NO312770B1 - Procedure for controlling temperature of components in high temperature reactors - Google Patents

Procedure for controlling temperature of components in high temperature reactors Download PDF

Info

Publication number
NO312770B1
NO312770B1 NO20005707A NO20005707A NO312770B1 NO 312770 B1 NO312770 B1 NO 312770B1 NO 20005707 A NO20005707 A NO 20005707A NO 20005707 A NO20005707 A NO 20005707A NO 312770 B1 NO312770 B1 NO 312770B1
Authority
NO
Norway
Prior art keywords
temperature
components
parts
reactors
evaporatively cooled
Prior art date
Application number
NO20005707A
Other languages
Norwegian (no)
Other versions
NO20005707D0 (en
NO20005707L (en
Inventor
Jan Arthur Aune
Per Olav Nos
Original Assignee
Elkem Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Materials filed Critical Elkem Materials
Priority to NO20005707A priority Critical patent/NO312770B1/en
Publication of NO20005707D0 publication Critical patent/NO20005707D0/en
Priority to PCT/NO2001/000370 priority patent/WO2002039043A1/en
Priority to AU2001292448A priority patent/AU2001292448A1/en
Publication of NO20005707L publication Critical patent/NO20005707L/en
Publication of NO312770B1 publication Critical patent/NO312770B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0005Cooling of furnaces the cooling medium being a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/0045Cooling of furnaces the cooling medium passing a block, e.g. metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Control Of Temperature (AREA)
  • Inorganic Insulating Materials (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Teknisk område Technical area

Den foreliggende oppfinnelse vedrører en fremgangsmåte for å kontrollere temperaturen på komponenter i metallurgiske høytemperaturreaktorer. The present invention relates to a method for controlling the temperature of components in metallurgical high-temperature reactors.

Teknikkens stilling The position of the technique

I neste alle metallurgiske reaktorer som benyttes for å utføre høytemperatur, pyrometallurgiske reaksjoner, er det komponenter eller deler som må kjøles. Eksempler på slike komponenter og deler er: Ovnsforinger, tappehullstrukturer, ovnsdeksler, elektrodeutstyr, osv. In almost all metallurgical reactors used to carry out high-temperature, pyrometallurgical reactions, there are components or parts that must be cooled. Examples of such components and parts are: Furnace liners, tapping hole structures, furnace covers, electrode equipment, etc.

Kjøling av slike komponenter har vanligvis blitt utført ved vannkjøling, ved å sirkulere kjølevann gjennom indre kanaler i komponentene. Cooling of such components has usually been carried out by water cooling, by circulating cooling water through internal channels in the components.

En vesentlig ulempe ved de kjente metoder for å kjøle komponenter i reaktorer som drives ved meget høye temperaturer, er at på grunn av kjølemediets natur, blir alt for mye varme fjernet ved kjølingen. Ved bruk av vann som kjølemiddel må således vanntemperaturen holdes under ca. 85°C for å unngå dannelse av vanndamp som kan blokkere strømningen av vann i de interne kanalene i komponentene. A significant disadvantage of the known methods for cooling components in reactors which are operated at very high temperatures is that, due to the nature of the coolant, far too much heat is removed during the cooling. When using water as a coolant, the water temperature must therefore be kept below approx. 85°C to avoid the formation of water vapor which can block the flow of water in the internal channels of the components.

Vannkjøling av komponenter og deler i høytemperaturreaktorer gir således ofte en for stor fjerning av varme. I tillegg til store varmetap fra reaktoren kan dette også forårsake problemer ved at temperaturen på enkelte vannkjølte komponenter blir for lav, hvilken resulterer i en meget stor temperaturdifferanse mellom komponentene eller delene og det materialet som prosesseres i reaktoren. Således kan en for sterk kjøling av for eksempel en struktur nær et tappehull i en reaktor for smelting av malmer, forårsaker avsetning på strukturen som kan føre til tappeproblemer. Water cooling of components and parts in high-temperature reactors thus often results in an excessive removal of heat. In addition to large heat losses from the reactor, this can also cause problems in that the temperature of certain water-cooled components becomes too low, which results in a very large temperature difference between the components or parts and the material processed in the reactor. Thus, too strong cooling of, for example, a structure near a drain hole in a reactor for smelting ores, can cause deposits on the structure that can lead to drainage problems.

