NO311963B1 - Pigment Contribution - Google Patents
Pigment Contribution Download PDFInfo
- Publication number
- NO311963B1 NO311963B1 NO20001325A NO20001325A NO311963B1 NO 311963 B1 NO311963 B1 NO 311963B1 NO 20001325 A NO20001325 A NO 20001325A NO 20001325 A NO20001325 A NO 20001325A NO 311963 B1 NO311963 B1 NO 311963B1
- Authority
- NO
- Norway
- Prior art keywords
- capsule
- pigment
- fish
- stated
- oil
- Prior art date
Links
- 239000000049 pigment Substances 0.000 title claims description 59
- 239000002775 capsule Substances 0.000 claims description 65
- 241000251468 Actinopterygii Species 0.000 claims description 46
- 210000000936 intestine Anatomy 0.000 claims description 14
- 235000003642 hunger Nutrition 0.000 claims description 13
- 235000013372 meat Nutrition 0.000 claims description 12
- JEBFVOLFMLUKLF-IFPLVEIFSA-N Astaxanthin Natural products CC(=C/C=C/C(=C/C=C/C1=C(C)C(=O)C(O)CC1(C)C)/C)C=CC=C(/C)C=CC=C(/C)C=CC2=C(C)C(=O)C(O)CC2(C)C JEBFVOLFMLUKLF-IFPLVEIFSA-N 0.000 claims description 11
- 235000013793 astaxanthin Nutrition 0.000 claims description 11
- 239000001168 astaxanthin Substances 0.000 claims description 11
- MQZIGYBFDRPAKN-ZWAPEEGVSA-N astaxanthin Chemical compound C([C@H](O)C(=O)C=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)[C@@H](O)CC1(C)C MQZIGYBFDRPAKN-ZWAPEEGVSA-N 0.000 claims description 11
- 229940022405 astaxanthin Drugs 0.000 claims description 11
- 230000037351 starvation Effects 0.000 claims description 11
- 210000002784 stomach Anatomy 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 238000003307 slaughter Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 7
- 239000003921 oil Substances 0.000 claims description 7
- 235000019198 oils Nutrition 0.000 claims description 7
- 108010010803 Gelatin Proteins 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 229920000159 gelatin Polymers 0.000 claims description 6
- 239000008273 gelatin Substances 0.000 claims description 6
- 235000019322 gelatine Nutrition 0.000 claims description 6
- 235000011852 gelatine desserts Nutrition 0.000 claims description 6
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 5
- 229940072056 alginate Drugs 0.000 claims description 5
- 235000010443 alginic acid Nutrition 0.000 claims description 5
- 229920000615 alginic acid Polymers 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 5
- FDSDTBUPSURDBL-LOFNIBRQSA-N canthaxanthin Chemical compound CC=1C(=O)CCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C(=O)CCC1(C)C FDSDTBUPSURDBL-LOFNIBRQSA-N 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 235000008210 xanthophylls Nutrition 0.000 claims description 4
- 241000238557 Decapoda Species 0.000 claims description 3
- 235000021323 fish oil Nutrition 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- OOUTWVMJGMVRQF-DOYZGLONSA-N Phoenicoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)C(=O)C(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)C(=O)CCC2(C)C OOUTWVMJGMVRQF-DOYZGLONSA-N 0.000 claims description 2
- 235000012682 canthaxanthin Nutrition 0.000 claims description 2
- 239000001659 canthaxanthin Substances 0.000 claims description 2
- 229940008033 canthaxanthin Drugs 0.000 claims description 2
- 235000021466 carotenoid Nutrition 0.000 claims description 2
- 150000001747 carotenoids Chemical class 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 150000003735 xanthophylls Chemical class 0.000 claims description 2
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 claims 2
- 229960005375 lutein Drugs 0.000 claims 2
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 claims 2
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 claims 2
- 239000010775 animal oil Substances 0.000 claims 1
- 235000019688 fish Nutrition 0.000 description 37
- 238000010521 absorption reaction Methods 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 239000007903 gelatin capsule Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 241000972773 Aulopiformes Species 0.000 description 5
- 210000002381 plasma Anatomy 0.000 description 5
- 235000019515 salmon Nutrition 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000019612 pigmentation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 1
- 241000277293 Salvelinus alpinus Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- -1 astaxanthin Chemical class 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000485 pigmenting effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/80—Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/20—Animal feeding-stuffs from material of animal origin
- A23K10/22—Animal feeding-stuffs from material of animal origin from fish
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/142—Amino acids; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/142—Amino acids; Derivatives thereof
- A23K20/147—Polymeric derivatives, e.g. peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/163—Sugars; Polysaccharides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/179—Colouring agents, e.g. pigmenting or dyeing agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K40/00—Shaping or working-up of animal feeding-stuffs
- A23K40/30—Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Marine Sciences & Fisheries (AREA)
- Birds (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Insects & Arthropods (AREA)
- Fodder In General (AREA)
- Feed For Specific Animals (AREA)
- Carbon And Carbon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
Oppfinnelsen angår en kapsel til foring av fisk for å opprettholde og/eller forhøye pigmentinnholdet i fiskekjøttet, bestående av kapselmateriale tilsatt smaksstoffer og fylt med en pigmentløsning, fremgangsmåte til fremstilling av kapselen og anvendelse av den. The invention relates to a capsule for feeding fish in order to maintain and/or increase the pigment content in the fish meat, consisting of capsule material with added flavorings and filled with a pigment solution, method for producing the capsule and its use.
