NO325049B1 - Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants. - Google Patents

Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants. Download PDF

Info

Publication number
NO325049B1
NO325049B1 NO20062879A NO20062879A NO325049B1 NO 325049 B1 NO325049 B1 NO 325049B1 NO 20062879 A NO20062879 A NO 20062879A NO 20062879 A NO20062879 A NO 20062879A NO 325049 B1 NO325049 B1 NO 325049B1
Authority
NO
Norway
Prior art keywords
gas
combustion chamber
flue gas
flame tube
combustion
Prior art date
Application number
NO20062879A
Other languages
Norwegian (no)
Other versions
NO20062879L (en
Inventor
Arne Lynghjem
Original Assignee
Statoil Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statoil Asa filed Critical Statoil Asa
Priority to NO20062879A priority Critical patent/NO325049B1/en
Priority to PCT/NO2007/000198 priority patent/WO2008023986A1/en
Publication of NO20062879L publication Critical patent/NO20062879L/en
Publication of NO325049B1 publication Critical patent/NO325049B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Oppfinnelsen vedrører en fremgangsmåte for å øke energi og kostnadseffektiviteten i et gasskraftverk eller kraftvarmeverk og for energi- og kostnadseffektiv C0-innfanging fra røykgass med oppkonsentrert C02-innhold. Anlegget omfattende fortrinnsvis to gassturbiner som omfatter i det minste en kompressor (13) og en turbin (14) og omfatter videre et brennkammer (10), idet røykgass fra brennkammeret (10) ekspanderes, kjøles ned og passerer gjennom en renseenhet (11) hvor i det minste vesentlige deler av C02- innholdet fra røykgassen fjernes. Resirkulert røykgass benyttes videre for kjøling av flammerøret (40) i brennkammeret (10), og oppkonsentrering av C02 -innholdet i røykgassen, idet tilførsel av friskluft til brennkammeret (10) sørger for nær støkiometrisk forbrenning. Oppfinnelsen omfatter ett forbedret brennkammersystem som medfører økning av gassturbinprosessens energieffektivitet og ytelse kan opprettholdes høyest mulig nivå. Oppfinnelsen vedrører også et kraftverk for utførelse av fremgangsmåten.The invention relates to a method for increasing energy and cost efficiency in a gas power station or cogeneration plant and for energy and cost-effective C0 capture from flue gas with concentrated CO 2 content. The plant preferably comprises two gas turbines comprising at least one compressor (13) and a turbine (14) and further comprising a combustion chamber (10), as flue gas from the combustion chamber (10) is expanded, cooled and passed through a cleaning unit (11) where at least substantial parts of the CO 2 content of the flue gas is removed. Recycled flue gas is further used for cooling the flame pipe (40) in the combustion chamber (10) and concentration of the CO 2 content in the flue gas, with supply of fresh air to the combustion chamber (10) for close stoichiometric combustion. The invention encompasses an improved combustion chamber system which increases the energy efficiency of the gas turbine process and performance can be maintained at the highest possible level. The invention also relates to a power plant for carrying out the method.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for å øke energi- og kostnadseffektivitet i et gasskraftverk eller kraftvarmeverk og for energi- og kostnadseffektiv C02~innfanging. Gasskraftverket eller kraftvarmeverket omfatter gassturbinanlegg eller kombinert anlegg med damp- og gassturbinsyklus, fortrinnsvis utstyrt med minst to gassturbinanlegg med en kompressordel og en turbindel og omfattende videre brennkammer med flammerør, der nevnte brennkammer arbeider med i hovedsak to separate gasstrømmer hvor en gasstrøm utgjøres av luft som tilføres sammen med brennstoff sentralt innvendig i flammerøret, og hvor den andre gasstrømmen utgjøres av en kjølende gass som går på utsiden av nevnte flammerøret, idet røykgass fra nevnte brennkammer ekspanderes og kjøles ned og passerer gjennom en renseenhet hvor i det minste vesentlige deler av CC>2-innholdet fra røykgassen fjernes, før den rensede røykgassen slippes ut i atmosfæren. The present invention relates to a method for increasing energy and cost efficiency in a gas power plant or cogeneration plant and for energy and cost effective C02 capture. The gas power plant or cogeneration plant comprises a gas turbine plant or a combined plant with a steam and gas turbine cycle, preferably equipped with at least two gas turbine plants with a compressor part and a turbine part and comprising further combustion chambers with flame tubes, where said combustion chamber works with essentially two separate gas flows where one gas flow is made up of air which supplied together with fuel centrally inside the flame tube, and where the second gas stream is made up of a cooling gas that runs on the outside of said flame tube, as flue gas from said combustion chamber is expanded and cooled and passes through a cleaning unit where at least significant parts of CC> The 2 content from the flue gas is removed before the purified flue gas is released into the atmosphere.

Foreliggende oppfinnelse vedrører tilsvarende et gasskraftverk eller et kraftvarmeverk, samt brennkammer tilpasset slike verk. The present invention correspondingly relates to a gas power plant or a cogeneration plant, as well as a combustion chamber adapted to such plants.

Utslipp av karbondioksyd (C02) har økt vesentlig i de siste tiårene og representerer et globalt problem. Ut fra Kyoto avtalen og "føre-var" prinsippet er det derfor ønskelig å begrense utslippet av klimagasser som CO2 for å motvirke endringer i klimaet. Et tiltak er å sørge for innfanging av C02 i forbindelse med konvertering av energi fra fossilt brensel i gasskraftverk og/eller kraftvarmeverk. De ulike elementene i C02~verdikjeden inkluderer teknologi for innfanging, transport og videre sluttlagring eller bruk av C02 til for eksempel økt oljeutvinning i reservoarer (IOR). Emissions of carbon dioxide (C02) have increased significantly in recent decades and represent a global problem. Based on the Kyoto agreement and the "precautionary" principle, it is therefore desirable to limit the emission of greenhouse gases such as CO2 in order to counteract changes in the climate. One measure is to ensure the capture of C02 in connection with the conversion of energy from fossil fuels in gas power plants and/or cogeneration plants. The various elements in the C02 value chain include technology for capture, transport and further final storage or use of C02 for, for example, increased oil recovery in reservoirs (IOR).

Eksosgassrensing fra gasskraftverk (såkalt post-combustion type) finnes i dag i drift i mellomstor skala. Slik eksosgassrensing har også potensiale for kostnadsreduk-sjoner. Den eksisterende teknologi for eksosgassrensing er basert på absorpsjon av karbon etter at forbrenningen har funnet sted. Et gasskraftverk av denne typen er beskrevet i åpen litteratur, lærebøker og publikasjoner. Exhaust gas purification from gas power plants (so-called post-combustion type) is currently in operation on a medium scale. Such exhaust gas purification also has the potential for cost reductions. The existing technology for exhaust gas purification is based on the absorption of carbon after combustion has taken place. A gas power plant of this type is described in open literature, textbooks and publications.