I den senere tid har enkelte komponenter så som ovnsforinger i metallurgiske høytemperaturreaktorer blitt kjølt ved hjelp av såkalt fordampningskjøling. En fordampningskjøler er en lukket beholder som i sin nedre del inneholder et kjølemedium så som vann, olje, alkalimetaller og visse salter. Kjølemediene som benyttes i fordampningskjølere må kunne eksistere i både flytende form og i gassform uten å bli ødelagt. Når en fordampningskjøler er blitt fylt med den nødvendige mengde av kjølemedium blir den evakuert til et lavt trykk og forseglet. In recent times, certain components such as furnace liners in metallurgical high-temperature reactors have been cooled using so-called evaporative cooling. An evaporative cooler is a closed container which in its lower part contains a cooling medium such as water, oil, alkali metals and certain salts. The cooling media used in evaporative coolers must be able to exist in both liquid and gaseous form without being destroyed. When an evaporative cooler has been filled with the required amount of refrigerant it is evacuated to a low pressure and sealed.

Når varme tilføres til den del av fordampningskjøleren som inneholder det flytende kjølemediet vil det ikke finne sted noen varmetransport før kjølemediet er blitt oppvarmet til kokepunktet. Kokepunktet for kjølemediet er en funksjon av det indre trykk i fordampningskjøleren. Kokepunktet for kjølemediet kan derfor kontrolleres ved å kontrollere trykket i fordampningskjøleren. Når det flytende kjølemediet begynner å koke overføres varme til damp som vil stige oppover til toppen av fordampningskjøleren hvor dampen blir kondensert i en kondensator inneholdende et andre kjølemedium. Kondensasjonsvarmen blir overført til det andre kjølemediet og den kondenserte dampen vil strømme nedover i væsken i fordampningskjøleren. Fordampningskjøling av ovnsforinger er beskrevet i US patent Nr. 4,674,728. When heat is supplied to the part of the evaporative cooler that contains the liquid refrigerant, no heat transport will take place until the refrigerant has been heated to the boiling point. The boiling point of the refrigerant is a function of the internal pressure in the evaporative cooler. The boiling point of the refrigerant can therefore be controlled by controlling the pressure in the evaporative cooler. When the liquid refrigerant begins to boil, heat is transferred to steam which will rise to the top of the evaporative cooler where the steam is condensed in a condenser containing a second refrigerant. The heat of condensation is transferred to the second refrigerant and the condensed vapor will flow down into the liquid in the evaporative cooler. Evaporative cooling of furnace linings is described in US patent No. 4,674,728.

Beskrivelse av oppfinnelsen Description of the invention

Det er et formål med den foreliggende oppfinnelse å fremskaffe en fremgangsmåte for å kontrollere temperaturen av komponenter eller deler i metallurgiske høytemperaturreaktorer ved bruk av fordampningskjøling, hvorved driftstemperaturen av de fordampningskjølte komponentene og delene kan låses til en forhåndsvalgt verdi eller ved en temperatur innenfor et forhåndsvalgt temperaturintervall på en slik måte at bare overflødig varme over den forhåndsvalgte temperaturen fjernes. It is an object of the present invention to provide a method for controlling the temperature of components or parts in metallurgical high temperature reactors using evaporative cooling, whereby the operating temperature of the evaporatively cooled components and parts can be locked at a preselected value or at a temperature within a preselected temperature range in such a way that only excess heat above the preselected temperature is removed.