Slaktekvaliteten på fisk i oppdrett forhøyes ved at den sultes i en periode før slakting. Etter forskrifter fra myndighetene skal fisken minst sultes til den er fri for forrester for å oppnå høyeste kvalitet. Sultetiden som er nødvendig for å oppnå dette vil variere med vanntemperaturen, men vil i praksis være ca. 14 dager om vinteren og 9 dager om sommeren. Sulting av oppdrettsfisken fører også til lavere fettinnhold i kjøttet, fastere kjøtt og bedre slaktehygiene. Dette er egenskaper som har en positiv virkning på markedsverdien. The slaughter quality of farmed fish is increased by starving it for a period before slaughter. According to regulations from the authorities, the fish must at least be starved until it is free of residues in order to achieve the highest quality. The starvation time required to achieve this will vary with the water temperature, but in practice will be approx. 14 days in winter and 9 days in summer. Starving the farmed fish also leads to a lower fat content in the meat, firmer meat and better slaughter hygiene. These are properties that have a positive effect on the market value.
Laksefisk er kjennetegnet ved den karakteristiske rødfargen i kjøttet som er avhengig av tilførsel av pigment i foret. Pigmentet i muskulaturen blir imidlertid hele tiden modifisert (oksydert/redusert) til fargeløse forbindelser. Opprettholdelse av rødfargen i kjøttet er derfor avhengig av kontinuerlig tilførsel av pigment. I dagens oppdrett tilføres pigmentet i gjennom foret. Salmon is characterized by the characteristic red color of the meat, which depends on the supply of pigment in the feed. However, the pigment in the muscles is constantly being modified (oxidized/reduced) to colorless compounds. Maintaining the red color in the meat is therefore dependent on a continuous supply of pigment. In today's farming, the pigment is added through the feed.
Pigmentnivået i fiskekjøttet er et av de viktigste kvalitetskriterier for oppdretts-laksefisk. Lave pigmentnivåer er derfor et problem for næringen som fører til lavere priser og negative reaksjoner fra markedet.~ The pigment level in the fish meat is one of the most important quality criteria for farmed salmon. Low pigment levels are therefore a problem for the industry which leads to lower prices and negative reactions from the market.~
Næringen står således i en situasjon hvor opprettholdelse av farge for å tilfredsstille markedet krever foring, mens slaktekvalitet og redusert fett-innhold, som også har markedsverdi, krever sulting og dermed redusering av pigmentnivået i kjøttet som gradvis mister fargen. I tillegg absorberes pigmentet dårlig fra vanlig for (ca. 35%) og utgjør derfor ca. 25% av foromkostningene. Det er derfor også behov for å tilføre pigment på en måte som øker absorpsjonen, både under vanlig foring og spesielt i sulteperioden før slakting. The industry is thus in a situation where maintaining color to satisfy the market requires lining, while slaughter quality and reduced fat content, which also has market value, requires starvation and thus a reduction in the pigment level in the meat, which gradually loses its colour. In addition, the pigment is poorly absorbed from normal (approx. 35%) and therefore accounts for approx. 25% of the upfront costs. There is therefore also a need to add pigment in a way that increases absorption, both during normal feeding and especially during the starvation period before slaughter.
