro-purin-2,6-dion er beskrevet i U.S. patent 5,446,046. The synthesis of the compounds 8-(3-oxa-tricyclo[3.2.1.0 2'4] oct-6-yl)-1, 3-dipropyl-3, 7-dihydro-purine-2, 6-dione and 8-bicyclo[ 2.2.1]hept-5-en-2-yl-1,3-dipropyl-3,7-dihydro-purine-2,6-dione is described in U.S. Pat. patent 5,446,046.

I enkelte utførelsesformer kan forbindelsene være i form av en akiral forbindelse, en optisk aktiv forbindelse, en ren diastereomer, en blanding av diastereomerer, en prodroge eller et farmakologisk akseptabelt salt derav. In some embodiments, the compounds may be in the form of an achiral compound, an optically active compound, a pure diastereomer, a mixture of diastereomers, a prodrug, or a pharmacologically acceptable salt thereof.

Fremstilling av Aj- adenosinreseptorantistoff Preparation of Aj adenosine receptor antibody

Den humane Ax-adenosinreseptor har blitt klonet og DNA-sek-vensen som koder for reseptoren så vel som proteinsekvensen for reseptoren har blitt identifisert (se for eksempel Li-bert et al. Biochem Biophys Res Commun, 187(2), s. 919-926 The human Ax adenosine receptor has been cloned and the DNA sequence encoding the receptor as well as the protein sequence for the receptor have been identified (see, for example, Libert et al. Biochem Biophys Res Commun, 187(2), p. 919 -926

(1992); Townsend-Nicholson et al., Brain Res Mol Brain Res, 16(3-4), s. 365-370 (1992)). (1992); Townsend-Nicholson et al., Brain Res Mol Brain Res, 16(3-4), pp. 365-370 (1992)).

Antistoff rettet mot Ai-adenosinreseptoren kan bli dannet ved immunisering av en egnet vertsorganisme. Slike antistoff kan være polyklonale eller monoklonale. Fortrinnsvis er de monoklonale. Fremstiling av polyklonale og monoklonale antistoff ligger innenfor den vanlige kunnskap innen faget. For en oversikt av metoder som er anvendelige ved utføring av oppfinnelsen, se for eksempel Harlow og Lane Antibody directed against the Ai adenosine receptor can be produced by immunization of a suitable host organism. Such antibodies can be polyclonal or monoclonal. Preferably they are monoclonal. Production of polyclonal and monoclonal antibodies is within the common knowledge in the field. For an overview of methods that are applicable in carrying out the invention, see, for example, Harlow and Lane

(1988), Antibodies, A Laboratory Manual, Yelton, D.E. et al. (1981); Ann. Rev. of Biochem., 50, s. 657-80., og Ausu-bel et al. (1989); Current Protocols in Molecular Bioloqy (New York: John Wiley & Sons), oppdatert årlig. Bestemmelse av immunoreaktivitet med en Ai-adenosinreseptor kan bli fo-retatt ved enhver av flere metoder som er velkjent innen faget, innbefattende for eksempel immunoblotassay og ELISA. (1988), Antibodies, A Laboratory Manual, Yelton, D.E. et al. (1981); Ann. Fox. of Biochem., 50, pp. 657-80., and Ausbel et al. (1989); Current Protocols in Molecular Bioloqy (New York: John Wiley & Sons), updated annually. Determination of immunoreactivity with an A1 adenosine receptor can be performed by any of several methods well known in the art, including, for example, immunoblot assay and ELISA.

Monoklonale antistoff med affiniteter på IO<-8> M<-1> eller fortrinnsvis IO<-9> til IO<-10> M<-1> eller sterkere blir typisk fremstilt ved standard prosedyre beskrevet som for eksempel in Harlow og Lane, (1988) supra. Kort angitt blir passende dyr valgt ut og den ønskede immuniseringsprotokol fulgt. Etter den passende tidsperiode blir milten hos slike dyr skåret ut og individuelle miltceller fusert, typisk til im-mortaliserte myelomceller under passende seleksjonsbetin-gelser. Deretter blir cellene klonalt separert og super-natantene fra hver klon undersøkt for sin produksjon av et passende antistoff som er spesifikt ovenfor det ønskede område av antigenet. Monoclonal antibodies with affinities of 10<-8> M<-1> or preferably 10<-9> to 10<-10> M<-1> or stronger are typically prepared by standard procedure described as for example in Harlow and Lane, (1988) supra. Briefly, appropriate animals are selected and the desired immunization protocol followed. After the appropriate period of time, the spleens of such animals are excised and individual spleen cells are fused, typically to immortalized myeloma cells under appropriate selection conditions. Then the cells are clonally separated and the supernatants from each clone are examined for their production of an appropriate antibody specific to the desired region of the antigen.

Andre egnede teknikker involverer in vitro eksponering av lymfocytter til den antigene Ai-adenosinreseptor, eller alternativt, utvelgelse av bibliotek for antistoff i fag eller lignende vektorer. Se Huse et al., Science, 246, s. 1275-81 (1989). Antigener (i dette tilfelle Ai-adenosinreseptoren) og antistoff kan bli merket ved å føye sammen, enten kovalent eller ikke-kovalent, en substans som gir et påvisbart signal. Forskjellige markører og konjugerings-teknikker er kjent innen faget. Passende markører innbefatter radionuklider, enzymer, substrater, kofaktorer, inhibi-torer, fluorescente substanser, kjemiluminescente substanser, magnetiske partikler og lignende. Patenter som beskri-ver bruken av slike markører innbefatter U.S. patenter 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 og 4,366,241. I tillegg kan rekombinante immu-noglobuliner bli fremstilt (se U.S. patent 4,816,567). Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic A1 adenosine receptor, or alternatively, selection of libraries for antibody in phage or similar vectors. See Huse et al., Science, 246, pp. 1275-81 (1989). Antigens (in this case the Ai adenosine receptor) and antibody can be labeled by joining together, either covalently or non-covalently, a substance that provides a detectable signal. Various markers and conjugation techniques are known in the art. Suitable markers include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent substances, chemiluminescent substances, magnetic particles and the like. Patents describing the use of such markers include U.S. Pat. patents 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241. In addition, recombinant immunoglobulins can be prepared (see U.S. Patent 4,816,567).

Anvendelse for Aj- adenosinreseptorantagonister Application for Aj adenosine receptor antagonists

Sammensetningene fremstilt ved anvendelsen ifølge foreliggende oppfinnelse kan bli anvendt til å behandle pulmonare sykdommer. Den pulmonare sykdom kan for eksempel være pulmonart ødem eller pulmonar hypertensjon. Disse sykdommer kan være forårsaket av et antall fysiske traumer. The compositions prepared by the application according to the present invention can be used to treat pulmonary diseases. The pulmonary disease can be, for example, pulmonary edema or pulmonary hypertension. These diseases can be caused by a number of physical traumas.

I enkelte utførelsesformer blir de aktuelle sammensetningene benyttet ved behandling av en pulmonar sykdom karakterisert ved minst en tilstand valgt fra gruppen bestående av global pulmonar hypoksia, regional pulmonar hypoksia, pulmonart ødem, øket pulmonart arteriell trykk, øket pulmonar vaskulær resistens, øket sentralt venøs trykk, redusert arteriell oksygenmetning, kort pustedrett, "ralling" og "kråkling". In some embodiments, the relevant compositions are used in the treatment of a pulmonary disease characterized by at least one condition selected from the group consisting of global pulmonary hypoxia, regional pulmonary hypoxia, pulmonary edema, increased pulmonary arterial pressure, increased pulmonary vascular resistance, increased central venous pressure, decreased arterial oxygen saturation, shortness of breath, "rattling" and "crawling".

Som benyttet heri betyr "ralling" og "kråkling" abnormale lyder som høres og som følger med de normale respoirato-riske lyder ved auskultering av brystet. As used herein, "rattles" and "crawling" mean abnormal sounds that are heard and accompany the normal respiratory sounds on auscultation of the chest.

De aktuelle medikamentene kan bli benyttet til å behandle pulmonart ødem forårsaket av en mengde tilstander. Disse innbefatter en ubalanse i Starlingkrefter, endret alveolar-kapillær membranpermeabilitet (akutt respiratorisk nødssyn-drom), lymfatisk insuffisiens. Videre kan pulmonart ødem være forårsaket av et antall andre tilstander, innbefattende pulmonart høyde ødem, neurogenisk pulmonart ødem, overdose av narkotika, pulmonar emboli, eklampsia, etter karidoversjon, etter anestesi, etter kardiopulmonar forbi-passering. The relevant drugs can be used to treat pulmonary edema caused by a number of conditions. These include an imbalance in Starling forces, altered alveolar-capillary membrane permeability (acute respiratory distress syndrome), lymphatic insufficiency. Furthermore, pulmonary edema can be caused by a number of other conditions, including pulmonary elevation edema, neurogenic pulmonary edema, drug overdose, pulmonary embolism, eclampsia, after cardioversion, after anesthesia, after cardiopulmonary bypass.