Den foreliggende oppfinnelse vedrører således en fremgangsmåte for å kontrollere temperaturen på komponenter eller deler i metallurgiske høytemperaturreaktorer, hvilke komponenter eller deler er utstyrt med minst en fordampningskjølt enhet, som inneholder et kjølemedium som er flytende ved den temperatur som komponentene eller delene skal drives i og hvilket kjølemedium har et kokepunkt innenfor et forhåndsvalgt temperaturintervall som komponentene eller delene skal drives i, hvilken fremgangsmåte er kjennetegnet ved at mengden og/eller temperaturen av et andre kjølemedium som benyttes for å kondensere damp fra kjølemediet i den fordampningskjølte enheten reguleres og kontrolleres for å holde trykket i den fordampningskjølte enheten og derved temperaturen i det flytende kjølemediet i den fordampningskjølte enheten, innenfor et forhåndsvalgt område. The present invention thus relates to a method for controlling the temperature of components or parts in metallurgical high-temperature reactors, which components or parts are equipped with at least one evaporatively cooled unit, which contains a cooling medium which is liquid at the temperature at which the components or parts are to be operated and which refrigerant has a boiling point within a preselected temperature range in which the components or parts are to be operated, which method is characterized by the amount and/or temperature of a second refrigerant used to condense vapor from the refrigerant in the evaporatively cooled unit being regulated and controlled to maintain pressure in the evaporatively cooled unit and thereby the temperature of the liquid refrigerant in the evaporatively cooled unit, within a preselected range.

Fremgangsmåten i henhold til oppfinnelsen kan eksempelvis benyttes i sideveggsforinger i elektrotermiske smelteovner, i sidevegger for elektrolyseceller for fremstilling av aluminium, for å kontrollere temperaturen av elektrodekomponenter så som kontaktbakker for strømtilførsel og for andre komponenter som er eksponert for høye temperaturer. For sideveggsforinger i elektrotermiske smelteovner benyttes det en rekke fordampningskjølte paneler hvor den ene side av panelene vender mot ovnens indre. Ved å benytte et kjølemedium i de fordampningskjølte panelene som har et passende smelte- og kokepunkt og ved å regulere mengden og/eller temperaturen av det andre kjølemediet, kan temperaturen på den side av panelene som vender mot ovnens indre låses innenfor et forhåndsbestemt temperaturintervall. På denne måten er det mulig å opprettholde en temperatur på sideveggspanelene som er lik er litt lavere enn temperaturen i smelteovnen, hvorved bare overskuddsvarme over denne temperaturen fjernes. Dette gjør det også mulig å oppnå og opprettholde et tynt og kontrollerbart lag av fast materiale på den siden av panelene som vender mot ovnens indre, hvilket lag vil beskytte sideveggspanelene mot angrep fra smeiten i ovnen. The method according to the invention can for example be used in side wall linings in electrothermal melting furnaces, in side walls for electrolytic cells for the production of aluminium, to control the temperature of electrode components such as contact trays for power supply and for other components that are exposed to high temperatures. For side wall linings in electrothermal melting furnaces, a number of evaporatively cooled panels are used where one side of the panels faces the interior of the furnace. By using a refrigerant in the evaporatively cooled panels that has a suitable melting and boiling point and by regulating the amount and/or temperature of the other refrigerant, the temperature on the side of the panels facing the interior of the oven can be locked within a predetermined temperature range. In this way, it is possible to maintain a temperature on the side wall panels that is slightly lower than the temperature in the melting furnace, whereby only surplus heat above this temperature is removed. This also makes it possible to achieve and maintain a thin and controllable layer of solid material on the side of the panels facing the interior of the furnace, which layer will protect the sidewall panels from attack by the smelt in the furnace.