Det er kjent et norsk patent, NO 302556, som angår féring av fisk og skalldyr med pigment ved hjelp av en bionedbrytbar polymergrunnmasse som spesielt utgjøres av et alginat. Det er imidlertid ikke nevnt at pigmentet i henhold til dette patentet er inneholdt i en kapsel eller at foringen foregår i en sulteperiode for å øke There is a known Norwegian patent, NO 302556, which relates to the coating of fish and shellfish with pigment using a biodegradable polymer matrix which in particular consists of an alginate. However, it is not mentioned that the pigment according to this patent is contained in a capsule or that the lining takes place during a starvation period to increase
pigmentinnholdet i fiskekjøttet. the pigment content of the fish meat.
Det er derfor en hensikt med oppfinnelsen å fremskaffe alternative muligheter til å pigmentere kjøttet hos oppdrettsfisk. It is therefore a purpose of the invention to provide alternative possibilities for pigmenting the meat of farmed fish.
Denne hensikt er oppnådd med foreliggende oppfinnelse, kjennetegnet ved det som fremgår av de vedlagte krav. This purpose has been achieved with the present invention, characterized by what appears in the attached claims.
Oppfinnelsen angår en kapsel inneholdende fysiologisk akseptabelt pigment, med spesielle egenskaper såsom smak og oppløsningsegenskaper som gjør den egnet til å bli spist av oppdrettsfisk både i og utenfor en sulteperiode. The invention relates to a capsule containing physiologically acceptable pigment, with special properties such as taste and dissolution properties that make it suitable to be eaten by farmed fish both during and outside a period of starvation.
Oppfinnelsen angår videre fremstilling av kapselen og anvendelse av kapselen til å øke pigmentinnholdet i fiskekjøtt, både under vanlig foring og under sulteperioder før slakting. The invention further concerns the production of the capsule and the use of the capsule to increase the pigment content in fish meat, both during normal feeding and during starvation periods before slaughter.
Oppfinnelsen vil i det følgende forklares i mer detalj, under henvisning til figurer og eksempler. Figur 1 viser et snitt av en pigmentkapsel (1), fylt med pigment oppløst i en olje med egnet viskositet (2). Figur 2 viser en spektrofotometrisk avlesning av en blodprøve tatt fra forsøksfisk som beskrevet i eksempel 2, før pigmentkapsel ble gitt ( 0-prøve) og 7 timer etter pigmentkapsel ble gitt ( 7- timer). Ordinaten viser absorbansen (ABS) mens abscissen angir bølgelengden (i nm). Apparatets basislinje er angitt som en stiplet linje. The invention will be explained in more detail below, with reference to figures and examples. Figure 1 shows a section of a pigment capsule (1), filled with pigment dissolved in an oil of suitable viscosity (2). Figure 2 shows a spectrophotometric reading of a blood sample taken from experimental fish as described in example 2, before the pigment capsule was given (0 sample) and 7 hours after the pigment capsule was given (7 hours). The ordinate shows the absorbance (ABS) while the abscissa indicates the wavelength (in nm). The device baseline is indicated as a dashed line.
For å kunne oppnå de ovennevnte hensikter må en kapsel i henhold til foreliggende oppfinnelse tilfredsstille følgende krav: In order to achieve the above purposes, a capsule according to the present invention must satisfy the following requirements:
■ Smak. Kapselen må ha en konsistens og smak som gjør at fisken spiser den. ■ Taste. The capsule must have a consistency and taste that makes the fish eat it.
■ Nedbrvtbarhet. Kapselen må være hurtig nedbrytbar i mage/tarm slik at innholdet blir eksponert for optimale absorpsjonsmuligheter. ■ Absorpsjon. Det må være en optimal konsentrasjon av pigment i kapselen, løst i et egnet oppløsningsmiddel og løsningen må ha en egnet viskositet for å sikre adekvat absorpsjon fra tarmen og inn i sirkulasjonen. ■ Degradability. The capsule must be rapidly degradable in the stomach/intestine so that the contents are exposed for optimal absorption possibilities. ■ Absorption. There must be an optimal concentration of pigment in the capsule, dissolved in a suitable solvent and the solution must have a suitable viscosity to ensure adequate absorption from the intestine into the circulation.
■ Holdbarhet. Pigmentet må være holdbart i kapselen. ■ Durability. The pigment must be stable in the capsule.
■ Ka<p>selvekt. Kapselen må synke i vann. ■ Body weight. The capsule must sink in water.