De aktuelle medikamentene kan bli brukt til å behandle pulmonart ødem forårsaket av en ubalanse i Starlingkrefter. Årsaker for ubalansen i Starlingkrefter innbefatter øket pulmonart kapillært trykk, øket onkotisk plasmatrykk, grun-net hypoalbuminemia og øket negativitet av interstisielt trykk. Øket pulmonart kapillært trykk har både hjertetilhø-rende og ikke-hjertetilhørende årsaker. Hjerteårsakene innbefatter venstre ventrikulær svikt, mitra stenose eller su-bakutt bakteriell endokarditt. Ikke-kardiale årsaker innbefatter pulmonar venøs fibrose, kongenital stenose av opp-rinnelsen av de pulmonare vener eller pulmonar venookklusiv sykdom. Øket pulmonart kapillært trykk kan også være forårsaket av overperfusjon av væsker. The topical drugs can be used to treat pulmonary edema caused by an imbalance in Starling forces. Causes of the imbalance in Starling forces include increased pulmonary capillary pressure, increased oncotic plasma pressure, underlying hypoalbuminemia and increased negativity of interstitial pressure. Increased pulmonary capillary pressure has both cardiac and non-cardiac causes. Cardiac causes include left ventricular failure, mitral stenosis or subacute bacterial endocarditis. Non-cardiac causes include pulmonary venous fibrosis, congenital stenosis of the origin of the pulmonary veins or pulmonary veno-occlusive disease. Increased pulmonary capillary pressure can also be caused by overperfusion of fluids.

De aktuelle medikamentene kan bli brukt til å behandle pulmonart ødem forårsaket av øket negativitet av interstisielt trykk. Årsakene til øket negativitet av interstisielt trykk innbefatter rask fjerning av pneumotoraks med stort påført The topical drugs can be used to treat pulmonary edema caused by increased negativity of interstitial pressure. Reasons for increased negativity of interstitial pressure include rapid removal of pneumothorax with large applied

negativt trykk eller astma. negative pressure or asthma.

De aktuelle medikamentene kan bli brukt til å behandle pulmonart ødem forårsaket av endret alveolar-kapillær membranpermeabilitet. Årsakene til endret alveolar-kapillær membranpermeabilitet innbefatter infeksjonsdyktig lungebetennelse (viral eller bakteriell), inhalerte toksiner, sirku-lerende toksiner, vasoaktive substanser (for eksempel his-tamin, kininer), disseminert intravaskulær koagulering, im-munologiske reaksjoner, bestrålings lungebetennelse, uremi, nær drukning, aspirasjons lungebetennelse, inhalering av røyk, voksent respiratorisk nøds syndrom. The relevant drugs can be used to treat pulmonary edema caused by altered alveolar-capillary membrane permeability. The causes of altered alveolar-capillary membrane permeability include infectious pneumonia (viral or bacterial), inhaled toxins, circulating toxins, vasoactive substances (eg histamine, kinins), disseminated intravascular coagulation, immunological reactions, radiation pneumonia, uremia, near drowning, aspiration pneumonia, smoke inhalation, adult respiratory distress syndrome.

De aktuelle medikamentene kan bli benyttet for å behandle pulmonart ødem forårsaket av lymfatisk insuffisiens. Årsakene til lymfatisk insuffisiens innbefatter post-lunge-transplantasjons insuffisiens, lymfangitisk karsinomatosis eller fibroserende lymfangitisk. The relevant drugs can be used to treat pulmonary edema caused by lymphatic insufficiency. Causes of lymphatic insufficiency include post-lung transplant insufficiency, lymphangitic carcinomatosis, or fibrosing lymphangitic.

De aktuelle medikamentene kan bli brukt til å behandle pulmonar hypertensjon forårsaket av en mengde tilstander. Disse innbefatter pulmonar arteriell hypertensjon, pulmonar hypertensjon assosiert med lidelser i det respiratoriske system og/eller hypoksemi, pulmonar venøs hypertensjon, pulmonar hypertensjon som stammer fra kronisk trombotisk og/eller embolisk sykdom, pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur. The drugs in question can be used to treat pulmonary hypertension caused by a number of conditions. These include pulmonary arterial hypertension, pulmonary hypertension associated with disorders of the respiratory system and/or hypoxaemia, pulmonary venous hypertension, pulmonary hypertension arising from chronic thrombotic and/or embolic disease, pulmonary hypertension arising from disorders directly affecting the pulmonary vasculature.

De aktuelle medikamentene kan bli benyttet for å behandle pulmonar hypertensjon forårsaket av pulmonar arteriell hypertensjon. Årsakene for dette innbefatter primær pulmonar hypertensjon (innbefattende sporadiske og familiale sykdommer) ; relaterte tilstander så som kollagen vaskulær sykdom, kongenital systemisk til pulmonar shunt, portal hypertensjon, og human immunsvikt virusinfeksjon; medikament og toksin indusert (det vil si anorektiske midler (appetitt undertrykkere)); og vedvarende pulmonar hypertensjon hos nyfødte. The relevant drugs can be used to treat pulmonary hypertension caused by pulmonary arterial hypertension. The causes of this include primary pulmonary hypertension (including sporadic and familial diseases); related conditions such as collagen vascular disease, congenital systemic to pulmonary shunt, portal hypertension, and human immunodeficiency virus infection; drug and toxin induced (that is, anorectic agents (appetite suppressants)); and persistent pulmonary hypertension in newborns.

De aktuelle medikamentene kan bli brukt til å behandle pulmonar hypertensjon forårsaket av pulmonar hypertensjon assosiert med sykdommer i luftveisystemet og/eller hypoksemi. Årsakene til pulmonar hypertensjon assosiert med sykdommer i luftveisystemet og/eller hypoksemi innbefatter kronisk obstruktiv pulmonar sykdom, interstisiell lungesykdom, søvn uregelmessig ånding, alveolare hypoventilerings sykdommer, kronisk eksponering til høyde, neonatal lungesykdom og alveolar-kapillær dysplasi. The relevant drugs can be used to treat pulmonary hypertension caused by pulmonary hypertension associated with diseases of the respiratory system and/or hypoxemia. The causes of pulmonary hypertension associated with diseases of the respiratory system and/or hypoxemia include chronic obstructive pulmonary disease, interstitial lung disease, sleep disordered breathing, alveolar hypoventilation diseases, chronic exposure to altitude, neonatal lung disease, and alveolar-capillary dysplasia.

De aktuelle medikamentene kan bli brukt til å behandle pulmonar hypertensjon forårsaket av pulmonar venøs hypertensjon. Årsakene til pulmonar venøs hypertensjon innbefatter venstreside atreill eller ventrikulær hjertesykdom, venstreside valvulær hjertesykdom ekstrinsisk kompresjon av sentrale pulmonare årer (for eksempel fibroserende media-stinitisk, adenopati og/eller svulster) og pulmonar venookklusiv sykdom. The relevant drugs can be used to treat pulmonary hypertension caused by pulmonary venous hypertension. Causes of pulmonary venous hypertension include left-sided atreill or ventricular heart disease, left-sided valvular heart disease extrinsic compression of central pulmonary veins (eg, fibrosing mediastinitis, adenopathy and/or tumors) and pulmonary veno-occlusive disease.

De aktuelle medikamentene kan bli brukt til å behandle pulmonar hypertensjon forårsaket av kronisk trombotisk og/eller embolisk sykdom. Årsakene til pulmonar hypertensjon som stammer fra kronisk trombotisk og/eller embolisk sykdom innbefatter tromboembolisk obstruksjon av proksimale pulmonare arterier (for eksempel pulmonar emboli (trombus, svulst, ova og/eller parasitter, fremmed materiale), in-situ trombosis, syke cellesykdom). The relevant drugs can be used to treat pulmonary hypertension caused by chronic thrombotic and/or embolic disease. The causes of pulmonary hypertension arising from chronic thrombotic and/or embolic disease include thromboembolic obstruction of proximal pulmonary arteries (eg, pulmonary embolism (thrombus, tumor, ova and/or parasites, foreign material), in-situ thrombosis, sick cell disease).

De aktuelle medikamentene kan bli brukt til å behandle pulmonar hypertensjon forårsaket av lidelser som direkte påvirker den pulmonare vaskulatur. Årsakene til pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur innbefatter inflammatoriske tilstander (for eksempel skistosomiasis, sarkoidosis) og pulmonar kapillær hemangiomatosis. The relevant drugs can be used to treat pulmonary hypertension caused by disorders that directly affect the pulmonary vasculature. Causes of pulmonary hypertension arising from disorders directly affecting the pulmonary vasculature include inflammatory conditions (eg, schistosomiasis, sarcoidosis) and pulmonary capillary hemangiomatosis.