Eksosgassen fra et standard kombinert syklus gassturbinkraftverk inneholder ca. 3,5 volum % CO2 og eksosen må kjøles ned fra om lag 450-600 °C til normal driftstemperatur for aminvask som ligger rundt 40-55 °C. I det atmosfæriske absorpsjonstårnet overføres CO2 i gassen til væskefasen ved kjemisk absorpsjon i aminløsningen. Det er viktig å ha en stor kontaktflate mellom gass og væske, og tårnet vil bli høyt og kan komme opp i over 30 meter, og for ett 400 MW kraftverk ligger det nødvendige tverrsnittet i absorpsjons-kolonnen på 260-320 m<2>. Et standard gasskraftverk med denne type eksosgassrensning har derfor den ulempe at både investeringskostnadene og driftskostnadene blir svært høye i tillegg til at anlegget også er meget plasskrevende. The exhaust gas from a standard combined cycle gas turbine power plant contains approx. 3.5 volume % CO2 and the exhaust must be cooled from approximately 450-600 °C to the normal operating temperature for amine washing which is around 40-55 °C. In the atmospheric absorption tower, CO2 in the gas is transferred to the liquid phase by chemical absorption in the amine solution. It is important to have a large contact surface between gas and liquid, and the tower will be tall and can reach over 30 metres, and for a 400 MW power plant the required cross-section in the absorption column is 260-320 m<2>. A standard gas power plant with this type of exhaust gas cleaning therefore has the disadvantage that both the investment costs and the operating costs are very high, in addition to the fact that the plant is also very space-consuming.

Det er kjent teknologier som kan gi mer kostnadseffektive innfangningsanlegg ved å øke CO2 innholdet i eksosgassen fra et gassturbinkraftverk til ca. 10 volum % CO2. Det kan oppnås ved hjelp av resirkulering av store mengder eksosgass. Men resirkulering av store mengder eksosgass resulterer i et annet problem, nemlig at oksygeninnholdet i brennkammeret blir for lavt for å opprettholde stabil forbrenning. Det er ikke mulig å resirkulere større mengder eksosgass enn det som tilsvarer ca. 6-7 volum % C02 uten å få problemer med utilstrekkelig oksygeninnhold for å opprettholde stabil forbrenning. Den foreliggende oppfinnelsen tar sikte på å oppnå ca. 10 volum % CO2 i eksosgassen uten å få problemer med utilstrekkelig oksygeninnhold ved anvendelse av et forbedret brennkammerarrangement og kraftverkskonsept. There are known technologies that can provide more cost-effective capture facilities by increasing the CO2 content in the exhaust gas from a gas turbine power plant to approx. 10 volume % CO2. It can be achieved by recycling large amounts of exhaust gas. But recycling large amounts of exhaust gas results in another problem, namely that the oxygen content in the combustion chamber becomes too low to maintain stable combustion. It is not possible to recycle larger amounts of exhaust gas than the equivalent of approx. 6-7 volume % C02 without having problems with insufficient oxygen content to maintain stable combustion. The present invention aims to achieve approx. 10 volume % CO2 in the exhaust gas without having problems with insufficient oxygen content by using an improved combustion chamber arrangement and power plant concept.

Fra NO 318638 er det kjent en fremgangsmåte for å øke energi- og kostnadseffektiviteten i et gasskraftverk eller kraftvarmeverk og for energi- og kostnadseffektiv CO2-innfanging fra trykksatt røykgass med oppkonsentrert CO2-innhold. Anlegget omfatter en gassturbin som omfatter en kompressor og en turbin og omfatter videre et brennkammer, idet røykgass fra brennkammeret kjøles ned og passerer gjennom en trykksatt renseenhet hvor i det minste vesentlige deler av C02-innhyoldet fra røykgassen fjernes. Den rensede røykgass varmes opp igjen og sammen med tilførsel av en trykksatt damp, tilføres turbinen og en avgasskjel, før den rensede røykgassen slippes ut i atmosfæren. En delstrøm benyttes for varmeveksling i brennkammeret. Derved oppnås optimal oppvarming av denne delstrømmen i brennkammeret hvor varmenergien overføres med høyest mulig temperatur og delstrømmen deretter føres videre til turbinens innløp, slik at gassturbinprosessens energieffektivitet og ytelse kan opprettholdes på høyest mulig nivå. From NO 318638, a method is known for increasing the energy and cost efficiency in a gas power plant or cogeneration plant and for energy and cost effective CO2 capture from pressurized flue gas with a concentrated CO2 content. The plant comprises a gas turbine which comprises a compressor and a turbine and further comprises a combustion chamber, as flue gas from the combustion chamber is cooled and passes through a pressurized cleaning unit where at least significant parts of the C02 content from the flue gas are removed. The cleaned flue gas is reheated and, together with the supply of pressurized steam, fed to the turbine and an exhaust gas boiler, before the cleaned flue gas is released into the atmosphere. A partial flow is used for heat exchange in the combustion chamber. Thereby optimal heating of this partial flow is achieved in the combustion chamber where the heat energy is transferred at the highest possible temperature and the partial flow is then carried on to the turbine inlet, so that the energy efficiency and performance of the gas turbine process can be maintained at the highest possible level.

Fra NO 3197 98 er det kjent en tilsvarende fremgangsmåte. Anlegget ifølge denne løsning omfatter fortrinnsvis to gassturbiner som omfatter i det minste en kompressor og en turbin og som videre omfatter et brennkammer. Røykgass fra brennkammeret ekspanderes, komprimeres og kjøles ned og passerer gjennom en trykksatt renseenhet hvor i det minste vesentlige deler av C02~innholdet fra røykgassen fjernes. Den rensede røykgassen varmes opp igjen og benyttes videre for varmeveksling i brennkammeret, og sammen med tilførsel av trykksatt damp tilføres turbinen og avgasskjelen før den rensede røykgassen slippes ut i atmosfæren. A similar method is known from NO 3197 98. The plant according to this solution preferably comprises two gas turbines which comprise at least a compressor and a turbine and which further comprise a combustion chamber. Flue gas from the combustion chamber is expanded, compressed and cooled and passes through a pressurized cleaning unit where at least significant parts of the C02 content from the flue gas are removed. The purified flue gas is heated again and used for heat exchange in the combustion chamber, and together with the supply of pressurized steam, it is supplied to the turbine and the exhaust boiler before the purified flue gas is released into the atmosphere.

Det er videre kjent at mer kostnadseffektive konsepter for CO2 innfangning finnes, for eksempel i WO 2004/072443, som beskriver innfangingsanlegg av lignende type for eksosgass med konsentrert CO2 og høyere trykk, men med en annen type brennkammerarrangement. It is also known that more cost-effective concepts for CO2 capture exist, for example in WO 2004/072443, which describes capture systems of a similar type for exhaust gas with concentrated CO2 and higher pressure, but with a different type of combustion chamber arrangement.

Videre er det velkjent at for å oppnå lavere NOx utslipp fra gassturbinanlegg og forbrenningsanlegg er det gunstig å resirkulere kjølt røykgass tilbake til brennkammeret. Furthermore, it is well known that in order to achieve lower NOx emissions from gas turbine plants and combustion plants, it is beneficial to recycle cooled flue gas back to the combustion chamber.

Et formål ved oppfinnelsen er å legge grunnlaget for kraftverk hvor utslipp av klimagasser redusert til et minimum eller elimineres ved anvendelse av et standard gassturbinkraftverk med standard brennkammer med noen modifikasjoner. One purpose of the invention is to lay the foundation for power plants where emissions of greenhouse gases are reduced to a minimum or eliminated by using a standard gas turbine power plant with a standard combustion chamber with some modifications.

Et annet formål er å finne mer energi- og kostnadseffektive løsninger og å redusere, fortrinnsvis halvere, både investeringskostnader og driftskostnader i forhold til eksisterende teknologi. Det er særlig av interesse å oppnå en energieffektiv løsning ved at temperaturen ved innløpet til turbindelen er holdes høyest mulig og helst uten avvik fra et standard gassturbinkraftverk. Another purpose is to find more energy- and cost-effective solutions and to reduce, preferably halve, both investment costs and operating costs in relation to existing technology. It is of particular interest to achieve an energy-efficient solution in that the temperature at the inlet to the turbine part is kept as high as possible and preferably without deviation from a standard gas turbine power plant.