Tappehullsstrukturer i reaktorer for smelting av malmer er ofte kjølt for å kunne motstå varmen når metall og slagg tappes. Dersom slike strukturer vannkjøles, vil temperaturen kunne bli så lav at slagg og metall kan størkne på strukturene hvilket medfører tappeproblemer, da avsetningene må fjernes for å opprettholde en god tapping. Ved å kjøle tappehullstrukturer ved bruk av fordampningskjøling i henhold til fremgangsmåten ifølge oppfinnelsen, kan temperaturen for tappehullstrukturene låses ved høye temperaturer hvorved avsetninger fra slagg og metall unngås. Drain hole structures in reactors for smelting ores are often cooled to withstand the heat when metal and slag are drained. If such structures are water-cooled, the temperature could become so low that slag and metal can solidify on the structures, which causes drainage problems, as the deposits must be removed to maintain good drainage. By cooling tapping hole structures using evaporative cooling according to the method according to the invention, the temperature of the tapping hole structures can be locked at high temperatures, whereby deposits from slag and metal are avoided.

Kort beskrivelse av tegning Brief description of drawing

Figur 1 viser et vertikalt snitt gjennom deler av en elektrolytisk celle for fremstilling av aluminium hvor sideveggene er kjølt i henhold til den foreliggende oppfinnelse. Figure 1 shows a vertical section through parts of an electrolytic cell for the production of aluminum where the side walls are cooled according to the present invention.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Fremgangsmåten i henhold til oppfinnelsen vil nå bli nærmere beskrevet ved hjelp av et eksempel på en komponent for bruk i sideveggen i en elektrolysecelle for fremstilling av aluminium. The method according to the invention will now be described in more detail using an example of a component for use in the side wall of an electrolysis cell for the production of aluminium.

På Figur 1 er det vist en elektrolysecelle 1 for fremstilling av aluminium. Elektrolysecellen omfatter et elektrolysekar 2 med et ytre stålskall 3.1 bunnen av stålskallet 3 er det anordnet karbonblokker 4 som er tilknyttet elektriske terminaler (ikke vist) hvorved karbonblokkene utgjør katoden i elektrolysecellen. En anode 5 er anordnet over og i en avstand fra karbonblokkene 4. Anoden 5 er fortrinnsvis forbakte karbonanoder eller en selvbakende karbonanode, også kalt Søderberg anode. Anoden 5 er opphengt fra oversiden på konvensjonell måte (ikke vist) og tilkoblet til elektriske terminaler. Figure 1 shows an electrolysis cell 1 for the production of aluminium. The electrolysis cell comprises an electrolysis vessel 2 with an outer steel shell 3.1 the bottom of the steel shell 3 is arranged with carbon blocks 4 which are connected to electrical terminals (not shown) whereby the carbon blocks form the cathode in the electrolysis cell. An anode 5 is arranged above and at a distance from the carbon blocks 4. The anode 5 is preferably pre-baked carbon anodes or a self-baking carbon anode, also called a Søderberg anode. The anode 5 is suspended from the upper side in a conventional manner (not shown) and connected to electrical terminals.

Inne i stålskallet 3 på sideveggene av elektrolysekaret, er det anordnet et lag av varmeisolerende ildfast materiale 6 og på innsiden av laget av varmeisolerende ildfast materiale 6 er det anordnet et fordampningskjølt panel 7 som vender mot innsiden av elektrolysecellen. Det fordampningskjølte panelet 7 er fortrinnsvis fremstilt av ikke-magnetisk stål. Det fordampningskjølte panelet 7 består av en nedre del 8 som er innrettet til å inneholde et første kjølemedium i flytende form, hvilket første kjølemedium har et smeltepunkt som er lavere enn en forhåndsvalgt driftstemperatur for elektrolysecellen og et kokepunkt i det forhåndsvalgte området. Et foretrukket første kjølemedium er natrium, men andre kjølemedier som tilfredsstiller de ovennevnte betingelser kan benyttes. Etter at det første kjølemediet er fylt i det fordampningskjølte panelet, blir panelet evakuert og tettet. Inside the steel shell 3 on the side walls of the electrolysis vessel, a layer of heat-insulating refractory material 6 is arranged and on the inside of the layer of heat-insulating refractory material 6 there is an evaporation-cooled panel 7 which faces the inside of the electrolysis cell. The evaporatively cooled panel 7 is preferably made of non-magnetic steel. The evaporatively cooled panel 7 consists of a lower part 8 which is arranged to contain a first cooling medium in liquid form, which first cooling medium has a melting point that is lower than a preselected operating temperature for the electrolysis cell and a boiling point in the preselected range. A preferred first coolant is sodium, but other coolants which satisfy the above conditions can be used. After the first refrigerant is filled in the evaporatively cooled panel, the panel is evacuated and sealed.