Farmasøytiske sammensetninger Pharmaceutical compositions

Ai-adenosinreseptorantagonistene kan bli formulert til far-masøytiske sammensetninger for administrasjon til dyr, innbefattende mennesker. Disse farmasøytiske sammensetninger innbefatter fortrinnsvis en mengde av Ai-adenosinreseptorantagonist som er effektiv til å redusere vasokonstriksjon eller øke pulmonar hemodynamikk samt et farmasøytisk akseptabelt bæremateriale. The A1 adenosine receptor antagonists can be formulated into pharmaceutical compositions for administration to animals, including humans. These pharmaceutical compositions preferably include an amount of A1 adenosine receptor antagonist effective to reduce vasoconstriction or increase pulmonary hemodynamics and a pharmaceutically acceptable carrier.

Farmasøytisk akseptable bærematerialer som er anvendelige i disse farmasøytiske sammensetninger innbefatter for eksempel ionebyttere, alumina, aluminumstearat, lecintin, serum-proteiner, så som human serumalbumin, buffersubstanser så som fosfater, glysin, sorbinsyre, kaliumsorbat, delvise glyseridblandinger av mettede vegetabilske fettsyrer, vann, salter eller elektrolytter, så som protaminsulfat, di-natriumhydrogenfosfat, kaliumhydrogenfosfat, natriumklorid, sinksalter, kollodial silika, magnesiumtrisilikat, polyvi-nylpyrrolidon, cellulose baserte substanser, polyetylenglykol, natriumkarboksymetylcellulose, polyakrylater, voksty-per, polyetylen-polyoksypropylen-blokkpolymere, polyetylenglykol og ullfett. Pharmaceutically acceptable carrier materials useful in these pharmaceutical compositions include, for example, ion exchangers, alumina, aluminum stearate, lecintin, serum proteins such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethyl cellulose, polyacrylates, wax types, polyethylene-polyoxypropylene block polymers, polyethylene glycol and wool grease .

Sammensetningene ifølge foreliggende oppfinnelse kan bli administrert parenteralt, oralt med inhalerings spray, topisk, rektalt, nasalt, bukkalt, vaginalt eller via et implantert reservoar. Uttrykket "parenteral" som benyttet heri innbefatter subkutan, intravenøs, intramuskulær, intra-artikulær, intra-synovial, intrasternal, intraetkal, intraheptatisk, intralesjonal, og intrakranial injeksjon eller infusjonsteknikker. Fortrinnsvis blir sammensetningene administrert oralt, intreperitonealt eller intravenøs. The compositions according to the present invention can be administered parenterally, orally by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intraethical, intrahepatic, intralesional, and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously.

Sterile injiserbare former av sammensetningene ifølge foreliggende oppfinnelse kan være vandige eller oleaginøse suspensjoner. Disse suspensjoner kan bli formulert i henhold til teknikker som er kjent innen faget ved å bruke egnede dispergerende eller fuktende midler og suspenderende midler. Det sterile injiserbare preparat kan også være en steril injiserbar oppløsning eller suspensjon i et ikke-toksisk parenteralt akseptabelt fortynningsmiddel eller opp-løsningsmiddel, for eksempel som en oppløsning i 1,3-butan-diol. Blant de akseptable vehikler og oppløsningsmidler som kan bli benyttet er vann, Ringers oppløsning og isoton natriumkloridoppløsning. I tillegg blir sterile, fikserte oljer konvensjonelt brukt som et oppløsningsmiddel eller suspenderende medium. For dette formål kan enhver myk fik-sert olje bli benyttet innbefattende syntetiske mono- eller diglyserider. Fettsyrer så som oleinsyre og dets glyserid-derivater er anvendelige ved fremstillingen av injiserbare preparater, og det er også naturlige farmasøytiske akseptable oljer, så som olivinolje eller lakserolje, spesielt i sine polyoksyetylerte versjoner. Disse oljeoppløsninger eller suspensjoner kan også inneholde et langkjedet alkoho-lisk fortynningsmiddel eller dispergeringsmiddel så som karboksymetylcellulose eller lignende dispergerende midler som vanlig blir brukt ved formuleringen av farmasøytisk akseptable doseringsformer innbefattende emulsjoner og suspensjoner. Andre vanlig benyttede surfaktanter, så som Tweens, Spans og andre emulgeringsmidler eller biotil-gjengelighets forsterkere som vanlig blir brukt ved fremstillingen av farmasøytisk akseptable faste, flytende eller andre doseringsformer kan også bli brukt for formulerings-formålene. Sterile injectable forms of the compositions according to the present invention can be aqueous or oleaginous suspensions. These suspensions can be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be used are water, Ringer's solution and isotonic sodium chloride solution. Additionally, sterile, fixed oils are conventionally used as a solvent or suspending medium. For this purpose, any soft fixed oil can be used including synthetic mono- or diglycerides. Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectable preparations, and so are natural pharmaceutically acceptable oils such as olivine oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcoholic diluent or dispersing agent such as carboxymethyl cellulose or similar dispersing agents commonly used in the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifiers or bioavailability enhancers commonly used in the preparation of pharmaceutically acceptable solid, liquid or other dosage forms may also be used for formulation purposes.

Parenterale formuleringer kan være en enkel bolusdose, en infusjon eller en ladende bolusdose fulgt av en oppretthol-delsesdose. Disse sammensetninger kan bli administrert en gang per dag eller på en "etter behov" basis. Parenteral formulations can be a single bolus dose, an infusion or a loading bolus dose followed by a maintenance dose. These compositions can be administered once per day or on an "as needed" basis.

De farmasøytiske sammensetninger kan bli administrert oralt i en oralt akseptabel doseringsform innbefattende kapsler, The pharmaceutical compositions may be administered orally in an orally acceptable dosage form including capsules,

tabletter, vandige suspensjoner eller oppløsninger. I til-fellet med tabletter for oralt bruk, innbefatter bærematerialer som vanlig benyttes laktose og maisstivelse. Smøre-midler, så som magnesiumstearat, blir også typisk tilsatt. For oral administrasjon i kapselform, innbefatter anvendelige fortynningsmidler laktose og tørket maisstivelse. Når vandige suspensjoner er nødvendige for oralt bruk, blir den aktive bestanddel kombinert med emulgerende og suspenderende midler. Om ønsket kan visse søtnere, smakssettende eller fargesettende midler også bli tilsatt. tablets, aqueous suspensions or solutions. In the case of tablets for oral use, commonly used carrier materials include lactose and corn starch. Lubricants, such as magnesium stearate, are also typically added. For oral administration in capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweeteners, flavoring or coloring agents can also be added.

Alternativt kan de farmasøytiske sammensetninger bli administrert i form av suppositorier for reaktal administrasjon. Disse kan bli fremstilt ved å blande midlet med en egnet ikke-irriterende eksipient som er fast ved romtempe-ratur, men flytende ved rektal temperatur og følgelig vil smelte i rektum for å frigjøre medikamentet. Slike materialer innbefatter kokossmør, bivoks og polyetylenglykoler. Alternatively, the pharmaceutical compositions may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and will consequently melt in the rectum to release the drug. Such materials include coconut butter, beeswax and polyethylene glycols.

De farmasøytiske sammensetninger kan også bli administrert topisk. Topisk applikasjon kan bli utført i en rektal stikkpillesformulering (se ovenfor) eller i en egnet skylleformulering. Topisk transdermale plastere kan også bli brukt. The pharmaceutical compositions may also be administered topically. Topical application can be carried out in a rectal suppository formulation (see above) or in a suitable rinse formulation. Topical transdermal patches may also be used.

For topiske applikasjoner kan de farmasøytiske sammensetninger bli formulert i en passende salve inneholdende den aktive komponent suspendert eller oppløst i ett eller flere bærematerialer. Bærematerialer for topisk administrasjon av forbindelsene ifølge foreliggende oppfinnelse innbefatter mineralolje, flytende petrolatum, hvitt petrolatum, propy-lenglykol, polyoksyetylen, polyoksypropylenforbindelse, emulgerende voks og vann. Alternativt kan de farmasøytiske sammensetninger bli formulert i en passende lotion eller krem inneholdende de aktive komponenter suspendert eller oppløst i ett eller flere farmasøytisk akseptable bærematerialer. Passende bærematerialer innbefatter, men er ikke begrenset til mineralolje, sorbitanmonostearat, polysorbat 60, cetylestervoks, cetarylalkohol, 2-oktyldodekanol, ben-zylalkohol og vann. For topical applications, the pharmaceutical compositions may be formulated in a suitable ointment containing the active component suspended or dissolved in one or more carrier materials. Carrier materials for topical administration of the compounds of the present invention include mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions may be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl ester wax, cetaryl alcohol, 2-octyldodecanol, benzyl alcohol, and water.