Det er dessuten et formål å finne kostnadseffektive løsninger for gasskraftverk, hvor det kan anvendes nye kompakte innfangingsanlegg for eksosgass med oppkonsentrert C02. It is also an aim to find cost-effective solutions for gas power plants, where new compact capture systems for exhaust gas with concentrated C02 can be used.

Ifølge oppfinnelsen oppnår formålene ved fremgangsmåte og en et kraftverk som nærmere angitt i de medfølgende krav. According to the invention, the objectives are achieved by the method and a power plant as specified in the accompanying claims.

Ifølge oppfinnelsen oppnås et mer effektivt kraftverk hvor utslippene av CO2 kan reduseres med fortrinnsvis 85-90%, men kan også være lavere reduksjon, dvs. fra 0-90%. According to the invention, a more efficient power plant is achieved where emissions of CO2 can be reduced by preferably 85-90%, but can also be a lower reduction, i.e. from 0-90%.

Videre oppnås et anlegg som er enklere i oppbygging og som ikke krever så store områder i forhold til tradisjonelle anlegg for aminvask, dette særlig fordi en CO2-absorpsjondelen kan gjøres enklere. En effektiv utnyttelse av en slik C02~løsning for rensing av røykgass forutsetter at røykgassen har oppkonsentrert CO2. Furthermore, a facility is achieved that is simpler to build and does not require such large areas compared to traditional facilities for amine washing, this in particular because a CO2 absorption part can be made simpler. An effective utilization of such a C02 solution for cleaning flue gas requires that the flue gas has concentrated CO2.

En ytterligere fordel ved løsningen ifølge oppfinnelsen er et vesentlig redusert behov for modifikasjoner av et standard brennkammer og det kan benyttes for alle typer gassturbinbrennkammer, både eksterne brennkammer eller integrerte brennkammer, inkludert ringformet (annular) type eller kanneformet (canned) brennkammer type. A further advantage of the solution according to the invention is a significantly reduced need for modifications of a standard combustor and it can be used for all types of gas turbine combustors, both external combustors or integrated combustors, including annular type or canned combustor type.

Formålene oppnås ved en fremgangsmåte, et gasskraftverk eller kraftvarmeverk, samt et brennkammer som beskrevet i det selvstendige patentkrav. Alternative utførelsesformer er definert i de uselvstendige patentkrav. The objectives are achieved by a method, a gas power plant or cogeneration plant, as well as a combustion chamber as described in the independent patent claim. Alternative embodiments are defined in the independent patent claims.

Følgene oppnås/blir en konsekvens av oppfinnelsen: The consequences are achieved/become a consequence of the invention:

Den foreliggende oppfinnelsen anvender et forbedret brennkammersystem tilpasset resirkulering av røykgass for å oppnå en optimal oppkonsentrering av CO2, ca. 10 volum % C02, i røykgassen, uten at det oppstår problemer med utilstrekkelig oksygeninnhold for å opprettholde en The present invention uses an improved combustion chamber system adapted to the recycling of flue gas to achieve an optimal concentration of CO2, approx. 10 volume % C02, in the flue gas, without the problems of insufficient oxygen content to maintain a

stabil forbrenningsprosess. stable combustion process.

Kan foreta kostnadseffektiv C02-separasjon på grunn av Can perform cost-effective C02 separation due to

høy CO2 konsentrasjon i røykgassen. high CO2 concentration in the flue gas.

Kan brukes for alle standard brennkammertyper i standard Can be used for all standard combustion chamber types in standard

gassturbinkraftverk med små modifikasjoner. Forbrenningen kan skje ved optimal gas turbine power plant with minor modifications. The combustion can take place at optimum

forbrenningstemperatur og luftoverskudd for derved å ivareta kravet til et nødvendig lavt NOx-utslipp. combustion temperature and excess air in order to meet the requirement for a necessary low NOx emission.

Foretrukne utførelsesformer av oppfinnelsen skal i det følgende beskrives nærmere under henvisning til de medfølg-ende figurer, hvor: figur 1 viser et forbedret brennkammeranlegg ifølge oppfinnelsen; Preferred embodiments of the invention shall be described in more detail below with reference to the accompanying figures, where: figure 1 shows an improved combustion chamber system according to the invention;

figur 2 viser skjematisk i diagramform en foretrukket utførelsesform av et gasskraftverk ifølge oppfinnelsen; og figure 2 shows schematically in diagram form a preferred embodiment of a gas power plant according to the invention; and

figur 3 viser en ytterligere utførelsesform av et brennkammer. figure 3 shows a further embodiment of a combustion chamber.

Det skal anføres at de angitte temperaturer og trykk angitt nedenfor kun er ment å være indikative for den beskrevne utførelsesform og disse verdiene kan varieres uten derved å avvike fra oppfinnelses kjerne. It should be stated that the indicated temperatures and pressures indicated below are only intended to be indicative of the described embodiment and these values can be varied without thereby deviating from the core of the invention.

Det karakteristiske ved det foreslåtte anlegg ifølge figur 2 er at brennkamrene 10, 10' arbeider med i hovedsak to separate gasstrømmer, hvor en tilføres innvendig i flamme-røret 40, 40' og den andre tilføres på utsiden av flamme-røret. Flammerøret 40, 40' har perforeringer slik at det oppnås optimal kjøling av flammerøret, og deistrømmen på utsiden av flammerøret 40, 40' gradvis føres gjennom perforeringen i flammerøret slik at delstrømmen kan delta i kjøling av forbrenningsprosessen og forbrenningsproduktene. Deretter føres strømmen videre til gassturbinenes 12, 12' turbindel 14, 14' ved høyest mulig temperatur, slik at gassturbinprosessens energieffektivitet og ytelse kan opprettholdes høyst mulig. The characteristic feature of the proposed plant according to Figure 2 is that the combustion chambers 10, 10' work with essentially two separate gas streams, one of which is supplied inside the flame tube 40, 40' and the other is supplied on the outside of the flame tube. The flame tube 40, 40' has perforations so that optimal cooling of the flame tube is achieved, and the flow on the outside of the flame tube 40, 40' is gradually led through the perforation in the flame tube so that the partial flow can participate in cooling the combustion process and the combustion products. The flow is then passed on to the turbine part 14, 14' of the gas turbines 12, 12' at the highest possible temperature, so that the energy efficiency and performance of the gas turbine process can be maintained as high as possible.

Det er en vesentlig fordel ved det foreslåtte anlegget i følge utførelseseksemplet vist på figur 2 at røykgassen, som går fra flammerøret 40, 40' med så høy temperatur som eksempelvis 1200 °C, kan gå direkte til ekspansjon i en turbindel som er bygget for å tåle slike høye temperaturer. Deretter føres røykgassen videre via standard avgasskjel 29, 29' til vannkjøler 47, 47'. Etter vannkjøleren 47 føres oppkonsentrert røykgass til CC>2-innfangningsanlegget 11. Den røykgass som går til C02-innfangning er ikke trykksatt. It is a significant advantage of the proposed plant according to the design example shown in Figure 2 that the flue gas, which leaves the flame tube 40, 40' at a temperature as high as, for example, 1200 °C, can go directly to expansion in a turbine part that is built to withstand such high temperatures. The flue gas is then carried on via the standard exhaust boiler 29, 29' to the water cooler 47, 47'. After the water cooler 47, concentrated flue gas is fed to the CC>2 capture facility 11. The flue gas that goes to C02 capture is not pressurized.