Det fordampningskjølte panel 7 har en øvre del 9 for kondensering av kjølemedium som er fordampet fra den nedre del 8 av det fordampningskjølte panel 7. Kondenseringen av fordampet kjølemedium i den øvre del 9 av det fordampningskjølte panel 7 finner sted ved sirkulasjon av et andre kjølemedium som har en lavere temperatur enn det første kjølemediet inneholdt det fordampningskjølte panel 7, gjennom et rør 10, som passerer gjennom det indre av den øvre del 9 av det fordampningskjølte panel 7. The evaporatively cooled panel 7 has an upper part 9 for the condensation of cooling medium that has evaporated from the lower part 8 of the evaporatively cooled panel 7. The condensation of evaporated cooling medium in the upper part 9 of the evaporatively cooled panel 7 takes place by circulation of a second cooling medium which has a lower temperature than the first coolant contained in the evaporatively cooled panel 7, through a pipe 10, which passes through the interior of the upper part 9 of the evaporatively cooled panel 7.

Når elektrolysecellen er i drift inneholder cellen et nedre lag 11 av smeltet aluminium og et øvre lag 12 av kryolittbasert elektrolysebad. When the electrolysis cell is in operation, the cell contains a lower layer 11 of molten aluminum and an upper layer 12 of cryolite-based electrolysis bath.

Aluminumoksid tilsettes på konvensjonell måte til elektrolysebadet 12 og oppløses i badet 12. Aluminum oxide is added in the conventional manner to the electrolytic bath 12 and dissolved in the bath 12.

Det fordampningskjølte panel er innrettet til å operere ved en temperatur i området mellom for eksempel 850 and 950°C ved atmosfæretrykk, hvilket er litt lavere enn temperaturen i elektrolyttbadet som er i området mellom 920 to 950°C. Ved å justere trykket i det fordampningskjølte panel 7 ved å regulere temperaturen og/eller mengden av det andre kjølemediet for å kondensere damp fra det første kjølemediet, kan temperaturen i panelene 7 låses ved en litt lavere temperatur enn temperaturen i elektrolyttbadet. Bare varme over den forhåndsbestemte temperaturen blir således fjernet av det andre kjølemedium. Resultatet blir at det dannes et tynt, stabilt lag 13 av frosset bad på innsiden av de fordampningskjølte panelene, hvilket lag 13 beskytter panelene mot angrep fra elektrolyttbadet. The evaporation-cooled panel is designed to operate at a temperature in the range between, for example, 850 and 950°C at atmospheric pressure, which is slightly lower than the temperature in the electrolyte bath, which is in the range between 920 and 950°C. By adjusting the pressure in the evaporatively cooled panel 7 by regulating the temperature and/or the amount of the second refrigerant to condense vapor from the first refrigerant, the temperature in the panels 7 can be locked at a slightly lower temperature than the temperature in the electrolyte bath. Only heat above the predetermined temperature is thus removed by the second cooling medium. The result is that a thin, stable layer 13 of frozen bath is formed on the inside of the evaporatively cooled panels, which layer 13 protects the panels against attack from the electrolyte bath.