For oftalmisk bruk kan de farmasøytiske sammensetninger bli formulert som mikroniserte suspensjoner i isoton, pH justert steril saline, eller fortrinnsvis som oppløsninger i isoton, pH justert sterile saline, enten med eller uten et preservativ så som benzylalkoniumklorid. Alternativt kan for oftalmisk bruk, de farmasøytiske sammensetninger bli formulert i en salve så som petrolatum. For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or preferably as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic use, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.

De farmasøytiske sammensetninger kan også bli administrert ved nasal aerosol eller inhalering. Slike sammensetninger fremstilles i henhold til teknikker som er velkjent innen faget av farmasøytiske formuleringer og kan bli fremstilt som oppløsninger i fysiologisk saltvann, ved å benytte ben-zylalkohol eller andre passende preservativer, absorpsjons-fremmere for å øke biotilgjengeligheten, fluorokarboner, og/eller andre konvensjonelle oppløselighets økende eller dispergerende midler. The pharmaceutical compositions can also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulations and may be prepared as solutions in physiological saline, using benzyl alcohol or other suitable preservatives, absorption promoters to increase bioavailability, fluorocarbons, and/or other conventional solubility increasing or dispersing agents.

Mengden av Ax-adenosinreseptorantagonist som kan bli kombinert med bærematerialene for å danne en enkel doseringsform vil variere avhengig av verten som behandles og den spesielle administrasjonsmåte. Sammensetningene kan bli formulert slik at en dose på mellom 0,01-100 mg/kg kroppsvekt av Ai-adenosinreseptorantagonisten administreres til en pasient som mottar disse sammensetningene. I enkelte utførel-sesformer av oppfinnelsen er dosen 0,1-10 mg/kg kroppsvekt. Sammensetningen kan bli administrert som en enkel dose, multiple doser eller over en etablert tidsperiode i en infusjon . The amount of Ax adenosine receptor antagonist that can be combined with the carrier materials to form a single dosage form will vary depending on the host being treated and the particular mode of administration. The compositions may be formulated such that a dose of between 0.01-100 mg/kg body weight of the A1 adenosine receptor antagonist is administered to a patient receiving these compositions. In some embodiments of the invention, the dose is 0.1-10 mg/kg body weight. The composition can be administered as a single dose, multiple doses or over an established period of time in an infusion.

Et spesielt doserings- og behandlingsregime for enhver spe-siell pasient vil avhenge av en mengde faktorer, innbefattende den spesielle A!-adenosinreseptorantagonist, pasien-tens alder, kroppsvekt, generell helse, kjønn og diett og tiden for administrasjon, ekskresjonsgraden, medikamentkom-binasjon, og alvorligheten av den spesielle sykdom som blir behandlet. Vurdering av slike faktorer av medisinske be-handlere ligger innenfor den vanlige kompetanse innen faget. Mengden av antagonist vil også avhenge av den individuelle pasient som behandles, administrasjonsruten, typen formulering, særtrekkene av forbindelsen som benyttes, alvorligheten av sykdommen, og den ønskede effekt. Mengdene av antagonister kan bli bestemt ved farmakologiske og far-makokinetiske prinsipper som er velkjent innen faget. A particular dosage and treatment regimen for any particular patient will depend on a number of factors, including the particular A!-adenosine receptor antagonist, the patient's age, body weight, general health, gender and diet and the time of administration, the degree of excretion, drug combination , and the severity of the particular disease being treated. Assessment of such factors by medical practitioners is within the usual competence in the field. The amount of antagonist will also depend on the individual patient being treated, the route of administration, the type of formulation, the characteristics of the compound used, the severity of the disease, and the desired effect. The amounts of antagonists can be determined by pharmacological and pharmacokinetic principles well known in the art.

For at oppfinnelsen beskrevet heri skal bli mer fullstendig forstått, blir de følgende eksempler beskrevet. In order for the invention described herein to be more fully understood, the following examples are described.

Eksempel 1 Example 1

Dyremodell Animal model

Nitten Yorkshire hanngriser (20-25 kg, Hambone Farms, SC) ble instrumentert for å indusere løpende hjertemuskel hjertesvikt som beskrevet i Tomita et al., Circulation, 83, s. 635-644 (1991). Kort fortalt under isofluranbedøvning (3 % i 1,5 l/min oksygen) og gjennom en venstre torakotomi, ble en skjermet stimulert elektrode suturert inn i venstre at-rium, tilkoblet til en modifisert programerbar pacemaker (8329 Medtronic, Inc., Minnepolis, MN) og begravet i en subkutan lomme. Ti til fjorten dager etter å ha kommet seg fra den kirurgiske prosedyre, ble et basislinje ekokardiografisk studium utført og løping initiert med 240 slag per minutt i 3 uker. En ytterligere gruppe på 7 normale kontrolldyr ble behandlet på en identisk måte med unntak av lø-pekontrollen. Ved slutten av den 3-ukers løpeperiode, ble pacemakerne deaktivert og ekokardiografiske studier ble ut-ført. For disse studier ble dyrene brakt til laboratoriet og pacemakerne ble deaktivert. To-dimensjonale og M-metode ekokardiografiske studier (ATL Ulmark VI, 2.25 MHz transducer, Bothell, WA) ble brukt for å avbilde venstre ventrik-kel fra en høyre parasternal vinkel. Etter det ekokardiografiske studium ble dyrene preparert for akutt instrumentering og igangsetning av studiumsprotokollen. Nineteen male Yorkshire pigs (20-25 kg, Hambone Farms, SC) were instrumented to induce ongoing myocardial heart failure as described in Tomita et al., Circulation, 83, pp. 635-644 (1991). Briefly, under isoflurane anesthesia (3% in 1.5 L/min oxygen) and through a left thoracotomy, a shielded pacing lead was sutured into the left atrium, connected to a modified programmable pacemaker (8329 Medtronic, Inc., Minnepolis, MN) and buried in a subcutaneous pocket. Ten to fourteen days after recovering from the surgical procedure, a baseline echocardiographic study was performed and running was initiated at 240 beats per minute for 3 weeks. A further group of 7 normal control animals were treated in an identical manner with the exception of the running control. At the end of the 3-week run-in period, the pacemakers were deactivated and echocardiographic studies were performed. For these studies, the animals were brought to the laboratory and the pacemakers were deactivated. Two-dimensional and M-method echocardiographic studies (ATL Ulmark VI, 2.25 MHz transducer, Bothell, WA) were used to image the left ventricle from a right parasternal angle. After the echocardiographic study, the animals were prepared for acute instrumentation and initiation of the study protocol.

Akutt instrumentering Acute instrumentation

Grisene ble bedøvet med intravenøse boluser av sufentanyl 2,0 ug/kg, etomidat 0,3 mg/kg, og vekuronium 10 mg, hvor på en trakeostomi ble utført. En tubokurarin 12 mg intravenøs bolus ble administrert etter å ha funnet arteriell trykk. Bedøvelse ble opprettholdt gjennom prosedyrene ved kontinu-erlig intravenøs infusjon av morfinsulfat 3 mg/kg/time og tubokurarin 2 mg/time. Etomidat 0,1 mg/kg intravenøs ble også gitt ved 30 minutters intervaler. En opprettholdelsesinfusjon på 10 ml/kg/time av laktert Ringers oppløsning ble opprettholdt gjennom prosedyren. Denne bedøvelsesprosedyre resulterte i et dypt bedøvelsesplan og stabile hemodynamiske profiler i opp til 6 timer. Et multilumenert termofortynningskateter (7,5 Fr, Baxter Healthcare Corp., Irvine, CA) ble plassert i en pulmonar arteriell via høyre utvendige halspulsåre og et stor boret kateter (7 Fr) ble plassert i venstre utvendige halspulsåre for væskeadminist-rasjon. Karotidarteriell ble eksponert og kannulert, og kateter (7 Fr) ble ført forover til aortaroten for hovedpuls-året blodtrykksmålinger og blodprøvetakning. The pigs were anesthetized with intravenous boluses of sufentanil 2.0 ug/kg, etomidate 0.3 mg/kg, and vecuronium 10 mg, during which a tracheostomy was performed. A tubocurarine 12 mg intravenous bolus was administered after finding arterial pressure. Anesthesia was maintained throughout the procedures by continuous intravenous infusion of morphine sulfate 3 mg/kg/hour and tubocurarine 2 mg/hour. Etomidate 0.1 mg/kg intravenous was also given at 30 minute intervals. A maintenance infusion of 10 mL/kg/hour of lactated Ringer's solution was maintained throughout the procedure. This anesthetic procedure resulted in a deep anesthetic plane and stable hemodynamic profiles for up to 6 hours. A multilumen thermodilution catheter (7.5 Fr, Baxter Healthcare Corp., Irvine, CA) was placed in a pulmonary arterial via the right external carotid artery and a large bore catheter (7 Fr) was placed in the left external carotid artery for fluid administration. The carotid artery was exposed and cannulated, and a catheter (7 Fr) was advanced to the aortic root for main pulse year blood pressure measurements and blood sampling.