Etter vannkjøleren 47' resirkuleres røykgassen fra det andre brennkammeret 10' til den andre turbinens 12' kompressordel 13' hvor røykgassen gis ett trykk på eksempelvis 15 bar og temperatur 400 °C, før røykgassen føres videre til brennkamrene 10, 10' til kjøling på utsiden av flammerøret 40, 40'. Den resirkulerte røykgassen går videre gjennom hullene i flammerøret 40,40' og inn i forbrenningssonen hvor den tjener til å kjøle forbrenningsprosessen og blande seg med forbrenningsproduktene slik at disse kjøles videre ned. Dette medfører også at konsentrasjonen av CO2 i røykgassen økes, slik at CO2 innfangningsanlegget 11 kan arbeide med betingelser som medfører fordeler både med hensyn til energi- og kostnadseffektivitet. Anlegget kan la seg realisere forholdsvis enkelt. After the water cooler 47', the flue gas is recycled from the second combustion chamber 10' to the compressor part 13' of the second turbine 12', where the flue gas is given a pressure of, for example, 15 bar and a temperature of 400 °C, before the flue gas is passed on to the combustion chambers 10, 10' for cooling on the outside of the flame tube 40, 40'. The recycled flue gas continues through the holes in the flame tube 40,40' and into the combustion zone where it serves to cool the combustion process and mix with the combustion products so that these are further cooled. This also means that the concentration of CO2 in the flue gas is increased, so that the CO2 capture plant 11 can work under conditions that bring benefits both with regard to energy and cost efficiency. The plant can be realized relatively easily.

Det vises til figur 1. I den prosessen som er vist på figur 2 benyttes i utgangspunktet et standard brennkammer 10, som kan modifiseres noe med hensyn til styring av luft-strømmene. Standard, mer eller mindre konvensjonelle brennkamre er egnet for bruk i tilknytning til oppfinnelsen, da disse ofte er utstyrt med perforeringer i flammerøret, noe som tillater kjøleluft å trenge inn i brennkammeret for å blande seg med forbrenningsprodukter og ytterligere kjøle disse. Den konstruktive utførelsen av et typisk standard brennkammer kan finnes beskrevet i åpen litteratur, lærebøker og publikasjoner. Imidlertid anvendes et standard brennkammer vanligvis på en annerledes måte, ettersom luften vanligvis først føres på utsiden av flammerøret 40 (mellom mantelen 27 og flammerøret 40), for så å føres videre inn i flammerøret 40 til forbrenningsprosessens primærsone og sekundær sone. Reference is made to Figure 1. In the process shown in Figure 2, a standard combustion chamber 10 is basically used, which can be modified somewhat with regard to controlling the air flows. Standard, more or less conventional combustion chambers are suitable for use in connection with the invention, as these are often equipped with perforations in the flame tube, which allow cooling air to enter the combustion chamber to mix with combustion products and further cool them. The constructive execution of a typical standard combustion chamber can be found described in open literature, textbooks and publications. However, a standard combustion chamber is usually used in a different way, as the air is usually first led to the outside of the flame tube 40 (between the mantle 27 and the flame tube 40), and then further into the flame tube 40 to the primary zone and secondary zone of the combustion process.

Men i det foreliggende anlegg er framgangsmåten (air management) annerledes, ettersom brennkammeret 10 arbeider med i hovedsak to separate gasstrømmer, hvor en tilføres direkte sammen med brennstoff til sentralt i primærsonen innvendig i flammerøret 40 og den andre går på utsiden av flammerøret 40 til kjøling på utsiden av flammerøret før den går gjennom hullene 55 i flammerøret 40. Kanalene ved primærsonen er konstruktive detaljer som må fastlegges ved eksperimenter i testrigg for brennkammer hos leverandører av gassturbiner og brennkamre. Ved innløpet til forbrenningssonen finnes også et omfattende ventil- og fordelersystem som ikke er vist på figuren og som heller ikke er en del av oppfinnelsen, men representerer helt fagmessige tilpasninger. But in the present plant the procedure (air management) is different, as the combustion chamber 10 works with essentially two separate gas streams, one of which is fed directly together with fuel to the center of the primary zone inside the flame tube 40 and the other goes to the outside of the flame tube 40 for cooling on the outside of the flame tube before it passes through the holes 55 in the flame tube 40. The channels at the primary zone are constructive details that must be determined by experiments in test rigs for combustion chambers at suppliers of gas turbines and combustion chambers. At the entrance to the combustion zone, there is also an extensive valve and distributor system which is not shown in the figure and which is also not part of the invention, but represents entirely professional adaptations.

Selv om det i figuren for foreliggende anlegget er vist to brennkammer, vil det være mulig å anvende flere brennkamre. Videre skal det anføres at brennkammeret er vist helt skjematisk, hvor deler som er åpenbare for en fagmann ikke er vist. Eksempel på slik utelatelse er blant annet den trykkappe som nødvendigvis omslutter brennkammeret. Although the figure for the present plant shows two combustion chambers, it will be possible to use several combustion chambers. Furthermore, it should be stated that the combustion chamber is shown entirely schematically, where parts that are obvious to a person skilled in the art are not shown. An example of such an omission is, among other things, the pressure jacket which necessarily surrounds the combustion chamber.

Ifølge utførelsesformene vist og beskrevet anvendes CO2-fangstanlegg, for eksempel av amintypen. Denne type løsning er i bruk i eksisterende anlegg. Det kan imidlertid også være aktuelt å anvende nye typer for C02~innfanging uten derved å fravike oppfinnelsens ide. According to the embodiments shown and described, CO2 capture systems are used, for example of the amine type. This type of solution is in use in existing facilities. However, it may also be relevant to use new types of C02 capture without thereby deviating from the idea of the invention.

I den prosessen som er vist på figur 2 benyttes kombinert syklus gasskraftverk og et atmosfærisk CO2-fangstanlegg 11 som skal skille ut CO2 fra røykgass med oppkonsentrert C02 innhold. Det benyttes to integrerte gassturbinanlegg 12,12' som er krysskoblet med delstrømmer til brennkamre 10, 10' og som arbeider med i hovedsak to separate gasstrømmer hvor en tilføres direkte sammen med brennstoff sentralt innvendig i flammerøret 40, 40' og den andre tilføres på utsiden av flammerøret 40, 40' gjennom mantelen 27, før den entrer gjennom hullene i flammerøret og blandes gradvis med den første delstrømmen. Denne gassen som tilføres på utsiden av flammerøret 40, 40' er resirkulert eksosgass benyttes til å kjøling av brennkammerets komponenter og blandes deretter med forbrenningsproduktene som går til turbindelene 14,14' i den andre gassturbinen 12,12', slik at det kan oppnås praktiske fordeler med hensyn til redusert bruk av kostbare høytemperaturmaterialer. Det vises i denne sammenheng til figur 2. Deretter går røykgassen videre til en avgasskjel 29, 29' hvor røykgassen avkjøles og røykgassen føres videre via en vannkjøler 47, 47'. Den resirkulerte røykgassen for gassturbinanlegget 12' går til en vannutskiller 56 hvoretter røykgassen ledes til innløpet av kompressordelen 13', hvor røykgassen komprimeres. Herfra deles røykgasstrømmen i to, idet den ene strømmen går brennkammeret 10 og den andre strømmen går til brennkammeret 10'. Den resirkulerte røykgassen benyttes til kjøling på utsiden av flammerøret 40, 40' og til brennkamrenes komponenter. In the process shown in Figure 2, a combined cycle gas power plant and an atmospheric CO2 capture plant 11 are used which will separate CO2 from flue gas with a concentrated C02 content. Two integrated gas turbine systems 12, 12' are used which are cross-connected with partial flows to combustion chambers 10, 10' and which work with essentially two separate gas flows, one of which is supplied directly together with fuel centrally inside the flame tube 40, 40' and the other is supplied on the outside of the flame tube 40, 40' through the mantle 27, before it enters through the holes in the flame tube and gradually mixes with the first partial flow. This gas, which is supplied on the outside of the flame tube 40, 40' is recycled exhaust gas, is used to cool the components of the combustion chamber and is then mixed with the combustion products that go to the turbine parts 14, 14' in the second gas turbine 12, 12', so that practical advantages in terms of reduced use of expensive high-temperature materials. In this context, reference is made to Figure 2. The flue gas then passes on to an exhaust boiler 29, 29' where the flue gas is cooled and the flue gas is carried on via a water cooler 47, 47'. The recycled flue gas for the gas turbine plant 12' goes to a water separator 56 after which the flue gas is led to the inlet of the compressor part 13', where the flue gas is compressed. From here, the flue gas stream is split in two, with one stream going to the combustion chamber 10 and the other stream going to the combustion chamber 10'. The recycled flue gas is used for cooling the outside of the flame tube 40, 40' and for the components of the combustion chambers.