■ Størrelse. Kapselens størrelse må tilpasses størrelsen på fisken den skal gis til. ■ Size. The size of the capsule must be adapted to the size of the fish it is to be given to.
Foreliggende oppfinnelse omfatter en kapsel hvor smaksstoffer er tilsatt kapselmaterialet, fylt med fysiologisk akseptabelt pigment oppløst i olje med egnet viskositet. . The present invention comprises a capsule where flavoring substances have been added to the capsule material, filled with physiologically acceptable pigment dissolved in oil of suitable viscosity. .
Kapsler produseres i dag av ulike stoffer (gelatin, alginat m.fl) og til forskjellige formål. De eksisterende kapslene trenger imidlertid en del modifisering før de kan benyttes som pigmentkapsel til fisk. Denne modifiseringen går i hovedtrekk ut på å lage en kapsel med en slik størrelse og smak at fisken vil spise den frivillig. Kapsel med smak som gjør at fisken vil spise den frivillig, eksisterer ikke i dagens marked. Dette vil derfor representere et nytt produkt. Det er kjent at fiskens appetitt reagerer på ulikt for og i henhold til oppfinnelsen vil ekstrakter fra fiskens fødemidler tilsettes kapselmaterialet for å gi kapselen en smak som gjør at fisken spiser den frivillig. I en annen utforming tilsettes aminosyrer fremstilt fra ekstrakter fra naturlige fødemidler.Slike smaksgivende aminosyrer kan for eksempel komme fra ekstrakter fra akkar og reke. Capsules are today produced from different substances (gelatin, alginate etc.) and for different purposes. However, the existing capsules need some modification before they can be used as pigment capsules for fish. This modification basically involves making a capsule with such a size and taste that the fish will eat it voluntarily. A capsule with a taste that makes the fish want to eat it voluntarily does not exist in today's market. This will therefore represent a new product. It is known that the fish's appetite reacts differently to food and according to the invention, extracts from the fish's food will be added to the capsule material to give the capsule a taste that makes the fish eat it voluntarily. In another design, amino acids produced from extracts from natural foodstuffs are added. Such taste-giving amino acids can, for example, come from extracts from acorns and prawns.
Kapselen er videre fremstilt slik at den kan nedbrytes i magen, eller først i tarmkanalen. Som pattedyr har også fisk ulik pH i mage og tarmsystem, med lav pH i magen (pH; 2-4) og høyere pH i tarmen (pH; 6,5-9). Når for eksempel pigmentet astaxanthin kommer i kontakt med syre vil deler at pigmentet bli omdannet til fargeløse forbindelser. Dette vil si at ved å gi pigmentet på den tradisjonelle metoden gjennom foret vil en del av pigmentet brytes ned allerede i magen på fisken, noe som sannsynligvis vil føre til at mer fargestoff må benyttes for å oppnå en adekvat pigmentering av fiskemuskelen. Ved å benytte en kapsel som er fremstilt slik at den nedbrytes først i tarmens pH-område vil en oppnå samme pigmentering som ved normal foring, men med et betydelig mindre pigmentforbruk. Med dagens priser på pigment vil dette representere en stor økonomisk fordel. The capsule is also manufactured so that it can be broken down in the stomach, or first in the intestinal tract. Like mammals, fish also have different pH in the stomach and intestinal system, with a low pH in the stomach (pH; 2-4) and a higher pH in the intestine (pH; 6.5-9). When, for example, the pigment astaxanthin comes into contact with acid, parts of the pigment will be converted into colorless compounds. This means that by giving the pigment in the traditional method through the feed, part of the pigment will break down already in the stomach of the fish, which will probably lead to more dye having to be used to achieve adequate pigmentation of the fish muscle. By using a capsule that is manufactured so that it breaks down first in the pH range of the intestine, the same pigmentation as with normal lining will be achieved, but with a significantly lower pigment consumption. With today's prices for pigment, this will represent a major economic advantage.
Pigmentet i kapselen omfatter carotenoider, for eksempel valgt fra xanthofyller,såsom astaxanthin, som benyttes i dagens for til laksefisk i oppdrett. Andre egnede pigmenter er cantaxanthin. Pigmentet løses i en olje (løsningsmidlet) som gjør opptaket i tarmen optimalt. Optimal absorpsjon gjøres mulig ved å forandre oljens viskositet. Når viskositeten økes vil kapselen tilbringe lengre tid i tarmen og absorpsjonen av pigmentet vil dermed øke. The pigment in the capsule includes carotenoids, for example selected from xanthophylls, such as astaxanthin, which are used in today's feed for farmed salmon. Other suitable pigments are canthaxanthin. The pigment is dissolved in an oil (the solvent) which makes absorption in the intestine optimal. Optimum absorption is made possible by changing the viscosity of the oil. When the viscosity is increased, the capsule will spend longer in the intestine and the absorption of the pigment will thus increase.