Hemodynamiske og nye funksjonsmålinger Hemodynamic and new functional measurements

En instrumentering og en 15 minutters stabliseringsperiode ble basislinje hemodynamikk nedtegnet og digitalisert. Ter-mofortynningsavledet hjertemuskeleffekt og ejeksjonsfraksjon ble oppnådd fra det pulmonare arterielle kateter i triplikat. Alle målinger ble nedtegnet samtidig med venti-latoren temporært suspendert for å forhindre respiratoriske feilavlesninger av funnene. En arteriell prøve ble trukket for elektrolyttanalyser. Pulmonare og systemiske vaskulære motstander ble utregnet fra termofortynning hjerteutgangs-effekten og trykkmålinger ved å bruke standard formler. An instrumentation and a 15 minute stabilization period, baseline hemodynamics were recorded and digitized. Thermodilution-derived myocardial power and ejection fraction were obtained from the pulmonary arterial catheter in triplicate. All measurements were recorded simultaneously with the ventilator temporarily suspended to prevent respiratory misreadings of the findings. An arterial sample was drawn for electrolyte analyses. Pulmonary and systemic vascular resistances were calculated from thermodilution cardiac output and pressure measurements using standard formulas.

Eksperimentell metode Experimental method

Etter instrumentering og oppsamling av basislinjemålinger ble dyrene tilfeldig utvalgt for å motta enten vehikkelin-fusjon (polyetylenglykol, 3 ml intravenøs, n=10) eller en Ai-adenosinreseptorantagonist (1 mg/kg 1, 8-(3-oksa-tricyklo [3.2.1. 02'4] okt-6-yl) -1, 3-dipropyl-3, 7-dihydro-purin-2,6-dion (BG9719); n=9). Etter infusjon av vehikkel eller BG9719, ble de hemodynamiske målinger beskrevet i den foregående del gjentatt ved 10, 30, 60, 90, 120 minutter etter infusj on. After instrumentation and collection of baseline measurements, animals were randomly selected to receive either vehicle infusion (polyethylene glycol, 3 ml intravenous, n=10) or an A1 adenosine receptor antagonist (1 mg/kg 1, 8-(3-oxa-tricyclo [3.2 .1.02'4]oct-6-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione (BG9719); n=9). After infusion of vehicle or BG9719, the hemodynamic measurements described in the previous section were repeated at 10, 30, 60, 90, 120 minutes after infusion.

Dataanalyse Data analysis

Endringer i hemodynamikk ble initiert undersøkt mellom kontrollen og Ai-adenosinreseptorantagonist (BG9719) gruppene med ANOVA. Sammenligninger mellom disse basislinjever-dier etter randomisering ble utført med en 2-veis ANOVA. Sammenligninger av disse parametrene etter infusjon ble sammenlignet ved å bruke en multiveis ANOVA for gjentatte målinger. Parvise sammenligninger ble utført med en Bonferroni justert t-test. All statistiske analyser ble utført ved å bruke statistiske software programmer (BMDP statistiske software Inc. University of California Press, Los Angeles, CA). Resultater var som gjennomsnittlig ± standard avvik av det gjennomsnittet (SEM). Verdier på p<0,05 ble regnet for å være statistisk signifikante. Changes in hemodynamics were initially examined between the control and Ai adenosine receptor antagonist (BG9719) groups by ANOVA. Comparisons between these baseline values after randomization were performed with a 2-way ANOVA. Post-infusion comparisons of these parameters were compared using a repeated-measures multiway ANOVA. Pairwise comparisons were performed with a Bonferroni adjusted t-test. All statistical analyzes were performed using statistical software programs (BMDP statistical software Inc. University of California Press, Los Angeles, CA). Results were as mean ± standard deviation of that mean (SEM). Values of p<0.05 were considered to be statistically significant.

Systemisk og pulmonar hemodynamikk i hjertesvikt Systemic and pulmonary haemodynamics in heart failure

1 den løpende hjertesviktgruppe, øket venstre ventrikulær og diastolisk dimensjon (5,68 + 0,15 mot 4,09 0,12 cm; p<0,05) og fraksjonell forkortning minsket (24 2 mot 42 2 %; p, 0,05) i forhold til normale kontrollverdier. I hjertesviktgruppen var hjertefrekvens, pulmonart arteriell trykk og pulmonart kapillær kiletrykk øket og hjerteutløps-effekt og gjennomsnittlig aortisk trykk redusert i forhold til normale kontrollverdier. Det var ingen forskjell i noen av basislinjeparametrene i de dyr som tilfeldig var utvalgt for Ai-adenosinreseptorantagonist eller vehikkelinfusjoner. Ingen endringer fra basislinje i hemodynamiske målinger ble notert i den normale kontrollgruppe gjennom studium. In the ongoing heart failure group, left ventricular and diastolic dimensions increased (5.68 + 0.15 vs. 4.09 0.12 cm; p<0.05) and fractional shortening decreased (24 2 vs. 42 2%; p, 0, 05) compared to normal control values. In the heart failure group, heart rate, pulmonary arterial pressure and pulmonary capillary wedge pressure were increased and cardiac output and mean aortic pressure were reduced compared to normal control values. There was no difference in any of the baseline parameters in the animals randomized to A1 adenosine receptor antagonist or vehicle infusions. No changes from baseline in hemodynamic measurements were noted in the normal control group throughout the study.

Systemisk og pulmonar hemodynamikk - Effekter av Aj- adenosinreseptorantagonister i hjertesvikt Systemic and pulmonary haemodynamics - Effects of Aj adenosine receptor antagonists in heart failure

Ingen endringer fra basislinje i hjertefrekvens (figur 1), gjennomsnittlig arteriell trykk (figur 1), hjerteutløpsef-fekt (figur 2), eller systemisk vaskulær motstand ble notert etter behandling med Ai-adenosinreseptorantagonist BG9719. Gjennomsnittlig pulmonar arteriell trykk falt fra basislinje ved 30 minutter etter behandling med BG9719 og forble lavt (30 + 1 mot 23+3 mmHg; p<0,05) (figur 2). Pulmonart kapillært kiletrykk (PCWP) minsket ved 90 minutter etter behandling med BG9719 (9 + 2 mg Hg; p<0,05) (figur 2). Pulmonar vaskulær motstand falt med 38 % fra basislinje ved 10 minutter etter behandling med BG9719 og ventet tilbake til basislinjenivåer (figur 3). I vehikkelgruppen ble ingen endringer i hemodynamikk notert. Selektiv Ai-adenosinreseptorantagonisme med BG9719 var assosiert med en akutt minskning i pulmonare resistive egenskaper uten å redusere systemisk vaskulær tone eller blodtrykk. No changes from baseline in heart rate (Figure 1), mean arterial pressure (Figure 1), cardiac output (Figure 2), or systemic vascular resistance were noted after treatment with the A1 adenosine receptor antagonist BG9719. Mean pulmonary arterial pressure decreased from baseline at 30 minutes after treatment with BG9719 and remained low (30 + 1 vs. 23 + 3 mmHg; p<0.05) (Figure 2). Pulmonary capillary wedge pressure (PCWP) decreased at 90 minutes after treatment with BG9719 (9 + 2 mg Hg; p<0.05) (Figure 2). Pulmonary vascular resistance fell by 38% from baseline at 10 min after treatment with BG9719 and expected to return to baseline levels (Figure 3). In the vehicle group, no changes in hemodynamics were noted. Selective A1 adenosine receptor antagonism with BG9719 was associated with an acute decrease in pulmonary resistive properties without reducing systemic vascular tone or blood pressure.

Eksempel 2 Example 2

Dyremodell Animal model

Fire Yorkshire hanngriser (25-30 kg, Hambone Farms, SC) ble implantert med en pacemaker (8329, Medtronic, Inc., Minnea-polis, MN) for å indusere løpende CHF som beskrevet ovenfor. Ti til 14 dager etter å ha kommet seg fra den kirurgiske prosedyre, ble en basislinje ekokardiografisk studium Four male Yorkshire pigs (25-30 kg, Hambone Farms, SC) were implanted with a pacemaker (8329, Medtronic, Inc., Minneapolis, MN) to induce ongoing CHF as described above. Ten to 14 days after recovering from the surgical procedure, a baseline echocardiographic study was performed

(ATL Ultramark VI, 2.25 MHz-transducer, Bothell, WA) utført og løping initiert ved 240 slag per minutt i 3 uker. En ytterligere gruppe på 6 normale kontrolldyr ble behandlet på identisk måte med unntak av løpeprosedyren. Ved slutten av 3-ukers løpeperioden ble pacemakerne deaktivert og ekokardiografiske studier ble brukt for å avbilde LV fra en høyre parasternal vinkel. Etter det ekokardiografiske studium ble dyrene preparert for akutt instrumentering og initiering av studiumsprotokollen. (ATL Ultramark VI, 2.25 MHz transducer, Bothell, WA) performed and running initiated at 240 beats per minute for 3 weeks. A further group of 6 normal control animals were treated identically except for the running procedure. At the end of the 3-week run-in period, the pacemakers were deactivated and echocardiographic studies were used to image the LV from a right parasternal angle. After the echocardiographic study, the animals were prepared for acute instrumentation and initiation of the study protocol.