Claims (1)

1. Fremgangsmåte for å kontrollere temperaturen på komponenter eller deler i metallurgiske høytemperaturreaktorer, hvilke komponenter eller deler er utstyrt med minst en fordampningskjølt enhet, som inneholder et kjølemedium som er flytende ved den temperatur som komponentene eller delene skal drives i og hvilket kjølemedium har et kokepunkt innenfor et forhåndsvalgt temperaturintervall som komponentene eller delene skal drives i, karakterisert ved at mengden og/eller temperaturen av et andre kjølemedium som benyttes for å kondensere damp fra kjølemediet i den fordampningskjølte enheten reguleres og kontrolleres for å holde trykket i den fordampningskjølte enheten og derved temperaturen i det flytende kjølemediet i den fordampningskjølte enheten, innenfor et forhåndsvalgt område.1. Method for controlling the temperature of components or parts in metallurgical high-temperature reactors, which components or parts are equipped with at least one evaporatively cooled unit, which contains a coolant that is liquid at the temperature at which the components or parts are to be operated and which coolant has a boiling point within a pre-selected temperature interval in which the components or parts are to be operated, characterized in that the quantity and/or temperature of a second cooling medium used to condense steam from the cooling medium in the evaporatively cooled unit is regulated and controlled to maintain the pressure in the evaporatively cooled unit and thereby the temperature in the liquid refrigerant in the evaporatively cooled unit, within a preselected range.
NO20005707A 2000-11-13 2000-11-13 Procedure for controlling temperature of components in high temperature reactors NO312770B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20005707A NO312770B1 (en) 2000-11-13 2000-11-13 Procedure for controlling temperature of components in high temperature reactors
PCT/NO2001/000370 WO2002039043A1 (en) 2000-11-13 2001-09-10 Method for controlling the temperature of components in high temperature reactors
AU2001292448A AU2001292448A1 (en) 2000-11-13 2001-09-10 Method for controlling the temperature of components in high temperature reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20005707A NO312770B1 (en) 2000-11-13 2000-11-13 Procedure for controlling temperature of components in high temperature reactors

Publications (3)

Publication Number Publication Date
NO20005707D0 NO20005707D0 (en) 2000-11-13
NO20005707L NO20005707L (en) 2002-05-14
NO312770B1 true NO312770B1 (en) 2002-07-01

Family

ID=19911784

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20005707A NO312770B1 (en) 2000-11-13 2000-11-13 Procedure for controlling temperature of components in high temperature reactors

Country Status (3)