Kapselen i henhold til oppfinnelsen vil anvendes istedenfor for til laksefisk i sulteperioden, det vil si ca 2 uker før slakting, og ved normal foring utenom sulteperioden. Det gis i dag ikke pigment til laksefisk i sulteperioden, så dette er en ny anvendelse. Siden det er kjent at pigment absorberes dårlig (ca. 35%) fra vanlig for vil pigmentkapselen fremstilles slik at absorpsjonen blir størst mulig. Dette gjøres ved at det benyttes et optimalt løsningsmiddel med egnet viskositet, noe en ikke kan gjøre i for. En vil ved dette kunne oppnå øket opptak av pigment, i forhold til det opptaket en nå oppnår fra dagen fiskefor. Dette vil også kunne gjøre det økonomisk lønnsomt å benytte kapselen sammen med vanlig for for å øke pigmentinnholdet i muskulaturen, også utenom sulteperioden. The capsule according to the invention will be used instead for salmon during the starvation period, i.e. about 2 weeks before slaughter, and during normal feeding outside the starvation period. Pigment is not currently given to salmon during the starvation period, so this is a new application. Since it is known that pigment is poorly absorbed (approx. 35%) from ordinary veneer, the pigment capsule will be manufactured so that absorption is as great as possible. This is done by using an optimal solvent with a suitable viscosity, something that cannot be done before. In this way, you will be able to achieve an increased absorption of pigment, in relation to the absorption you now achieve from the day of fishing. This could also make it economically profitable to use the capsule together with regular feed to increase the pigment content in the muscles, also outside the starvation period.
Fremstilling av kapselen skjer i henhold til teknikk som er kjent for fagfolk på området. Materialet må være fysiologisk akseptabelt og kan fremstilles for eksempel av gelatin eller alginat. Materialet tilsettes egnede ekstrakter eller aminosyrer i forhold til hvilken smak som er ønskelig. Dette vil variere med fiskeartene. I tillegg vil gelatinmaterialet modifiseres i henhold til hvor nedbrytningen skal skje, i mage eller tarm. Pigmentet vil blandes i oppløsnings-middelet, for eksempel en olje som har en viskositet tilpasset optimal absorpsjon og fylles på kapselen. The capsule is manufactured according to techniques known to those skilled in the art. The material must be physiologically acceptable and can be produced, for example, from gelatin or alginate. Suitable extracts or amino acids are added to the material in relation to which flavor is desired. This will vary with the fish species. In addition, the gelatin material will be modified according to where the breakdown will take place, in the stomach or intestine. The pigment will be mixed in the solvent, for example an oil that has a viscosity adapted to optimal absorption, and filled into the capsule.
Eksempler Examples
Målet med eksemplene er å vise at en gelatinkapsel, for eksempel en trankapsel kan løse seg opp i tarmen hos forsøksfisken (Eksempel 1), samt at pigmentet som var løst i kapselen ble tatt opp i fiskens tarm og absorbert inn i blodet (Eksempel 2). The aim of the examples is to show that a gelatin capsule, for example a cod liver oil capsule, can dissolve in the intestine of the test fish (Example 1), and that the pigment that was dissolved in the capsule was taken up in the fish's intestine and absorbed into the blood (Example 2) .
Materiale. Material.
Det ble brukt røye ( Salvelinus alpinus) (0,6 kg) som forsøksfisk. Som kapsel ble det benyttet en gelatin trankapsel som er kommersielt tilgjengelig. Char (Salvelinus alpinus) (0.6 kg) was used as experimental fish. A commercially available gelatin trachea capsule was used as the capsule.
Eksempel 1. Nedbryting av gelatinkapselen Example 1. Decomposition of the gelatin capsule
Etter at røya var bedøvet ble en gelatinkapsel ført ned i halsen på den. Etter to After the char was anesthetized, a gelatin capsule was inserted down its throat. After two
timer ble fisken avlivet og magen undersøkt. Resultatet viste at etter to timer var kapselen så å si helt nedbrutt i magen på forsøksfisken. Dette viser at gelatinkapselen ble brutt ned i fiskens mage slik at innholdet ble eksponert for absorpsjon. hours, the fish was killed and the stomach examined. The result showed that after two hours the capsule had, so to speak, completely broken down in the stomach of the test fish. This shows that the gelatin capsule was broken down in the fish's stomach so that the contents were exposed for absorption.