Den resirkulerte'røykgassen går videre gjennom hullene i flammerøret og inn i forbrenningssonen hvor den tjener til å kjøle forbrenningsprosessen og blande seg med forbrenningsproduktene slik at disse kjøles videre ned. Dette medfører også at konsentrasjonen av C02 i røykgassen kan økes til et maksimum, ettersom friskluft tilføres direkte sammen med brennstoff sentralt innvendig i flammerøret og sørger for en nær støkiometrisk forbrenningsprosess idet et lite oksygen-overskudd kan holdes kontrollert på et nivå for samtidig å oppnå for en stabil forbrenning. The recycled flue gas continues through the holes in the flame tube and into the combustion zone where it serves to cool the combustion process and mix with the combustion products so that these are further cooled. This also means that the concentration of C02 in the flue gas can be increased to a maximum, as fresh air is supplied directly together with fuel centrally inside the flame tube and ensures a close stoichiometric combustion process, as a small excess of oxygen can be kept controlled at a level to simultaneously achieve a stable combustion.

I utførelseseksemplet vist på figur 2 benyttes i utgangspunktet to ulike gassturbiner med hensyn til nyttbar akseleffekt, for eksempel i forholdet 1:3. Men det kan også benyttes andre forholdstall eller det kan benyttes like gassturbiner, dvs. at det kan benyttes forholdstall mellom 1:3 og 1:1 med hensyn til nyttbar akseleffekt. Imidlertid bør gassturbinens øvrige parametere, som for eksempel trykkfor-hold, være tilnærmet lik. Ettersom tilgjengelige gassturbiner på markedet kun finnes i standardmodeller med gitt utførelse og akseleffekt, kan prosessen vist på figur 2 tilpasses gitte gassturbiner. In the design example shown in Figure 2, two different gas turbines are initially used with regard to usable shaft power, for example in a ratio of 1:3. But other ratios can also be used or similar gas turbines can be used, i.e. ratios between 1:3 and 1:1 can be used with regard to usable shaft power. However, the gas turbine's other parameters, such as pressure ratio, should be approximately the same. As available gas turbines on the market are only found in standard models with a given design and shaft power, the process shown in Figure 2 can be adapted to given gas turbines.

Gasskraftverkets kombinert syklus gassturbiner 12,12' kan være av standard type, og oppfinnelsen vil involvere en modifikasjon av styringssystemet for gasstrømmene til brennkamrene og innløpskanalene til brennkamrene. Det foreliggende oppfinnelse kan anvendes på en enkel måte på alle gassturbinanlegg, og er ikke begrenset til eksterne brennkamre, "silo" type brennkamre, men kan enkelt benyttes for integrert brennkamre, for eksempel ringformede (annular) brennkammer eller kanneformede ("canned") type brennkamre. The gas power plant's combined cycle gas turbines 12,12' can be of the standard type, and the invention will involve a modification of the control system for the gas flows to the combustion chambers and the inlet channels to the combustion chambers. The present invention can be used in a simple way on all gas turbine plants, and is not limited to external combustors, "silo" type combustors, but can easily be used for integrated combustors, for example annular (annular) combustors or jug-shaped ("canned") type combustion chambers.

I tillegg kommer integrering av C02- innfangningsanlegget 11 som tilrettelegges best mulig for praktisk gjennomføring og kostnadseffektivitet. In addition, there is integration of the C02 capture facility 11, which is arranged as best as possible for practical implementation and cost-effectiveness.

Gassturbinene 12,12' som benyttes omfatter en kompressordel 13,13' og en gassturbindel 14,14' som driver hver sin generator 16,16'. Kompressordelen 13 leverer luft en utløpsrørledning 17 til brennkammeret 10. Typisk temperatur og trykk på luften som leveres av kompressordelen 13 kan være 400 °C og 15 bar. Røykgass fra brennkammeret 10 føres videre gjennom en rørledning 48 til innløpet på den turbindelen 14. The gas turbines 12,12' that are used comprise a compressor part 13,13' and a gas turbine part 14,14', each of which drives a separate generator 16,16'. The compressor part 13 supplies air through an outlet pipeline 17 to the combustion chamber 10. Typical temperature and pressure of the air supplied by the compressor part 13 can be 400 °C and 15 bar. Flue gas from the combustion chamber 10 is carried on through a pipeline 48 to the inlet of the turbine part 14.

Temperaturen på røykgassen ut av brennkammeret 10 kan typisk være i størrelsesorden 1200-1400 °C, som er vanlig innløpstemperatur for normale gassturbiners turbindel. Fra turbinen 14 går avgassen gjennom en avgasskjel 29 som produserer damp for en dampturbin 58 som driver en generator 59, og/eller eventuell varmeleveranse til et industrianlegg. Røykgassens temperatur etter kjøleren 47 kan typisk være i størrelsesorden 100-60 °C. I den utførelsen som er vist i figur 2 er trykket atmosfærisk ved inngangen til CO2-fangstanlegget 11, mens temperaturen typisk er omlag 100-60 °C og C02-andelen utgjør om lag 10 volum%. Fra C02-anlegget 11 slippes den rensede røykgassen ut til atmosfæren.Utskilt CO2 fra C02-anlegget 11 komprimeres, kondenseres og pumpes eksempelvis tilbake til en oljebrønn eller til et deponi av egnet art. The temperature of the flue gas out of the combustion chamber 10 can typically be in the order of 1200-1400 °C, which is the usual inlet temperature for the turbine part of normal gas turbines. From the turbine 14, the exhaust gas passes through an exhaust gas boiler 29 which produces steam for a steam turbine 58 which drives a generator 59, and/or possible heat delivery to an industrial plant. The temperature of the flue gas after the cooler 47 can typically be in the order of 100-60 °C. In the embodiment shown in Figure 2, the pressure is atmospheric at the entrance to the CO2 capture plant 11, while the temperature is typically around 100-60 °C and the C02 proportion is around 10% by volume. From the C02 plant 11, the purified flue gas is released into the atmosphere.Separated CO2 from the C02 plant 11 is compressed, condensed and pumped back, for example, to an oil well or to a suitable landfill.