Country Link
AU (1) AU2001292448A1 (en)
NO (1) NO312770B1 (en)
WO (1) WO2002039043A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031355A1 (en) * 2009-07-01 2011-01-05 Siemens Aktiengesellschaft A method of cooling a cooling element of an electric arc furnace, electric arc furnace for melting metallic material, and control and / or regulating device for an electric arc furnace
CN107620093A (en) * 2017-09-22 2018-01-23 张安全 A kind of aluminium cell on-Line Monitor Device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118882B1 (en) * 1971-02-02 1976-06-14
DE2740964A1 (en) * 1977-09-12 1979-03-22 Mohammad Reza Dr I Hassanzadeh Steelworks converters, esp. using oxygen - where water cooled casing produces solid layer of crude iron which protects refractory lining
LU79798A1 (en) * 1978-06-12 1978-11-28 Sidmar COOLING BOX FOR TANK OVENS
GB2076428B (en) * 1980-05-19 1983-11-09 Carblox Ltd Aluminium manufacture
FR2486346A1 (en) * 1980-07-01 1982-01-08 Clesid Sa ELECTRIC ARC OVEN WITH GUIDED DRIVING
DE3033710A1 (en) * 1980-09-02 1982-04-01 Schweizerische Aluminium AG, 3965 Chippis DEVICE FOR REGULATING THE HEAT FLOW OF AN ALUMINUM MELT FLOW ELECTROLYSIS CELL AND METHOD FOR OPERATING THIS CELL
DE3103883C2 (en) * 1981-02-05 1983-01-20 Krupp Stahl Ag, 4630 Bochum Process for suppressing overheated areas in wall or ceiling elements of an electric arc furnace through which coolant flows
NO155903C (en) * 1985-02-07 1987-06-17 Elkem As SIDE WALL IN A METALLURGICAL MELTING Oven.
NO158511C (en) * 1985-07-09 1988-09-21 Invendt A S H OVEN L DEVICE, SPECIAL LUMINIUM ELECTROLYSE.
SU1488310A1 (en) * 1987-02-23 1989-06-23 Kommunarsk Gorno Metall Inst Method of controlling heat situation of blast furnace
AU9617198A (en) * 1997-10-24 1999-05-17 Mcgill University Inclined heat pipe lance or tuyere with controllable heat extraction
RU2128733C1 (en) * 1998-05-22 1999-04-10 Открытое акционерное общество "АВИСМА титано-магниевый комбинат" Method of thermal control over electrolyzers and device for its implementation
NO313462B1 (en) * 2000-06-07 2002-10-07 Elkem Materials Electrolytic cell for the production of aluminum, a series of electrolytic cells in an electrolysis hall, a method for maintaining a crust on a sidewall of an electrolytic cell, and a method for recovering electrical energy from an electr.

Also Published As

Publication number Publication date
AU2001292448A1 (en) 2002-05-21
NO20005707D0 (en) 2000-11-13
NO20005707L (en) 2002-05-14
WO2002039043A1 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
NO313462B1 (en) Electrolytic cell for the production of aluminum, a series of electrolytic cells in an electrolysis hall, a method for maintaining a crust on a sidewall of an electrolytic cell, and a method for recovering electrical energy from an electr.
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
Nagesh et al. Mechanism of titanium sponge formation in the Kroll reduction reactor
JP5702367B2 (en) How to cool a metallurgical furnace
NO318164B1 (en) Method for electrolytic production of aluminum metal from an electrolyte and use of the same.
CN105603216B (en) Aluminum i ndustry solid waste recycling/petroleum coke high temperature desulfurizing device and its application method
NO20110740A1 (en) Method and apparatus for extracting heat from an electrolytic cell for aluminum production
NO158511B (en) DEVICE FOR ELECTROMETALURGICAL OBJECTS, SPECIFIC ALUMINUM ELECTROLYSE.
AU2001264422A1 (en) Electrolytic cell for the production of aluminium and a method for maintaining a crust on a sidewall and for recovering electricity
RU2002135593A (en) ELECTROLYZER FOR PRODUCING ALUMINUM AND METHOD OF MAINTAINING THE CASES ON THE SIDE WALL AND REGULATING ELECTRICITY
NO312770B1 (en) Procedure for controlling temperature of components in high temperature reactors
CN103951162A (en) Device for cooling erodible part of flat glass melting furnace tank wall
US4160715A (en) Electrolytic furnace lining
CN117448573A (en) Induction vertical reduction furnace and process method thereof
NO154729B (en) PROCEDURE FOR MAGNESIUM MANUFACTURING.
Merry et al. Designing modern furnace cooling systems
US3033549A (en) Water cooled retort cover
CN103206866A (en) Method and device for cooling and waste heat recovery of flash smelting furnace body
JPS60116793A (en) Alkali metal halide molten salt electrolytic apparatus and operation therefor
US11371105B2 (en) Smelting process and apparatus
JP5353118B2 (en) Blast furnace operation method
US6226312B1 (en) Device to cool and protect a cathode in an electric arc furnace
US3230072A (en) Production of aluminum by electro-thermal reduction
RU2358028C1 (en) Installation for magnesium-thermal production of sponge titanium
CN114963785A (en) Metallurgical stove system of pyrometallurgical method