Eksempel 2. Opptak av pigment fra tarmen til blodet Example 2. Absorption of pigment from the intestine into the blood
Beskrivelse av kapsel som ble benyttet i forsøket: Description of the capsule used in the experiment:
Som kapsel ble det benyttet en gelatin trankapsel som beskrevet i Eksempel 1. Resultatene fra dette eksemplet viste at forsøksfisken hadde evne til å bryte ned denne type kapsler. Som pigmentkilde ble Lukanin Pink™ som inneholdt 4% astaxanthin benyttet. Dette ble løst i vann (1:6) og fiskeolje (5:6). Denne løsningen ble så injisert i en gelatin-kapsel som tok 0,3 ml løsning. Forholdet mellom Lukanin Pink og løsningsmediet var slik at kapselen (0,3 ml) ble fylt opp med 1 mg astaxanthin. Dette ga en konsentrasjon på 3,3 mg/ml. As a capsule, a gelatin capsule was used as described in Example 1. The results from this example showed that the test fish had the ability to break down this type of capsule. As a pigment source, Lukanin Pink™ containing 4% astaxanthin was used. This was dissolved in water (1:6) and fish oil (5:6). This solution was then injected into a gelatin capsule that took 0.3 ml of solution. The ratio between Lukanin Pink and the solution medium was such that the capsule (0.3 ml) was filled with 1 mg of astaxanthin. This gave a concentration of 3.3 mg/ml.
Før forsøksstart ble fisken sultet slik at eventuelle forandringer i pigmentnivå i blodplasma måtte stamme fra pigmentkapselen. Før pigmentkapselen ble tilført fisken ble det tatt blodprøve fra vena caudalis. Denne prøven representerte utgangsprøven og ble betegnet som 0-prøve. Blodprøvene ble umiddelbart sentrifugert (bordsenerifuge) i 5 min med en hastighet på 1500 rpm. Blodplasmaet ble så pipettert over i små plastrør og oppbevart i en fryseboks (-20°C) i påvente av opparbeidelse. Forsøksfisken ble deretter gitt en pigmentkapsel oralt på samme måte som i Eksempel 1. Etter 7 timer ble det tatt blodprøver av fisken fra samme sted og behandlet på samme måte som 0-prøven. Before the start of the experiment, the fish were starved so that any changes in pigment levels in the blood plasma had to originate from the pigment capsule. Before the pigment capsule was added to the fish, a blood sample was taken from the vena caudalis. This sample represented the initial sample and was designated as the 0 sample. The blood samples were immediately centrifuged (table centrifuge) for 5 min at a speed of 1500 rpm. The blood plasma was then pipetted into small plastic tubes and stored in a freezer (-20°C) pending processing. The test fish was then given a pigment capsule orally in the same way as in Example 1. After 7 hours, blood samples were taken from the fish from the same place and treated in the same way as the 0 sample.
Analyse Analysis
Det ble tatt ut lml blodplasma for analysering. Plasmaet ble overført til sentrifugerør, tilsatt 1 ml metanol og whirlmikset i 10 sek. Prøven ble så tilsatt 3 ml kloroform og whirlmikset på nytt i 10 sek. Deretter stod prøven i 10 min før den ble sentrifugert i 10 min på 3000 rpm. 2 ml av kloroformfasen ble tatt ut for avlesing i spektrofotometer. Astaxanthin har maksimal lysabsorpsjon mellom 470 og 490 nm. Den spektrofotometriske avlesningen ble gjennomført på Medisinsk Forskningslab ved Universitet i Tromsø. Resultatene er vist i figur 2. One ml of blood plasma was taken out for analysis. The plasma was transferred to a centrifuge tube, 1 ml of methanol was added and the mixture was vortexed for 10 sec. The sample was then added to 3 ml of chloroform and vortexed again for 10 sec. The sample then stood for 10 min before being centrifuged for 10 min at 3000 rpm. 2 ml of the chloroform phase was taken out for reading in a spectrophotometer. Astaxanthin has maximum light absorption between 470 and 490 nm. The spectrophotometric reading was carried out at the Medical Research Lab at the University of Tromsø. The results are shown in Figure 2.