Avgassen fra den andre turbindelen 14' holder en temperatur på i størrelsesorden 500-600 °C ledes fra turbinens utløp til avgasskjelen 29' og videre ut fra kjelen med en temperatur på ca. 100 °C til en kjøler 47' som reduserer temperaturen til ca 15 °C. Videre ledes denne urensede røykgassen til vannutskilleren 56 hvor vann fjernes fra avgassen. Avgassen har her et trykk på om lag 1 bar og en temperatur på om lag 15 °C, og ledes så til innløpet til den andre turbinenes 12' kompressor 13'. Her komprimeres røykgassen til typisk ca. 15 bar og 400 °C, og røykgasstrømmen deles deretter i to delstrømmer, slik at en delstrøm går videre brennkammeret 10 og den andre delstrømmen til brennkammeret 10'. The exhaust gas from the second turbine part 14' maintains a temperature of around 500-600 °C, is led from the turbine's outlet to the exhaust gas boiler 29' and further out from the boiler at a temperature of approx. 100 °C to a cooler 47' which reduces the temperature to about 15 °C. Furthermore, this untreated flue gas is led to the water separator 56 where water is removed from the exhaust gas. The exhaust gas here has a pressure of about 1 bar and a temperature of about 15 °C, and is then led to the inlet of the second turbine's 12' compressor 13'. Here, the flue gas is compressed to typically approx. 15 bar and 400 °C, and the flue gas stream is then divided into two sub-streams, so that one sub-stream goes on to the combustion chamber 10 and the other sub-stream to the combustion chamber 10'.

Figur 3 viser prinsipielt en alternativ utførelsesform av et brennkammer 10 og en alternativ måte å resirkulere røykgass gjennom og rundt flammerøret 40. Også dette brennkammeret 10 arbeider i hovedsak med to separate gasstrømmer, hvor en friskluftstrøm tilføres direkte sammen med brennstoff til sentralt i primærsonen innvendig i flammerøret 40. Men den andre delstrømmen tilføres på utsiden av flammerøret 40 og føres motstrøms i ringrommet mellom flammerøret 40 og mantelen 27 for derved å oppnå en optimal kjøling av flammerøret 40 og brennkammeret øvrige komponenter, før den går gjennom hullene 55 i flammerøret 40. Denne løsningen baserer seg på de samme prinsipper som brennkammeret vist på og beskrevet i forbindelse med figur 1. Brennkammeret ifølge figur 3 er særlig tilpasset en praktisk utførelse for standard gassturbin typer som anvender motstrøms varmevekling, og som også gir fordeler for å sikre optimal temperaturdifferanse i varmevekslingen. Figure 3 basically shows an alternative embodiment of a combustion chamber 10 and an alternative way of recirculating flue gas through and around the flame tube 40. This combustion chamber 10 also essentially works with two separate gas flows, where a fresh air flow is supplied directly together with fuel to the center of the primary zone inside the the flame tube 40. But the other partial flow is supplied on the outside of the flame tube 40 and is led countercurrently in the annulus between the flame tube 40 and the mantle 27 in order to thereby achieve optimal cooling of the flame tube 40 and the other components of the combustion chamber, before it passes through the holes 55 in the flame tube 40. This the solution is based on the same principles as the combustion chamber shown and described in connection with figure 1. The combustion chamber according to figure 3 is particularly adapted to a practical design for standard gas turbine types that use counter-current heat winding, and which also provides advantages to ensure optimal temperature difference in the heat exchange .

Den foreliggende oppfinnelsen er ikke begrenset til et atmosfærisk C02-fangstanlegget 11, ettersom det vil være mulig å plassere et trykksatt C02~fangstanlegg etter brennkammeret 10 i rørledningen 48 eller integrert i turbindel 14, og fortsatt oppnå fordelen av at C02-andelen i røykgassen utgjør om lag 10 volum%. Temperaturen ved innløpet til C02 fangstanlegget må imidlertid reduseres til 100-50 °C ved å anvende kostbare gass-gassvarmevekslere, som bl.a. er beskrevet i WO 2004/072443. Derved kan det oppnås ett mer kostnadseffektivt og energieffektivt C02~fangstanlegg 11, mens varmeveksleranlegget vil bli mer kostnadskrevende. The present invention is not limited to an atmospheric C02 capture system 11, as it would be possible to place a pressurized C02 ~ capture system after the combustion chamber 10 in the pipeline 48 or integrated in the turbine part 14, and still obtain the advantage that the C02 portion in the flue gas constitutes about 10% by volume. The temperature at the inlet to the C02 capture system must, however, be reduced to 100-50 °C by using expensive gas-gas heat exchangers, which e.g. is described in WO 2004/072443. Thereby, a more cost-effective and energy-efficient C02 capture plant 11 can be achieved, while the heat exchanger plant will be more costly.

Kjølingen av flammerøret 40,40' kan ifølge oppfinnelsen baseres enten på motstrøms eller medstrøms kjøling, uten at oppfinnelsens ide derved er fraveket. According to the invention, the cooling of the flame tube 40,40' can be based either on counter-flow or co-flow cooling, without thereby deviating from the idea of the invention.

Claims (13)