Akutt instrumentering Acute instrumentation

Grisene ble bedøvet (i.v. sufentanyl 2,0 g/kg, etomidat 0,3 mg/kg) og paralysert (vekuronium 10 mg, tubokurarin 12 mg). En opprettholdelsesinfusjon på 10 ml/kg/time av laktert ringers oppløsning ble opprettholdt gjennom prosedyren. Et termofortynningskateter (7,5 Fr, Baxter Healthcare Corp., Irvine, CA) ble plassert i den pulmonare arteriell via høyre utvendige halspulsåre og et storboret kateter (7 Fr) ble plassert i venstre utvendig halspulsåre for væskeadmi-nistrasjon. Karotidarterien ble eksponert og kannulert, og kateteren (7 Fr) ble fremmet til hovedpulsåreroten for aor-tiske blodtrykksmålinger og blodprøvetakning. The pigs were anesthetized (i.v. sufentanyl 2.0 g/kg, etomidate 0.3 mg/kg) and paralyzed (vecuronium 10 mg, tubocurarine 12 mg). A maintenance infusion of 10 mL/kg/hour of lactated Ringer's solution was maintained throughout the procedure. A thermodilution catheter (7.5 Fr, Baxter Healthcare Corp., Irvine, CA) was placed in the pulmonary arterial via the right external carotid artery and a large-bore catheter (7 Fr) was placed in the left external carotid artery for fluid administration. The carotid artery was exposed and cannulated, and the catheter (7 Fr) was advanced to the main artery root for aortic blood pressure measurements and blood sampling.

Hemodynamiske funksjonsmålinger Hemodynamic function measurements

Etter instrumentering og en 10 minutters stabiliseringspe-riode ble basislinje hemodynamikk nedtegnet og digitalisert. Termofortynning avledet hjertemuskelutgangseffekt og ejeksjonsfraksjon ble oppnådd fra den pulmonare arteriell kateter i triplikat. Pulmonare og systemiske vaskulære motstander ble utregnet fra trykkmålingene og hjertemuskelut-gangsverdier ved å bruke standard formler. After instrumentation and a 10-minute stabilization period, baseline hemodynamics were recorded and digitized. Thermodilution derived myocardial output and ejection fraction were obtained from the pulmonary arterial catheter in triplicate. Pulmonary and systemic vascular resistances were calculated from the pressure measurements and myocardial output values using standard formulas.

Eksperimentell protokol Experimental protocol

Etter instrumentering og oppsamling av basislinjemålinger, ble Ai-reseptorantagonisten (3-[4-(2,4-diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]okt-l-yl]-propionsyre (BG9928), 1 mg/kg) infusert intravenøs. Hemodynamiske målinger beskrevet i den foregående del ble gjentatt ved 10, 20, 30, 60, 90 og 120 minutter etter infusjon. After instrumentation and collection of baseline measurements, the A1 receptor antagonist (3-[4-(2,4-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo [2.2.2]oct-l-yl]-propionic acid (BG9928), 1 mg/kg) infused intravenously. Hemodynamic measurements described in the previous section were repeated at 10, 20, 30, 60, 90 and 120 minutes after infusion.

Dataanalyse Data analysis

Sammenligninger av basal hemodynamikk mellom kontroll og Comparisons of basal hemodynamics between control and

HF-gruppene ble utført ved å bruke Students t-test. Tidsav-hengige endringer i hemodynamikk etter Ai-blokkinfusjon ble undersøkt med ANOVA. Parvise sammenligninger ble utført med en Bonferroni justert t-test. Alle statistiske analyser ble utført ved å bruke statistiske software programmer (BMDP Statistical Software Inc. University of California Press, Los Angeles, CA). Resultater er presentert som gjennomsnitt + standardavvik av gjennomsnittet (SEM). Verdier på p<0,05 ble regnet for å være statistisk signifikante. The HF groups were performed using Student's t-test. Time-dependent changes in hemodynamics after Ai block infusion were investigated with ANOVA. Pairwise comparisons were performed with a Bonferroni adjusted t-test. All statistical analyzes were performed using statistical software programs (BMDP Statistical Software Inc. University of California Press, Los Angeles, CA). Results are presented as mean + standard deviation of the mean (SEM). Values of p<0.05 were considered to be statistically significant.

Resultater Results

1 den løpende hjertesviktgruppe, økte venstre ventrikulære endediastoliske dimensjon (5,8 ±0,1 mot 4,1 ± 0,3 cm: p<0,05) og fraksjonen forkortning minsket (20 + 1 mot 41 2 %; p<0,05) i forhold til normale kontrollverdier. Basislinje venstre ventrikulær funksjon og hemodynamikk er opp-summert i tabell 1. I hjertesviktgruppen var hjertefrekvens, pulmonart arteriell trykk og pulmonart kapillært kiletrykk (PCWP) øket, og slagvolum var redusert i forhold til normale kontrollverdier. Pulmonar vaskulær motstand var også øket i HF-gruppen i forhold til den normale. Ingen endringer fra basislinje i hemodynamikk ble notert i den normale kontrollgruppe gjennom studium. In the ongoing heart failure group, the left ventricular end-diastolic dimension increased (5.8 ± 0.1 vs. 4.1 ± 0.3 cm: p<0.05) and the fractional shortening decreased (20 + 1 vs. 41 2%; p<0 .05) compared to normal control values. Baseline left ventricular function and hemodynamics are summarized in table 1. In the heart failure group, heart rate, pulmonary arterial pressure and pulmonary capillary wedge pressure (PCWP) were increased, and stroke volume was reduced compared to normal control values. Pulmonary vascular resistance was also increased in the HF group compared to the normal group. No changes from baseline in hemodynamics were noted in the normal control group throughout the study.

Systemisk og pulmonar hemodynamikk: Effekter av Aj- adenosinreseptorantagonist i hjertesvikt Systemic and pulmonary haemodynamics: Effects of Aj adenosine receptor antagonist in heart failure

Ingen endring fra basislinje i hjertefrekvens, gjennomsnittlig arteriell trykk, eller hjertemuskelutgangseffekt ble notert etter behandling med Ai-adenosinantagonisten BG9928. No change from baseline in heart rate, mean arterial pressure, or cardiac output was noted after treatment with the Ai adenosine antagonist BG9928.

Pulmonar vaskulær motstand falt med 18 % fra basislinje ved 10 minutter etter behandling med BG9928 (p<0,05) mens det ikke var noen endring i systemisk vaskulær motstand (figur Pulmonary vascular resistance decreased by 18% from baseline at 10 minutes after treatment with BG9928 (p<0.05) while there was no change in systemic vascular resistance (Figure

4). Selektiv Ai-adenosinreseptorantagonisme med BG9228 var assosiert med en akutt minskning i pulmonare resistive egenskaper uten reduksjon av systemisk vaskulær tone eller blodtrykk. 4). Selective A1 adenosine receptor antagonism with BG9228 was associated with an acute decrease in pulmonary resistive properties without a reduction in systemic vascular tone or blood pressure.

Eksempel 3 Example 3

Vurdering av Aj selektive antagonister - inhibering av ade-nosinmediert vasokonstriksjon av pulmonare kar Assessment of Aj selective antagonists - inhibition of adenosine-mediated vasoconstriction of pulmonary vessels

For å vurdere et stort antall forbindelser, ble en modell utformet hvor pulmonare kar fra gnager (rotter) ble fremstilt og transgående ringer av karet benyttes i en in vitro vevsbadeapparatur. Denne modell muliggjør vurdering av forbindelser for å bestemme om forsøksforbindelsene reduserer pulmonar vasokonstriksjon. In order to evaluate a large number of compounds, a model was designed where pulmonary vessels from rodents (rats) were prepared and transgoing rings of the vessel were used in an in vitro tissue bath apparatus. This model enables the evaluation of compounds to determine whether the test compounds reduce pulmonary vasoconstriction.