Resultat og Diskusjon Result and Discussion
Utgangspunktet for denne undersøkelsen var å belyse om forsøksfisken (røye) har evnen til bryte ned gelatinkapsel, samt at pigmentet i kapselen blir tatt opp i blodet. The starting point for this investigation was to elucidate whether the test fish (char) has the ability to break down the gelatin capsule, and whether the pigment in the capsule is absorbed into the blood.
Resultatene fra Eksempel 1 viser at forsøksfisken kan bryte ned gelatinkapselen i mage/tarm systemet. The results from Example 1 show that the test fish can break down the gelatin capsule in the stomach/intestinal system.
Resultatene fra Eksempel 2 (figur 2) viser at det er et økt nivå av astaxanthin i blodplasma 7 timer etter den orale implantering av kapselen sammenlignet med nivået på blodprøvene som ble tatt rett før implanteringen. Kurven avlest på spektrofotometer på prøven som ble tatt etter 7 timer viser en klar topp på ca 475 nm, som er typisk for astaxanthin. Analysen av blodprøven som ble tatt før pigmentkapselen ble gitt (O-prøven)gir en betydelig mindre topp i samme bølgelengdeområde, og viser at 0-prøven inneholder minimale konsentrasjoner av astaxanthin. Dette viser at kapselen har egenskaper som gjør at den løser seg opp tarmen hos forsøksfisken, og at pigmentet blir tilgjengelig for opptak i tarm, med videre absorpsjon til blodet. The results from Example 2 (figure 2) show that there is an increased level of astaxanthin in blood plasma 7 hours after the oral implantation of the capsule compared to the level of the blood samples taken immediately before implantation. The curve read on a spectrophotometer on the sample taken after 7 hours shows a clear peak at about 475 nm, which is typical for astaxanthin. The analysis of the blood sample taken before the pigment capsule was given (the O sample) gives a significantly smaller peak in the same wavelength range, and shows that the 0 sample contains minimal concentrations of astaxanthin. This shows that the capsule has properties that cause it to dissolve in the intestine of the experimental fish, and that the pigment becomes available for absorption in the intestine, with further absorption into the blood.
Claims (12)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20001325A NO311963B1 (en) | 2000-03-14 | 2000-03-14 | Pigment Contribution |
GB0223751A GB2377356B (en) | 2000-03-14 | 2001-03-12 | Pigment feed |
CA002406824A CA2406824A1 (en) | 2000-03-14 | 2001-03-12 | Pigment feed |
PCT/NO2001/000107 WO2001067887A2 (en) | 2000-03-14 | 2001-03-12 | Pigment feed |
AU2001242891A AU2001242891A1 (en) | 2000-03-14 | 2001-03-12 | Pigment feed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20001325A NO311963B1 (en) | 2000-03-14 | 2000-03-14 | Pigment Contribution |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20001325D0 NO20001325D0 (en) | 2000-03-14 |
NO20001325L NO20001325L (en) | 2001-09-17 |
NO311963B1 true NO311963B1 (en) | 2002-02-25 |
Family
ID=19910877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20001325A NO311963B1 (en) | 2000-03-14 | 2000-03-14 | Pigment Contribution |
Country Status (5)
Country | Link |
---|---|
AU (1) | AU2001242891A1 (en) |
CA (1) | CA2406824A1 (en) |
GB (1) | GB2377356B (en) |
NO (1) | NO311963B1 (en) |
WO (1) | WO2001067887A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0218932D0 (en) * | 2002-08-14 | 2002-09-25 | Zoolife Internat Ltd | Composition for dietary enrichment |
WO2005084704A1 (en) * | 2004-03-02 | 2005-09-15 | Peros Systems Technologies Inc. | Digestive bypass composition for arthropod and uses thereof |
EP2473163A2 (en) | 2009-09-04 | 2012-07-11 | Capsugel Belgium NV | Scented capsules |
CN103549205A (en) * | 2013-11-07 | 2014-02-05 | 天津市晨辉饲料有限公司 | Compound feed for enhancing color of rainbow trout |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683147B1 (en) * | 1991-10-30 | 1995-06-23 | Maingault Philippe | VEHICLE SYSTEM OF ACTIVE INGREDIENT FOR ORAL ADMINISTRATION IN FISH AND CRUSTACEANS. |
HUT66936A (en) * | 1992-02-28 | 1995-01-30 | Gradiens Kft | Process for the production of fish -feed and angling product |
-
2000
- 2000-03-14 NO NO20001325A patent/NO311963B1/en unknown
-
2001
- 2001-03-12 GB GB0223751A patent/GB2377356B/en not_active Expired - Fee Related
- 2001-03-12 WO PCT/NO2001/000107 patent/WO2001067887A2/en active Application Filing
- 2001-03-12 CA CA002406824A patent/CA2406824A1/en not_active Abandoned
- 2001-03-12 AU AU2001242891A patent/AU2001242891A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
NO20001325L (en) | 2001-09-17 |
GB2377356A (en) | 2003-01-15 |
AU2001242891A1 (en) | 2001-09-24 |
WO2001067887A3 (en) | 2001-12-13 |
NO20001325D0 (en) | 2000-03-14 |
GB2377356B (en) | 2004-04-07 |
CA2406824A1 (en) | 2001-09-20 |
WO2001067887A2 (en) | 2001-09-20 |
GB0223751D0 (en) | 2002-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chatzifotis et al. | The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus) | |
LIÑÁN‐CABELLO et al. | Bioactive roles of carotenoids and retinoids in crustaceans | |
Gouveia et al. | Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass | |
Guo et al. | Effects of nucleotides on growth performance, immune response, disease resistance and intestinal morphology in shrimp Litopenaeus vannamei fed with a low fish meal diet | |
Dar et al. | Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding | |
Peng et al. | Effects of three feed attractants on the growth, biochemical indicators, lipid metabolism and appetite of Chinese perch (Siniperca chuatsi) | |
Bowyer et al. | Dietary nucleotides enhance growth performance, feed efficiency and intestinal functional topography in European Seabass (Dicentrarchus labrax) | |
ES2613519T3 (en) | Crustacean protein hydrolysates to maintain and / or stimulate the intestinal health of farmed fish | |
Pan et al. | Effects of dietary supplementation of alga Haematococcus pluvialis (Flotow), synthetic astaxanthin and β‐carotene on survival, growth, and pigment distribution of red devil, Cichlasoma citrinellum (Günther) | |
BR112020009097A2 (en) | aquaculture compositions and methods | |
Olsen et al. | The influence of dietary astaxanthin and temperature on flesh colour in Arctic charr Salvelinus alpinus L. | |
Martínez-Antequera et al. | Feed supplementation with winery by-products improves the physiological status of juvenile Liza aurata during a short-term feeding trial and hypoxic challenge | |
US20080216756A1 (en) | Method Of Cultivating Animals To Develop A Desired Color And To Increase Their Rate Of Growth | |
Bonvini et al. | Integrated study on production performance and quality traits of European sea bass (Dicentrarchus labrax) fed high plant protein diets | |
NO311963B1 (en) | Pigment Contribution | |
Christiansen et al. | Deposition of canthaxanthin and muscle lipid in two size groups of Arctic charr, Salvelinus alpinus (L.) | |
Goncalves et al. | Shrimp waste meal (Pandalus borealis) as an alternative ingredient in diets for juvenile European lobster (Homarus gammarus, L.) | |
Révész et al. | Protein replacement with dried distiller's grain with solubles (DDGS) in practical diet of common carp (Cyprinus carpio) | |
NOORI et al. | Effects of dietary astaxanthin on the growth and skin and muscle pigmentation of sexually immature rainbow trout Oncorhynchus mykiss (Walbaum, 1792)(Teleostei: Salmonidae) | |
Li et al. | Dietary ascorbic acid requirement for growth and health in fish | |
Doolan et al. | Effect of carotenoids and background colour on the skin pigmentation of Australian snapper Pagrus auratus (Bloch & Schneider, 1801) | |
Liu et al. | Effects of dietary protein levels on growth performance, digestibility, anti‐oxidative responses and expressions of growth‐related genes in triploid rainbow trout Oncorhynchus mykiss farmed in seawater | |
Warwas et al. | Fish processing side streams are promising ingredients in diets for rainbow trout (Oncorhynchus mykiss)–Effects on growth physiology, appetite, and intestinal health | |
AU739550B2 (en) | Fish fodder for breeding purposes, in the form of a diet, and a feeding procedure | |
Kihara et al. | Stimulative effect of skipjack tuna soluble extract on pepsin-like protease in the stomach of rockfish (Sebastes schlegelii) using an in vitro perfusion method |