1. Fremgangsmåte for å øke energi- og kostnadseffektivitet i et gasskraftverk eller kraftvarmeverk og for energi- og kostnadseffektiv CC>2-innfanging, hvilket gasskraftverk eller kraftvarmeverk omfatter gassturbinanlegg eller kombinert anlegg med damp- og gassturbinsyklus, omfattende fortrinnsvis minst to gassturbinanlegg med en kompressordel (13, 13') og en turbindel (14, 14') og omfattende videre brennkammer (10) med flammerør (40), der nevnte brennkammer (10) arbeider med i hovedsak to separate gasstrømmer hvor en gasstrøm utgjøres av luft som tilføres sammen med brennstoff sentralt innvendig i flammerøret, og hvor den andre gasstrømmen utgjøres av en kjølende gass som går på utsiden av nevnte flammerøret, idet røykgass fra nevnte brennkammer (10) ekspanderes og kjøles ned og passerer gjennom en renseenhet (11) hvor i det minste vesentlige deler av CC>2-innholdet fra røykgassen fjernes, før den rensede røykgassen slippes ut i atmosfæren, karakterisert ved at det benyttes ytterligere et brennkammer (10') idet røykgassen fra nevnte andre brennkammer (10'), i urenset, kjølt og trykksatt stand, tilføres minst ett av brennkamrene (10, 10') på utsiden av nevnte minst ett av flammerørene for kjøling av nevnte flammerør (40,40'), hvoretter nevnte resirkulerte, mer eller mindre urensede røykgass ledes inn i nevnte flammerør gjennom hull i nevnte flammerør for å kjøle forbrenningsprosessen og blandes med forbrenningsproduktene.1. Procedure for increasing energy and cost efficiency in a gas power plant or cogeneration plant and for energy and cost-effective CC>2 capture, which gas power plant or cogeneration plant includes a gas turbine plant or a combined plant with a steam and gas turbine cycle, preferably comprising at least two gas turbine plants with a compressor part (13, 13') and a turbine part (14, 14') and further comprising combustion chamber (10) with flame tube (40), where said combustion chamber (10) works with essentially two separate gas flows where one gas flow is made up of air which is supplied together with fuel centrally inside the flame tube, and where the second gas stream is made up of a cooling gas that runs on the outside of said flame tube, as flue gas from said combustion chamber (10) is expanded and cooled and passes through a cleaning unit (11) where at least significant parts of the CC>2 content from the flue gas are removed, before the purified flue gas is released into the atmosphere, characterized by the use of additional a combustion chamber (10'), in that the flue gas from said second combustion chamber (10'), in a purified, cooled and pressurized state, is supplied to at least one of the combustion chambers (10, 10') on the outside of said at least one of the flame tubes for cooling said flame tube ( 40,40'), after which said recycled, more or less uncleaned flue gas is led into said flame tube through holes in said flame tube to cool the combustion process and mix with the combustion products. 2. Fremgangsmåte ifølge krav 1, der begge flammerør (40,40') kjøles av røykgass levert fra det andre brennkammer (10'), idet denne røykgassen er kjølt ned, for eksempel til om lag 15 °C forut og deretter komprimert til om lag 400 °C forut innføring på utsiden av nevnte flammerør (40,40').2. Method according to claim 1, where both flame tubes (40, 40') are cooled by flue gas delivered from the second combustion chamber (10'), this flue gas being cooled down, for example to about 15 °C beforehand and then compressed to about make 400 °C before introduction on the outside of said flame tube (40,40'). 3. Fremgangsmåte ifølge krav 1 eller 2, der resirkulert røykgass ledes gjennom hull (55) i nevnte flammerør (40, 40') langs hele nevnte flammerørs lengde.3. Method according to claim 1 or 2, where recycled flue gas is led through holes (55) in said flame tube (40, 40') along the entire length of said flame tube. 4. Fremgangsmåte ifølge krav 1-3, der luftstrømmen fra kompressordelen (13) ledes inn direkte i brennkammerets (10,10') primærsone sammen med brennstoff for å sørge for nær støkiometrisk forbrenning og hvor forbrenningsprosessen kjøles ved hjelp av resirkulert røykgass.4. Method according to claims 1-3, where the air flow from the compressor part (13) is led directly into the primary zone of the combustion chamber (10,10') together with fuel to ensure near stoichiometric combustion and where the combustion process is cooled using recycled flue gas. 5. Fremgangsmåte ifølge krav 1-4, der trykket til røykgassen økes etter ekspansjon og nedkjølingen og hvor denne trykksatte røykgassen resirkuleres tilbake til brennkammeret (10, 10'), med optimal oppkonsentrering av C02 før et CC>2-membrananlegg (11), til brennkammerets (10, 10') i ringrommet mellom flammerøret (40,40') og mantelen (27, 27').5. Method according to claims 1-4, where the pressure of the flue gas is increased after expansion and cooling and where this pressurized flue gas is recycled back to the combustion chamber (10, 10'), with optimal concentration of C02 before a CC>2 membrane system (11), to the combustion chamber (10, 10') in the annular space between the flame tube (40, 40') and the mantle (27, 27'). 6. Fremgangsmåte ifølge et av kravene 1-5, der avgassen fra gassturbinen(e) sendes gjennom en varmegjenvinnende avgasskjel (29,29') for produksjon av damp, der dampen driver en eller flere dampturbiner (58).6. Method according to one of claims 1-5, where the exhaust gas from the gas turbine(s) is sent through a heat-recovering exhaust gas boiler (29, 29') for the production of steam, where the steam drives one or more steam turbines (58). 7. Fremgangsmåte ifølge et av kravene 1-6, der det benyttes et første og et andre krysskoblet gassturbinanlegg (12,12') som har brennkammer(e) (10, 10') der gassen som kjøler utsiden av flammerøret (40) blandes med forbrenningsproduktene og går til turbindelen (14, 14') og at røykgassen som dannes i flammerøret (40') går til turbindelen (14') i den andre gassturbinen (12'), hvoretter røykgassen går videre til en avgasskjel (29') hvor røykgassen avkjøles og føres videre via en vannkjøler (47') til innløpet av kompressordelen (13') i den andre gassturbinen (12'), hvor røykgass komprimeres og deles i to røykgassdelstrømmer.7. Method according to one of claims 1-6, where a first and a second cross-connected gas turbine plant (12, 12') is used which has combustion chamber(s) (10, 10') where the gas that cools the outside of the flame tube (40) is mixed with the combustion products and goes to the turbine part (14, 14') and that the flue gas formed in the flame pipe (40') goes to the turbine part (14') in the second gas turbine (12'), after which the flue gas goes on to an exhaust boiler (29') where the flue gas is cooled and passed on via a water cooler (47') to the inlet of the compressor part (13') in the second gas turbine (12'), where flue gas is compressed and divided into two flue gas sub-flows. 8. Varmekraftverk omfattende minst et gassturbinanlegg eller et kombinert syklus gassturbinanlegg, omfattende i det minste to gassturbinanlegg (12,12') omfattende en kompressordel (13,13'), en turbindel (14,14') og fortrinnsvis også minst en dampturbin (58), hvilket varmekraftverk videre omfatter et brennkammer (10) utstyrt med et flammerør (40) og en omliggende kappe (27) for dannelse av et ringrom, en kjøler (47), et anlegg (11) for utskilling av C02-røykgass etter brennkammeret (10) og en eller flere avgasskjeler (29,29'), samt tilhørende rørledninger mellom de ulike enhetene i gassturbinanlegget, idet røykgassen fra brennkammeret (10) renses for CO2 før røykgassen slippes ut i atmosfæren, karakterisert ved at varmekraftverket videre omfatter et andre brennkammer (10') utstyrt med et flammerør (40') og en omliggende kappe 27), idet varmekraftverket er konfigurert slik at røykgassen fra det andre brennkammeret (10'), etter at denne er kjølt ned, benyttes for å kjøle ned flammerøret (40,40') i minst et av brennkamrene (10,10'), fortrinnsvis begge, og at flammerøret (40,40') er utstyrt med en rekke åpninger for tilførsel av den resirkulerte, urensede røykgass inn i flammerøret (40) gjennom åpninger i dette for å kjøle forbrenningsprosessen og for å blandes med forbrenningsproduktene.8. Thermal power plant comprising at least one gas turbine plant or a combined cycle gas turbine plant, comprising at least two gas turbine plants (12,12') comprising a compressor part (13,13'), a turbine part (14,14') and preferably also at least one steam turbine ( 58), which thermal power plant further comprises a combustion chamber (10) equipped with a flame tube (40) and a surrounding casing (27) for forming an annular space, a cooler (47), a plant (11) for separating C02 flue gas after the combustion chamber (10) and one or more exhaust gas boilers (29,29'), as well as associated pipelines between the various units in the gas turbine plant, as the flue gas from the combustion chamber (10) is cleaned of CO2 before the flue gas is released into the atmosphere, characterized in that the thermal power plant further comprises a second combustion chamber (10') equipped with a flame tube (40') and a surrounding jacket 27), the thermal power plant being configured so that the flue gas from the second combustion chamber (10'), after it has cooled down , is used to cool down the flame tube (40,40') in at least one of the combustion chambers (10,10'), preferably both, and that the flame tube (40,40') is equipped with a number of openings for supplying the recycled, uncleaned flue gas into the flame tube (40) through openings therein to cool the combustion process and to mix with the combustion products. 9. Kraftverk ifølge krav 8, som er konfigurert slik at resirkulert røykgass komprimeres og der CO2 oppkonsentreres til et nivå som ligger innenfor brennkammerets (10, 10') driftsbetingelser.9. Power plant according to claim 8, which is configured so that recycled flue gas is compressed and where CO2 is concentrated to a level that lies within the operating conditions of the combustion chamber (10, 10'). 10. Kraftverk ifølge krav 8 eller 9, som er konfigurert slik at der resirkulert røykgass tilføres til kappen (27) i området for brennkammerets (10) utløp og at røykgassen strømmer mot brennkammerets primærsone slik at optimal kjøling av flammerøret kan skje.10. Power plant according to claim 8 or 9, which is configured so that recycled flue gas is supplied to the jacket (27) in the area of the combustion chamber (10) outlet and that the flue gas flows towards the primary zone of the combustion chamber so that optimal cooling of the flame tube can take place. 11. Kraftverk som angitt i et av kravene (8-10), som er konfigurert slik at turbinanlegget omfatter to krysskoplede gassturbinanlegg hvor begge gassturbinanlegg (12,12') drives av urenset røykgass fra brennkammeret (10,10'), idet brennkamrene (10,10') tilføres luft levert fra det første turbinanleggets (12) kompressordel (13).11. Power plant as stated in one of the claims (8-10), which is configured so that the turbine plant comprises two cross-connected gas turbine plants where both gas turbine plants (12,12') are driven by unclean flue gas from the combustion chamber (10,10'), as the combustion chambers ( 10,10') is supplied with air supplied from the compressor part (13) of the first turbine plant (12). 12. Brennkammer for bruk i et varme- eller gasskraftverk som omfatter minst to gassturbinanlegg eller et kombinert syklus gassturbinanlegg, der nevnte brennkammer (10,10') omfatter et flammerør (40,40') og en omliggende kappe (27) for dannelse av et ringrom rundt flammerøret (40.40'), karakterisert ved at flammerøret (40,40') er utformet med et flertall åpninger, som i det minste er anordnet i området for brennkammerets (10,10') primære forbrenningssonen slik at den kjølende gassen bringes til å strømme gjennom kappen (27,27') i samme retning som forbrenningsproduktene, og slik at den resirkulert røykgassen bidrar til å kjøle forbrenningsprosessen og blande seg med forbrenningsproduktene, og at friskluft tilføres direkte sammen med brennstoff sentral inn i flammerøret (40,40') for å sørge for nær støkiometrisk forbrenning.12. Combustion chamber for use in a heat or gas power plant comprising at least two gas turbine plants or a combined cycle gas turbine plant, where said combustion chamber (10,10') comprises a flame tube (40,40') and a surrounding jacket (27) for forming an annular space around the flame tube (40, 40'), characterized in that the flame tube (40, 40') is designed with a plurality of openings, which are arranged at least in the area of the primary combustion zone of the combustion chamber (10, 10') so that the cooling gas is brought to flow through the jacket (27,27') in the same direction as the combustion products, and so that the recycled flue gas helps to cool the combustion process and mix with the combustion products, and that fresh air is fed directly together with fuel centrally into the flame tube (40,40 ') to ensure near stoichiometric combustion. 13. Brennkammer ifølge krav 12, der inntaket for den resirkulerte eksosgassen er anordnet i området ved utløpet av forbrenningsproduktene slik at den kjølende gassen bringes til å strømme gjennom kappen (27,27') i motsatt retning av forbrenningsproduktene.13. Combustion chamber according to claim 12, where the intake for the recycled exhaust gas is arranged in the area at the outlet of the combustion products so that the cooling gas is caused to flow through the jacket (27, 27') in the opposite direction to the combustion products.
NO20062879A 2006-06-20 2006-06-20 Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants. NO325049B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20062879A NO325049B1 (en) 2006-06-20 2006-06-20 Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants.
PCT/NO2007/000198 WO2008023986A1 (en) 2006-06-20 2007-06-08 Method for increasing the energy and cost effectiveness of a gas power plant; thermal power plant and a combustor for use in connection with such plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20062879A NO325049B1 (en) 2006-06-20 2006-06-20 Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants.

Publications (2)

Publication Number Publication Date
NO20062879L NO20062879L (en) 2007-12-21
NO325049B1 true NO325049B1 (en) 2008-01-21

Family

ID=39107005

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20062879A NO325049B1 (en) 2006-06-20 2006-06-20 Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants.

Country Status (2)

Country Link
NO (1) NO325049B1 (en)
WO (1) WO2008023986A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014984A1 (en) * 2007-07-09 2009-01-14 Siemens Aktiengesellschaft Use of inert substances for protecting components of a combustion chamber and burner components
US9297306B2 (en) * 2008-09-11 2016-03-29 General Electric Company Exhaust gas recirculation system, turbomachine system having the exhaust gas recirculation system and exhaust gas recirculation control method
AU2009303735B2 (en) 2008-10-14 2014-06-26 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
SG10201402156TA (en) * 2009-06-05 2014-10-30 Exxonmobil Upstream Res Co Combustor systems and methods for using same
CN102959203B (en) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 Pass through the stoichiometric(al) combustion of the condensed air of exhaust gas recirculatioon
EP2584166A1 (en) 2011-10-17 2013-04-24 Alstom Technology Ltd Power plant and method for retrofit
NO20130881A1 (en) 2013-06-25 2014-12-26 Sargas As Improvements at gas turbine plants with CO2 capture
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO318638B1 (en) * 2003-02-11 2005-04-18 Statoil Asa Procedure for and gas power plants with CO2 capture and combustion chamber for separate gas drums
NO319798B1 (en) * 2003-04-04 2005-09-19 Statoil Asa Process and gas power plant with CO2 capture, consisting of two gas turbine plants and combustion chamber arrangement for separate gas drums.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072443A1 (en) * 2003-02-11 2004-08-26 Statoil Asa Efficient combined cycle power plant with co2 capture and a combustor arrangement with separate flows

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO318638B1 (en) * 2003-02-11 2005-04-18 Statoil Asa Procedure for and gas power plants with CO2 capture and combustion chamber for separate gas drums
NO319798B1 (en) * 2003-04-04 2005-09-19 Statoil Asa Process and gas power plant with CO2 capture, consisting of two gas turbine plants and combustion chamber arrangement for separate gas drums.

Also Published As

Publication number Publication date
NO20062879L (en) 2007-12-21
WO2008023986A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
NO325049B1 (en) Procedures for increasing energy and cost efficiency in a gas or power plant; a thermal power plant for the same and a combustion chamber for use in connection with such plants.
US7490472B2 (en) Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
RU2315186C2 (en) Low contamination thermal power station
US8365537B2 (en) Power plant with CO2 capture
CA2542610C (en) Purification works for thermal power plant
US7726114B2 (en) Integrated combustor-heat exchanger and systems for power generation using the same
CN112188925B (en) Carbon capture system including gas turbine
AU2011284982A1 (en) Jet engine with carbon capture
CA2717051C (en) Thermal power plant with co2 sequestration
US20150000333A1 (en) Systems and methods for treating carbon dioxide
NO319798B1 (en) Process and gas power plant with CO2 capture, consisting of two gas turbine plants and combustion chamber arrangement for separate gas drums.
NO318638B1 (en) Procedure for and gas power plants with CO2 capture and combustion chamber for separate gas drums
NO343989B1 (en) Efficient combined cycle power plant with CO2 capture and a combustion chamber arrangement with separate streams
WO2023013015A1 (en) Carbon dioxide recovery method and carbon dioxide recovery system using carbon dioxide cycle power generation facility
NO314925B1 (en) Process for cooling and oxygen enriching a working medium in a power-producing process
CA2445705A1 (en) Greenhouse gas emissions reduction sequestering of co2 utilizing pure o2 burn technology
BG65646B1 (en) Method and system for increasing the efficiency of fuel use in a steam and gas turbine while producing both mechanical energy and heat
NO20110545A1 (en) Improvements at a power plant with a combined cycle
NO20110359A1 (en) Combined cycle power plant with CO2 capture

Legal Events

Date Code Title Description
CREP Change of representative

Representative=s name: ZACCO NORWAY AS, POSTBOKS 2003 VIKA

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: STATOIL ASA, NO

CREP Change of representative

Representative=s name: TANDBERGS PATENTKONTOR AS, POSTBOKS 1570 VIKA, 011

CREP Change of representative

Representative=s name: DEHNS NORDIC AS, FORNEBUVEIEN 33, 1366 LYSAKER