Sprague Dawley-hannrotter bedøves IP med 90 mg/kg na-triumbrevital. Etter å ha oppnådd et kirurgisk bedøvelses-plan barberes halsområdet og hjerte- og halsområde ekspone-res med en median sternotomi. Den pulmonare arterie fjernes ved å fjerne esofagus, resettere trakae, og eksponere ho-vedblodkarene som kommer inn i den dorsale overflate av hjertet. Pulmonar arterien blir forsiktig dissektert og fjernet. De isolerte kamre holdes i en åpen beholder med kald Krebs-Henseleit-buffer, pH 7,4 inneholdende D-glukose (2 g/l), MgS04 (0,14 g/l), monobasisk kaliumsulfat (0,16 g/l), KC1 (0,35 g/l), NaCl (6,9 g/l), CaCl (0,373 g/l), og Na-bikarbonat (2,1 g/l) inntil den er klar for bruk. Ved å bruke en petrisk ovn og et stereomikroskop, renses kammeret for adventitia og skjæres i 3 med mer ringsegmenter. De pulmonare ringer blir så forsiktig montert i wiretrekanter, og plassert i forvarmede 37 °C organbad inneholdende 10 ml Krebs-Henseleit-buffer boblet med 95 % 02/5 % C02. To leng-der av 3-0 silketråd med trikantede wirestøtter ved hver ende benyttes for å støtte opp pulmonare ringer; en ende av sammensetningen henges opp i en L-formet glasstav og en andre ende til en isometrisk krafttransduser for å måle kraft i gramspenning. Manuell forbelastningsspenning settes ved 1 g og ringer blir tillatt å ekvilibrere i 1 time, med vasking og forbelastningsjustering hvert 15 minutter eller etter behov. Etter ekvilibrering blir pulmonare ringer til-ført 60 mM kaliumklorid (KC1) og tillatt å danne en platå opp til 5 minutter og vaskes. Male Sprague Dawley rats are anesthetized IP with 90 mg/kg sodium brevital. After achieving a surgical anesthetic plane, the neck area is shaved and the heart and neck area are exposed with a median sternotomy. The pulmonary artery is removed by removing the esophagus, resetting the trachea, and exposing the main blood vessels entering the dorsal surface of the heart. The pulmonary artery is carefully dissected and removed. The isolated chambers are kept in an open container with cold Krebs-Henseleit buffer, pH 7.4 containing D-glucose (2 g/l), MgSO 4 (0.14 g/l), monobasic potassium sulfate (0.16 g/l ), KC1 (0.35 g/l), NaCl (6.9 g/l), CaCl (0.373 g/l), and Na bicarbonate (2.1 g/l) until ready for use. Using a petri dish and a stereomicroscope, the chamber is cleaned of adventitia and cut into 3 more ring segments. The pulmonary rings are then carefully mounted in wire triangles, and placed in pre-warmed 37 °C organ baths containing 10 ml of Krebs-Henseleit buffer bubbled with 95% O2/5% CO2. Two lengths of 3-0 silk wire with triangular wire supports at each end are used to support pulmonary rings; one end of the assembly is suspended in an L-shaped glass rod and another end to an isometric force transducer to measure force in gram tension. Manual preload tension is set at 1 g and rings are allowed to equilibrate for 1 hour, with washing and preload adjustment every 15 minutes or as needed. After equilibration, pulmonary rings are added to 60 mM potassium chloride (KCl) and allowed to plateau for up to 5 minutes and washed.

Reaktiviteten av kamrene undersøkes ved applikasjon av PGF2A, fenylefrin, eller kalium. Etter reaktiviteten er be-kreftet, blir vevet vasket tre ganger og tillatt å stabili-sere under 1 g belastning. En konsentrasjonresponskurve blir så dannet med den Ax selektive agonist N-6 cyklopenty-ladenosin (CPA) mens under oksygenering. Vevet blir så vasket tre ganger og tillatt å ekvilibrere under 1 gram spen-ning uten oksygenering og med inkubering med forskjellige konsentrasjoner av forsøksantagonisten. CPA-konsentrasjon-responskurven blir så gjentatt for å bekrefte vasokonstrik-tiv respons under hypoksia og for å bestemme om antagonis-ten forårsaker et høyre, parallelt skift i agonistkonsen-trasjonresponskurven (noe som indikerer full, kompetitiv antagonisme). The reactivity of the chambers is examined by application of PGF2A, phenylephrine, or potassium. After the reactivity is confirmed, the tissue is washed three times and allowed to stabilize under a 1 g load. A concentration response curve is then generated with the Ax selective agonist N-6 cyclopentyladenosine (CPA) while under oxygenation. The tissue is then washed three times and allowed to equilibrate under 1 gram of tension without oxygenation and with incubation with different concentrations of the experimental antagonist. The CPA concentration-response curve is then repeated to confirm the vasoconstrictive response under hypoxia and to determine whether the antagonist causes a rightward, parallel shift in the agonist concentration-response curve (indicating full, competitive antagonism).

Gjennom foreliggende beskrivelse og krav, vil ordet "om-fatte", eller variasjoner så som "omfatter" eller "omfattende" bli forstått å implikere innbefattelsen av et angitt heltall eller gruppe av heltall, men ikke utelukkelsen av ethvert annet heltall eller grupper av heltall. Throughout the present specification and claims, the word "comprising", or variations such as "comprising" or "comprising" will be understood to imply the inclusion of a specified integer or group of integers, but not the exclusion of any other integer or group of integers .

Claims (16)

1. Anvendelse av en Ax adenosinreseptorantagonist samt evenutuelt et farmasøytisk akseptabelt bæremiddel for denne for fremstilling av et medikament som er egnet til å redusere pulmonar vasokonstriksjon eller forbedre pulmonar hemodynamikk i et individ eller som er egnet til behandling av en pulmonar sykdom, hvor adenosin Ax adenosinreseptorantagonisten er valgt fra gruppen bestående av: a. en forbindelse omfattende formel I: hvor Ri og R2 uavhengig av hverandre er valgt fra gruppen bestående av: alkyl, med fra 1-6 C-atomer, R3 er valgt fra en polycyklisk gruppe valgt fra 3-oksa-tricyklo[3.2.1.0<2-4>]okt-6-yl og bicyklo [2 . 2 . 2 ] okt-l-yl-4-propionsyre, Xi og X2 er 0, og R6 er hydrogen, Z er en enkeltbinding.1. Use of an Ax adenosine receptor antagonist and possibly a pharmaceutically acceptable carrier for this for the production of a drug which is suitable for reducing pulmonary vasoconstriction or improving pulmonary hemodynamics in an individual or which is suitable for treating a pulmonary disease, where the adenosine Ax adenosine receptor antagonist is selected from the group consisting of: a. a compound comprising formula I: where Ri and R2 are independently selected from the group consisting of: alkyl, having from 1-6 C atoms, R3 is selected from a polycyclic group selected from 3-oxa-tricyclo[3.2.1.0<2-4>]oct -6-yl and bicyclo [2 . 2. 2 ] oct-1-yl-4-propionic acid, X 1 and X 2 are 0, and R 6 is hydrogen, Z is a single bond. 2. Anvendelse ifølge krav 1, hvor Ai-adenosinreseptorantagonisten er valgt fra gruppen bestående av: 3-[4-(2,6-diokso-l,3-dipropyl-2,3,6,7-tetrahydro-lH-purin-8-yl)-bicyklo[2.2.2]okt-l-yl]-propionsyre, 8- (3-oksa-tricyklo [3 . 2.1.0 2'4] okt-6-yl) -1,3-dipropyl-3,7-dihydro-purin-2,6-dion;2. Use according to claim 1, where the A1-adenosine receptor antagonist is selected from the group consisting of: 3-[4-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purine- 8-yl)-bicyclo[2.2.2]oct-1-yl]-propionic acid, 8-(3-oxa-tricyclo[3.2.1.0 2'4]oct-6-yl)-1,3-dipropyl -3,7-dihydro-purine-2,6-dione; 3. Anvendelse ifølge krav 1, hvor individet til hvilket medikament er egnet, er et menneske.3. Application according to claim 1, where the individual for which drug is suitable is a human. 4. Anvendelse ifølge krav 1, hvor Ax-adenosin-reseptorantatogisten er formulert sammen med et farmasøy-tisk egnet bæremateriale til en farmasøytisk akseptabel sammensetning.4. Use according to claim 1, where the Ax adenosine receptor antagonist is formulated together with a pharmaceutically suitable carrier material into a pharmaceutically acceptable composition. 5. Anvendelse ifølge krav 4, hvor den farmasøytisk akseptable sammensetning er egnet for administrasjon til et menneske .5. Use according to claim 4, where the pharmaceutically acceptable composition is suitable for administration to a human. 6. Anvendelse ifølge krav 4, hvor medikamentet er egnet til behandling av en sykdom som oppviser tegn eller symptomer på en pulmonar sykdom.6. Use according to claim 4, where the drug is suitable for the treatment of a disease which exhibits signs or symptoms of a pulmonary disease. 7. Anvendelse ifølge krav 6, hvor den pulmonare sykdom er valgt fra pulmonart ødem, pulmonar hypertensjon og en kombinasjon derav.7. Use according to claim 6, where the pulmonary disease is selected from pulmonary oedema, pulmonary hypertension and a combination thereof. 8. Anvendelse ifølge krav 7, hvor det pulmonare ødem er fulgt av en tilstand valgt fra gruppen bestående av en ubalanse av Starling-krefter, endret alveolar-kapillær membranpermeabilitet, lymfatisk insuffisiens.8. Use according to claim 7, where the pulmonary edema is followed by a condition selected from the group consisting of an imbalance of Starling forces, altered alveolar-capillary membrane permeability, lymphatic insufficiency. 9. Anvendelse ifølge krav 7, hvor den pulmonare hypertensjon er fulgt av en tilstand valgt fra gruppen bestående av pulmonar arteriell hypertensjon, pulmonar hypertensjon assosiert med lidelser i respirasjonssystemet eller hypoksemi, polmonar venøs hypertensjon, pulmonar hypertensjon som stammer fra kronisk trombotisk eller embolisk sykdom, pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur.9. Use according to claim 7, where the pulmonary hypertension is followed by a condition selected from the group consisting of pulmonary arterial hypertension, pulmonary hypertension associated with disorders in the respiratory system or hypoxemia, pulmonary venous hypertension, pulmonary hypertension originating from chronic thrombotic or embolic disease, pulmonary hypertension arising from disorders that directly affect the pulmonary vasculature. 10. Anvendelse ifølge krav 4, hvor medikamentet er egnet til behandling av en sykdom hos et individ som oppviser tegn eller symptomer på en pulmonar sykdom som er særpreget ved minst en tilstand valgt fra gruppen bestående av global pulmonar hypoksia, regional pulmonar hypoksia, pulmonart ødem, øket pulmonart arterielt trykk, øket pulmonar vaskulær motstand, øket sentralt venøst trykk, redusert arteriell oksygenmetning, andpustenhet, "ralling" og "kakling".10. Use according to claim 4, where the drug is suitable for the treatment of a disease in an individual who exhibits signs or symptoms of a pulmonary disease that is characterized by at least one condition selected from the group consisting of global pulmonary hypoxia, regional pulmonary hypoxia, pulmonary edema , increased pulmonary arterial pressure, increased pulmonary vascular resistance, increased central venous pressure, decreased arterial oxygen saturation, shortness of breath, "rattling" and "cackling". 11. Anvendelse ifølge krav 1, hvor medikamentet er egnet til behandling av et individ som oppviser tegn eller symptomer på en pulmonar sykdom.11. Use according to claim 1, where the drug is suitable for treating an individual who exhibits signs or symptoms of a pulmonary disease. 12. Anvendelse ifølge krav 11, hvor den pulmonare sykdom er valgt fra ødem og pulmonar hypertensjon.12. Use according to claim 11, where the pulmonary disease is selected from edema and pulmonary hypertension. 13. Anvendelse ifølge krav 12, hvor det pulmonare ødem er fulgt av en tilstand valgt fra gruppen bestående av en ubalanse av Starling-krefter, endret alveolar-kapillær membranpermeabilitet, lymfatisk insuffisiens.13. Use according to claim 12, wherein the pulmonary edema is followed by a condition selected from the group consisting of an imbalance of Starling forces, altered alveolar-capillary membrane permeability, lymphatic insufficiency. 14. Anvendelse ifølge krav 12, hvor den pulmonare hypertensjon er fulgt av en tilstand valgt fra gruppen bestående av pulmonar arteriell hypertensjon, pulmonar hypertensjon assosiert med lidelser i luftveissystemet eller hypoksemi, pulmonar venøs hypertensjon, pulmonar hypertensjon som stammer fra kronisk trombotisk eller embolisk sykdom, pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur.14. Use according to claim 12, where the pulmonary hypertension is followed by a condition selected from the group consisting of pulmonary arterial hypertension, pulmonary hypertension associated with disorders of the respiratory system or hypoxemia, pulmonary venous hypertension, pulmonary hypertension originating from chronic thrombotic or embolic disease, pulmonary hypertension arising from disorders that directly affect the pulmonary vasculature. 15. Anvendelse ifølge krav 1, hvor medikamentet er egnet til behandling av et individ som oppviser tegn eller symptomer på en pulmonar sykdom særpreget ved minst en tilstand valgt fra gruppen bestående av global pulmonar hypoksia, regional pulmonar hypoksia, pulmonart ødem, øket pulmonart arterielt trykk, øket pulmonar vaskulær motstand, øket sentralt venøst trykk, redusert arteriell oksygenmetning, andpustenhet "ralling" og "kakling".15. Use according to claim 1, where the drug is suitable for the treatment of an individual who exhibits signs or symptoms of a pulmonary disease characterized by at least one condition selected from the group consisting of global pulmonary hypoxia, regional pulmonary hypoxia, pulmonary oedema, increased pulmonary arterial pressure , increased pulmonary vascular resistance, increased central venous pressure, decreased arterial oxygen saturation, shortness of breath "rattles" and "cackles". 16. Anvendelse ifølge krav 7, hvor den pulmonare hypertensjon er fulgt av en tilstand valgt fra gruppen bestående av pulmonar ateriell hypertensjon, pulmonar hypertensjon assosiert med lidelser i luftveissystemet eller hypoksemi, pulmonar venøs hypertensjon, pulmonar hypertensjon som stammer fra kronisk trombotisk eller embolisk sykdom, pulmonar hypertensjon som stammer fra lidelser som direkte påvirker den pulmonare vaskulatur.16. Use according to claim 7, where the pulmonary hypertension is followed by a condition selected from the group consisting of pulmonary arterial hypertension, pulmonary hypertension associated with disorders of the respiratory system or hypoxemia, pulmonary venous hypertension, pulmonary hypertension originating from chronic thrombotic or embolic disease, pulmonary hypertension arising from disorders that directly affect the pulmonary vasculature.
NO20040982A 2001-09-06 2004-03-05 Use of A1 adenosine receptor antagonist for the preparation of drugs suitable for the treatment of pulmonary disease NO328251B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31790201P 2001-09-06 2001-09-06
PCT/US2002/028580 WO2003022284A1 (en) 2001-09-06 2002-09-06 Methods of treating pulmonary disease

Publications (2)

Publication Number Publication Date
NO20040982L NO20040982L (en) 2004-06-03
NO328251B1 true NO328251B1 (en) 2010-01-18

Family

ID=34794120

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20040982A NO328251B1 (en) 2001-09-06 2004-03-05 Use of A1 adenosine receptor antagonist for the preparation of drugs suitable for the treatment of pulmonary disease

Country Status (1)

Country Link
NO (1) NO328251B1 (en)

Also Published As

Publication number Publication date
NO20040982L (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP2009209156A (en) Method of treating lung disease
US20220241617A1 (en) Pulmonary hypertension treatment
JP6804605B2 (en) Organic compounds
CN103391766B (en) For treating the new composition of cystic fibrosis
AU2007220047B2 (en) Inhibition of JAK2 as a treatment of pulmonary arterial hypertension
EP3530275A1 (en) Treatment of heart failure and related conditions
KR20110074898A (en) Methods of treating inflammation
US20100280041A1 (en) Rhokinase-dependent inhibition activity on pulmonary artery endothelium dysfunction, medial wall thickness and vascular obstruction of pulmodil and pulmodil-1
AU2002341618A1 (en) Methods of treating pulmonary disease
JP2004506009A (en) Treatment of insulin resistance syndrome
JP2005523263A (en) Use of PDE5 inhibitors in the treatment of scarring and fibrosis
JP5947316B2 (en) Methods for treating pulmonary hypertension
KR20230004650A (en) Inhibitors of TRPC6 to treat respiratory conditions
Hajra et al. Recent advances and future prospects of treatment of pulmonary hypertension
MXPA04012629A (en) Method of treating ischemia reperfusion injury using adenosine receptor antagonists.
KR20120018761A (en) Methods and compositions of pi-3 kinase inhibitors for treating fibrosis
Noordegraaf et al. Results from the REPAIR Study final analysis: effects of macitentan on right ventricular (RV) remodelling in pulmonary arterial hypertension (PAH)
Maki et al. The clinical efficacy of endothelin receptor antagonists in patients with pulmonary arterial hypertension comparison between each generation
US20200383941A1 (en) USE OF Kv11.1 CHANNEL INHIBITORS FOR TREATMENT OF PULMONARY HYPERTENSION
CN110087653A (en) For treating the combination treatment of pulmonary hypertension
WO2012006585A2 (en) Use of interleukin-15 to treat cardiovascular diseases
AU2020259450A1 (en) Methods of treating hypertension with activators of Tie-2
CN109369754B (en) Nitrate ester compound and application thereof
NO328251B1 (en) Use of A1 adenosine receptor antagonist for the preparation of drugs suitable for the treatment of pulmonary disease
Korokina et al. Principles of pharmacological correction of pulmonary arterial hypertension. Research Results in Pharmacology, 4 (2): 59-76

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees