NO303738B1 - Process for preparing cellulosic moldings - Google Patents
Process for preparing cellulosic moldings Download PDFInfo
- Publication number
- NO303738B1 NO303738B1 NO920105A NO920105A NO303738B1 NO 303738 B1 NO303738 B1 NO 303738B1 NO 920105 A NO920105 A NO 920105A NO 920105 A NO920105 A NO 920105A NO 303738 B1 NO303738 B1 NO 303738B1
- Authority
- NO
- Norway
- Prior art keywords
- speed
- cellulose
- stretching
- fibers
- spinning
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000465 moulding Methods 0.000 title 1
- 229920002678 cellulose Polymers 0.000 claims description 18
- 239000001913 cellulose Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 12
- 230000015271 coagulation Effects 0.000 claims description 10
- 238000005345 coagulation Methods 0.000 claims description 10
- 238000001556 precipitation Methods 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 21
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 13
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 7
- 238000009987 spinning Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 238000000578 dry spinning Methods 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000002166 wet spinning Methods 0.000 description 2
- 241000157282 Aesculus Species 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B11/00—Preparation of cellulose ethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/02—Cellulose; Modified cellulose
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Artificial Filaments (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte av den art som er angitt i krav l's ingress ved fremstilling av et celluloseholdig formlegeme, hvor en celluloseholdig aminok-sydoppløsning presses gjennom en dyse, føres derefter gjennom en luftspalte, strekkes eventuelt i denne og koaguleres til slutt i et utfellingsbad. The present invention relates to a method of the kind stated in the preamble of claim 1 for the production of a cellulose-containing molded body, where a cellulose-containing amino acid solution is pressed through a nozzle, then passed through an air gap, possibly stretched in this and finally coagulated in a precipitation bath .
Det er kjent at fibre av høypolymerer med gode bruksegen-skaper bare kan oppnås når det kan oppnås en "fiberstruk-tur" (Ullmann, 5. opplag Vol. A10, 456) . Blant annet er det dertil nødvendig å rette opp mikroorienterte områder i polymeren, f.eks. fibrider, i fibrene. Denne orientering bestemmes av fremstillingsfremgangsmåten og beror på fysikalske eller fysiokjemiske prosesser. I mange tilfeller bevirkes denne orientering ved en strekking. It is known that fibers of high polymers with good application properties can only be obtained when a "fiber structure" can be obtained (Ullmann, 5th edition Vol. A10, 456). Among other things, it is necessary to correct micro-oriented areas in the polymer, e.g. fibrids, in the fibers. This orientation is determined by the manufacturing process and depends on physical or physiochemical processes. In many cases, this orientation is achieved by stretching.
Utslagsgivende for de oppnådde fiberegenskaper er i hvilket fremgangsmåtetrinn og under hvilke betingelser denne strekking skjer. Ved smeltespinning strekkes fibrene i varm plastisk tilstand, mens molekylene fremdeles er bevegelige. Oppløste polymerer kan spinnes tørt eller våt. Ved tørrspinning skjer strekkingen, mens oppløsningsmid-delet slipper ut hhv. fordamper; trådene som er ekstrudert i et utfellingsbad, strekkes under koaguleringen. Fremgangsmåter av denne art er kjent og rikelig beskrevet. I alle disse tilfeller er det imidlertid viktig at overgangen fra flytende tilstand (uavhengig om smelte eller oppløs-ning) til fast tilstand, skjer slik at det under tråddan-nelsen også kan oppnås en orientering av polymerkjedene eller -kjedepakkene (dvs. fibrider, fibriller osv.). Decisive for the fiber properties achieved is in which method step and under which conditions this stretching takes place. In melt spinning, the fibers are stretched in a hot plastic state, while the molecules are still mobile. Dissolved polymers can be spun dry or wet. During dry spinning, the stretching takes place, while the solvent escapes or evaporator; the threads extruded in a precipitation bath are stretched during coagulation. Methods of this kind are known and amply described. In all these cases, however, it is important that the transition from the liquid state (regardless of melt or solution) to the solid state takes place so that during thread formation an orientation of the polymer chains or chain packs (i.e. fibrids, fibrils) can also be achieved etc.).
For å forhindre en plutselig fordampning av et oppløsnings-middel fra en tråd under tørrspinningen, foreligger det flere muligheter. In order to prevent a sudden evaporation of a solvent from a thread during dry spinning, there are several possibilities.
Problematikken ved den meget raske koagulering av polymeren ved våtspinningen (såsom f.eks. i tilfellet cellulosehol- dige aminoksydoppløsninger) kunne hittil imidlertid bare løses ved kombinasjon av tørr- og våtspinning. However, the problem of the very rapid coagulation of the polymer during wet spinning (such as, for example, in the case of cellulose-containing amine oxide solutions) could thus far only be solved by a combination of dry and wet spinning.
Således er det kjent å innføre oppløsninger via en luftspalte i koagulasjonsmediet. I EP-A-295 672 er det beskrevet fremstilling av aramidfibre som innføres via en luftspalte i et ikke-koagulerende medium, strekkes og derefter koaguleres. Thus, it is known to introduce solutions via an air gap in the coagulation medium. EP-A-295 672 describes the production of aramid fibers which are introduced via an air gap into a non-coagulating medium, stretched and then coagulated.
I DD-PS 218 121 er det beskrevet spinning av cellulose i amidoksyder via en luftspalte, idet det er truffet tiltak som skal forhindre sammenklebning. DD-PS 218 121 describes the spinning of cellulose in amide oxides via an air gap, as measures have been taken to prevent sticking together.
Ifølge US-PS 4 501 886 skal det spinnes en oppløsning av cellulose-triacetat ved hjelp av en luftspalte. According to US-PS 4,501,886, a solution of cellulose triacetate is to be spun using an air gap.
I US-PS 3 414 645 er det likeledes beskrevet fremstilling av aromatiske polyamider av oppløsninger i en tørr-våt-spinnefremgangsmåte. US-PS 3 414 645 also describes the production of aromatic polyamides from solutions in a dry-wet spinning process.
Ved alle disse fremgangsmåter oppnås i luftspalten en viss orientering, idet allerede utslippet av en seigt flytende oppløsning gjennom en liten åpning nedad påtvinger opp-løsningspartiklene en orientering på grunn av tyngdekraften. Denne orientering gjennom tyngdekraften kan økes enda mer, når ekstruderingshastigheten av polymeroppløsningen og avtrekkshastigheten av tråden justeres slik at det oppnås en strekking. With all of these methods, a certain orientation is achieved in the air gap, as the discharge of a viscous liquid solution downwards through a small opening forces the solution particles into an orientation due to the force of gravity. This orientation through gravity can be increased even more, when the extrusion speed of the polymer solution and the withdrawal speed of the thread are adjusted so that a stretch is achieved.
En fremgangsmåte av denne art er beskrevet i AT-PS 387 792 (hhv. i de korresponderende US-PS 4 246 221 og 4 416 698). En oppløsning av cellulose i NMMO (NMMO = N-metylmorfolin-N-oksyd) og vann formes, strekkes i luftspalten og utfelles derefter. Strekkingen foretas ved et strekkingsforhold på minst 3 . A method of this kind is described in AT-PS 387 792 (respectively in the corresponding US-PS 4 246 221 and 4 416 698). A solution of cellulose in NMMO (NMMO = N-methylmorpholine-N-oxide) and water is formed, stretched in the air gap and then precipitated. The stretching is carried out at a stretching ratio of at least 3.
En ulempe ved denne fremgangsmåte består i manglende fleksibilitet som kan forandre formlegemets egenskaper. For å oppnå tilsvarende tekstile data er det nødvendig med et minimalt spinne-strekkings-forhold. Ved meget liten uttrekking oppnås det bare ytterst beskjedne tekstile fiberegenskaper, dvs. at det ved f.eks. fiberfremstilling frembringes en ytterst liten bruddarbeidsevne (det er produktet av fiberfasthet og fiberforlengelse). En ytterligere ulempe består i at effekten av den såkalte avtrekks-/utgangshastighetsresonans (sml. Navard, Haudin, "Spinning of a Cellulose N-Methylmorpholine-N-oksid solution", Polymer Process Engineering, 3(3), 291 (1985)) som fører til de uregelmessige fiberdiametre, er så mye større jo større spinne-strekkings-forholdet er. Endelig er det en ulempe at formgivningen praktisk talt bare kan finne sted i luftspalten. En etterfølgende formgivning er meget vanskelig. Således er båndbredden av de mulige produkter naturligvis begrenset. Ønsket er en efterfølgende påvirkning av produktegenskapene, hvorved denne fremgangsmåte får en vesentlig fleksibilitet. A disadvantage of this method consists in a lack of flexibility, which can change the properties of the shaped body. In order to obtain corresponding textile data, a minimal spinning-stretching ratio is necessary. With very little extraction, only extremely modest textile fiber properties are achieved, i.e. that with e.g. fiber production produces an extremely small breaking capacity (it is the product of fiber strength and fiber elongation). A further disadvantage is that the effect of the so-called withdrawal/exit velocity resonance (cf. Navard, Haudin, "Spinning of a Cellulose N-Methylmorpholine-N-oxide solution", Polymer Process Engineering, 3(3), 291 (1985)) which leads to the irregular fiber diameters, is so much greater the greater the spin-stretch ratio. Finally, it is a disadvantage that the shaping can practically only take place in the air gap. A subsequent design is very difficult. Thus, the bandwidth of the possible products is naturally limited. The desire is a subsequent influence on the product properties, whereby this method gains significant flexibility.
Oppgaven for foreliggende oppfinnelse består i å fjerne disse ulemper. The task of the present invention consists in removing these disadvantages.
Denne oppgave løses ifølge oppfinnelsen, som angitt i kravet, ved at forholdet mellom avtrekkshastighet og hullutgangshastighet er høyst 1, og at formlegemet efter koagulasjon strekkes eller dyptrekkes. This task is solved according to the invention, as stated in the claim, in that the ratio between withdrawal speed and hole exit speed is at most 1, and that the shaped body is stretched or deep drawn after coagulation.
Ifølge oppfinnelsen er således avtrekkshastigheten mindre (eller høyst lik) hullutgangshastigheten i spinnemassen, slik at det ikke kan oppstå noen strekking; således forblir cellulosen frem til koagulasjon i utfellingsbadet i en relativt uorientert tilstand. Dette er gunstig fordi jo mindre orienteringen før hhv. under koaguleringen er, desto større er muligheten for en påvirkning av egenskapene derefter. På grunn av liten orientering har den koagulerte (utfelte) cellulose en elastisitet som er nærmest lik gummi. Ifølge oppfinnelsen kan nu denne cellulose strekkes hhv. dyptrekkes for å få de ønskede egenskaper; den til-strebede fleksibilitet er således sikret. According to the invention, the withdrawal speed is therefore less (or at most equal to) the hole exit speed in the spinning mass, so that no stretching can occur; thus, until coagulation in the precipitation bath, the cellulose remains in a relatively unoriented state. This is favorable because the less the orientation before or during the coagulation, the greater the possibility of an influence on the properties thereafter. Due to low orientation, the coagulated (precipitated) cellulose has an elasticity that is almost similar to rubber. According to the invention, this cellulose can now be stretched or deep drawn to obtain the desired properties; the desired flexibility is thus ensured.
En ytterligere fordel består i at luftspalten kan gjøres nærmest så kort som overhodet ønsket, fordi det ikke lengre foreligger noen strekking, slik at det ikke er noen fare for at naboliggende tråder kan klebe sammen, selv om spin-nedysene har en høy hulltetthet. Fordi produktiviteten ved storproduksjon kan økes betraktelig ved å øke hulltetthe-ten, utgjør også dette en vesentlig fordel ved foreliggende oppfinnelse. A further advantage is that the air gap can be made almost as short as desired, because there is no longer any stretching, so that there is no danger of neighboring threads sticking together, even if the spin-down nozzles have a high hole density. Because productivity in large-scale production can be increased considerably by increasing the hole density, this also constitutes a significant advantage of the present invention.
Oppfinnelsen skal forklares nærmere ved hjelp av de etter-følgende eksempler. The invention shall be explained in more detail by means of the following examples.
EKSEMPEL 1: Fremstilling av fibre ved et forhold mellom avtrekkshastighet og hullutgangshastighet på mindre enn 1 (sammenligningsforsøk). EXAMPLE 1: Fabrication of fibers at a ratio between pull-off speed and hole exit speed of less than 1 (comparison test).
En 13% celluloseholdig NMMO-oppløsning (cellulose av type Viskokraft fra firma ICP, 10 % vann, 77 % NMMO, 0,1 % oksalsyre som stabilisator) ble presset gjennom en dyse med 100 hull (hulldiameter 130 /xm) . Utstøtning var 16,5 g/min; den derav resulterende utstøtningshastighet var på 10,35 m/min. De 10 0 tråder ble ført gjennom en 8 mm lang luftspalte og derefter med en hastighet på 6 m/min gjennom et 15 cm langt spinnebad (temperatur: 2°C, NMMO-konsentrasjon: 5 %) . Forholdet mellom avtrekks- og utgangshastighet var således 0,58. A 13% cellulose-containing NMMO solution (cellulose of type Viskokraft from the company ICP, 10% water, 77% NMMO, 0.1% oxalic acid as stabilizer) was pressed through a nozzle with 100 holes (hole diameter 130 µm). Ejection was 16.5 g/min; the resulting ejection velocity was 10.35 m/min. The 100 threads were passed through an 8 mm long air gap and then at a speed of 6 m/min through a 15 cm long spinning bath (temperature: 2°C, NMMO concentration: 5%). The ratio between extraction and output speed was thus 0.58.
De derav resulterende fibre hadde en fasthet på 11,8 cN/tex ved en forlengelse på 77,5 %. Verdien for forlengelsen er ekstremt høy; dette beviser at cellulosen foreligger i relativt uordnet tilstand. The resulting fibers had a tenacity of 11.8 cN/tex at an elongation of 77.5%. The value of the extension is extremely high; this proves that the cellulose exists in a relatively disordered state.
EKSEMPEL 2: Strekking av fibrene efter koagulasjon i luft. EXAMPLE 2: Stretching of the fibers after coagulation in air.
Ved dette forsøk fremgikk man på samme måte som i eksempel 1. I dette tilfelle ble fibrene imidlertid efter spin-nebadet, dvs. efter koaguleringen, viklet på en galett med 6 m/min, og trådbunten ble ført over en andre galett med en hastighet på 13 m/min. Strekkingen utgjorde således 117 %. In this experiment, the procedure was the same as in example 1. In this case, however, after the spin bath, i.e. after coagulation, the fibers were wound on a galette at 6 m/min, and the thread bundle was passed over a second galette at a speed at 13 m/min. The stretch thus amounted to 117%.
(Med strekking av et fiber i % menes innenfor rammen av foreliggende ansøkning (sluttlengde-begynnelseslengde) - /begynneIseslengde . 100). De derav resulterende fibre hadde en fasthet på 22,4 cN/tex ved en forlengelse på 15,3 (With stretching of a fiber in % is meant within the scope of the present application (final length-beginning length) - /beginningIeslengde . 100). The resulting fibers had a tenacity of 22.4 cN/tex at an elongation of 15.3
EKSEMPEL 3: Strekking av fibre efter koagulasjon i vann. EXAMPLE 3: Stretching of fibers after coagulation in water.
Her ble fibrene igjen slik som i eksempel 1, ført gjennom et spinnebad med 6 m/min (avtrekks-/utgangshastighet: 0,58), og derefter ført gjennom et 80 cm langt strekkings-bad med vann (temperatur: 77°C) . Den andre galett ble drevet med forskjellige hastigheter v. De oppnådde fibre hadde følgende egenskaper: Here, the fibers were again, as in example 1, passed through a spinning bath at 6 m/min (withdrawal/exit speed: 0.58), and then passed through an 80 cm long stretching bath with water (temperature: 77°C) . The second galette was driven at different speeds v. The fibers obtained had the following properties:
EKSEMPEL 4: Fremstilling av fibre ved et forhold mellom avtrekkshastighet og hullutgangshastighet på større enn 1 (sammenligningsforsøk). EXAMPLE 4: Production of fibers at a ratio between withdrawal speed and hole exit speed greater than 1 (comparison test).
En 13% celluloseholdig NMMO-oppløsning (cellulose av type Visokraft fra firma ICP, 10 % vann, 77 % NMMO, 0,1 % oksalsyre som stabilisator) ble presset gjennom en dyse med 100 hull (hulldiameter 70 ptm) . Transportmengden var på 5,1 g/min, dette tilsvarer en utgangshastighet på 11,1 m/min.Avtrekkshastigheten av den første galett var på 33,3 m/min, dvs. forholdet mellom avtrekks- og utgangshastighet var 3,0. Med hastigheten av galetten 1 ble trådene ført gjennom et spinnebad hvis temperatur var 33 °C og NMMO-konsentrasjon 10 %. Det påfølgende strekkbad hadde en temperatur på 79°C og en NMMO-konsentrasjon på 9 %. Den andre galett hadde efter strekkbadet en avtrekkshastighet på 46,9 m/min, dvs. strekkingen var 41 %. A 13% cellulose-containing NMMO solution (Visokraft type cellulose from the company ICP, 10% water, 77% NMMO, 0.1% oxalic acid as stabilizer) was pressed through a die with 100 holes (hole diameter 70 ptm). The transport amount was 5.1 g/min, this corresponds to an output speed of 11.1 m/min. The extraction speed of the first galette was 33.3 m/min, i.e. the ratio between extraction and output speed was 3.0. At the speed of galette 1, the threads were passed through a spinning bath whose temperature was 33 °C and NMMO concentration 10%. The subsequent stretching bath had a temperature of 79°C and an NMMO concentration of 9%. The second galette had, after the stretching bath, a withdrawal speed of 46.9 m/min, i.e. the stretching was 41%.
De oppnådde fibre hadde følgende tekstile egenskaper: Titer: 3,5 dtex The fibers obtained had the following textile properties: Titer: 3.5 dtex
Fasthet kondisjonert: 25 cN/tex Strength conditioned: 25 cN/tex
Forlengelse kondisjonert: 8,8 % Elongation conditioned: 8.8%
Fibrene er ved et forhold mellom avtrekkshastighet og hullutgangshastighet på større enn 1 prinsipielt også fremdeles strekkbare, men ikke så meget som dokumentert i eksemplene 2 til 4. At a ratio between withdrawal speed and hole exit speed of greater than 1, the fibers are in principle also still stretchable, but not as much as documented in examples 2 to 4.
EKSEMPEL 5: Fremstilling av en folie. EXAMPLE 5: Production of a foil.
En 9% celluloseholdig NMMO-oppløsning (cellulose av type"Buckeye V5" fra firma Procter&Gamble, 12 % vann, 79 % NMMO, 0,1 % oksalsyre som stabilisator) ble presset gjennom en slissdyse (spalte: 50/im; lengde: 30 mm). Utstøtningen var på 21,3 g/min, som tilsvarer en utgangshastighet på A 9% cellulose-containing NMMO solution (Buckeye V5 cellulose from the company Procter&Gamble, 12% water, 79% NMMO, 0.1% oxalic acid as a stabilizer) was pressed through a slit nozzle (gap: 50/im; length: 30 etc.). The ejection was 21.3 g/min, which corresponds to an output speed of
11,7 m/min. Den ekstruderte oppløsning ble trukket av ved hjelp av en første galett med en hastighet på 6 m/min. Forholdet mellom avtrekkshastighet og utgangshastighet var således 0,51. Under samme arbeidsprosess ble folien ført gjennom et 8 0 cm langt strekkbad (temperatur: 90°C; konsentrasjon: 2 0 %), og strukket med en andre galett (hastighet:11 m/min). Denne strekking utgjorde således83 %. Egenskapene av den vaskede og tørkede folie var: tykkelse: 10/im; fasthet: 200 N/mm<2>;forlengelse: 6,5 %. 11.7 m/min. The extruded solution was drawn off by means of a first galette at a speed of 6 m/min. The ratio between extraction speed and output speed was thus 0.51. During the same work process, the foil was passed through an 80 cm long stretching bath (temperature: 90°C; concentration: 20%), and stretched with a second galette (speed: 11 m/min). This stretch thus accounted for 83%. The properties of the washed and dried film were: thickness: 10 µm; strength: 200 N/mm<2>; elongation: 6.5%.
EKSEMPEL 6: Fremstilling av et formlegeme. EXAMPLE 6: Production of a molded body.
Det ble fremstilt en folie slik som i eksempel 5, men uten å bli strukket, dvs. folien ble tatt ut efter den første galett. Den ble i ikke strukket tilstand dyptrukket 3 mm med en glass-stav, vasket og tørket, hvorved et stabilt formlegeme ble dannet. A foil was produced as in example 5, but without being stretched, i.e. the foil was taken out after the first galette. In the unstretched state, it was deep-drawn 3 mm with a glass rod, washed and dried, whereby a stable molded body was formed.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0003191A AT395862B (en) | 1991-01-09 | 1991-01-09 | METHOD FOR PRODUCING A CELLULOSIC MOLDED BODY |
Publications (3)
Publication Number | Publication Date |
---|---|
NO920105D0 NO920105D0 (en) | 1992-01-08 |
NO920105L NO920105L (en) | 1992-07-10 |
NO303738B1 true NO303738B1 (en) | 1998-08-24 |
Family
ID=3479697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO920105A NO303738B1 (en) | 1991-01-09 | 1992-01-08 | Process for preparing cellulosic moldings |
Country Status (28)
Country | Link |
---|---|
EP (1) | EP0494851B1 (en) |
JP (1) | JP3072442B2 (en) |
KR (1) | KR100210294B1 (en) |
AT (1) | AT395862B (en) |
AU (1) | AU648618B2 (en) |
BG (1) | BG60110B2 (en) |
BR (1) | BR9200035A (en) |
CA (1) | CA2059042C (en) |
CZ (1) | CZ282935B6 (en) |
DE (1) | DE59208903D1 (en) |
ES (1) | ES2109333T3 (en) |
FI (1) | FI102391B (en) |
GR (1) | GR3025632T3 (en) |
HU (1) | HU212701B (en) |
IE (1) | IE920053A1 (en) |
IL (1) | IL100619A0 (en) |
MA (1) | MA22373A1 (en) |
MX (1) | MX9200098A (en) |
NO (1) | NO303738B1 (en) |
PL (1) | PL169424B1 (en) |
PT (1) | PT99990A (en) |
RO (1) | RO107703B1 (en) |
RU (1) | RU2061115C1 (en) |
SK (1) | SK280035B6 (en) |
TR (1) | TR25874A (en) |
YU (1) | YU47786B (en) |
ZA (1) | ZA9110159B (en) |
ZW (1) | ZW192A1 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5451364A (en) * | 1992-01-17 | 1995-09-19 | Viskase Corporation | Cellulose food casing manufacturing method |
USH1592H (en) * | 1992-01-17 | 1996-09-03 | Viskase Corporation | Cellulosic food casing |
ATA53792A (en) * | 1992-03-17 | 1995-02-15 | Chemiefaser Lenzing Ag | METHOD FOR PRODUCING CELLULOSIC MOLDED BODIES, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF A SPINNING DEVICE |
DE4308524C1 (en) * | 1992-06-16 | 1994-09-22 | Thueringisches Inst Textil | Process for the production of cellulose fibers and filaments by the dry-wet extrusion process |
AT401271B (en) * | 1993-07-08 | 1996-07-25 | Chemiefaser Lenzing Ag | METHOD FOR PRODUCING CELLULOSE FIBERS |
DE4421482C2 (en) * | 1994-06-20 | 1997-04-03 | Fraunhofer Ges Forschung | Process for producing oriented cellulose films and the films produced by this process and their use |
US5603884A (en) * | 1994-11-18 | 1997-02-18 | Viskase Corporation | Reinforced cellulosic film |
US5902532A (en) * | 1994-12-02 | 1999-05-11 | Akzo Nobel Nv | Process for manufacturing cellulose objects |
US5658525A (en) * | 1995-08-04 | 1997-08-19 | Viskase Corporation | Cellulose food casing manufacturing method |
TW389799B (en) * | 1995-08-29 | 2000-05-11 | Asahi Chemical Ind | Cellulose multifilament yarn and fabric made thereof |
DE19541824A1 (en) * | 1995-11-10 | 1997-05-15 | Thueringisches Inst Textil | Reliable, cellulose filament yarn spinning from morpholine oxide soln. |
AT404032B (en) * | 1996-03-04 | 1998-07-27 | Chemiefaser Lenzing Ag | METHOD FOR PRODUCING CELLULOSIC FIBERS |
GB9605504D0 (en) * | 1996-03-15 | 1996-05-15 | Courtaulds Plc | Manufacture of elongate members |
AT404731B (en) | 1997-04-25 | 1999-02-25 | Chemiefaser Lenzing Ag | METHOD FOR PRODUCING CELLULOSIC FLAT FILMS AND THEIR USE |
US6165401A (en) * | 1997-04-25 | 2000-12-26 | Lenzing Aktiengesellschaft | Process for the production of cellulosic moulded bodies |
BR9804868A (en) * | 1997-04-25 | 1999-08-24 | Chemiefaser Lenzing Ag | Process for the production of molded cellulose bodies |
DE10200405A1 (en) | 2002-01-08 | 2002-08-01 | Zimmer Ag | Cooling blowing spinning apparatus and process |
DE10204381A1 (en) | 2002-01-28 | 2003-08-07 | Zimmer Ag | Ergonomic spinning system |
DE10206089A1 (en) | 2002-02-13 | 2002-08-14 | Zimmer Ag | bursting |
DE10314878A1 (en) * | 2003-04-01 | 2004-10-28 | Zimmer Ag | Method and device for producing post-stretched cellulose filaments |
AT6807U1 (en) * | 2004-01-13 | 2004-04-26 | Chemiefaser Lenzing Ag | CELLULOSIC FIBER OF THE LYOCELL GENERATION |
DE102004024030A1 (en) | 2004-05-13 | 2005-12-08 | Zimmer Ag | Lyocell process with polymerization-degree-dependent adjustment of the processing time |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB796544A (en) * | 1954-10-13 | 1958-06-11 | British Celanese | Improvements in the manufacture of artificial filaments and like products |
US3767756A (en) * | 1972-06-30 | 1973-10-23 | Du Pont | Dry jet wet spinning process |
US4416698A (en) * | 1977-07-26 | 1983-11-22 | Akzona Incorporated | Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article |
US4464323A (en) * | 1982-08-09 | 1984-08-07 | E. I. Du Pont De Nemours And Company | Process for preparing high strength cellulosic fibers |
FR2617511B1 (en) * | 1987-07-01 | 1989-12-15 | Inst Textile De France | PROCESS FOR THE PREPARATION OF A CELLULOSE SPINNING SOLUTION IN THE PRESENCE OF TERTIARY AMINE OXIDE AND ADDITIVE |
-
1991
- 1991-01-09 AT AT0003191A patent/AT395862B/en not_active IP Right Cessation
- 1991-12-17 AU AU89798/91A patent/AU648618B2/en not_active Ceased
- 1991-12-19 MA MA22657A patent/MA22373A1/en unknown
- 1991-12-23 YU YU197691A patent/YU47786B/en unknown
- 1991-12-27 ZA ZA9110159A patent/ZA9110159B/en unknown
-
1992
- 1992-01-06 RO RO149066A patent/RO107703B1/en unknown
- 1992-01-06 KR KR1019920000040A patent/KR100210294B1/en not_active IP Right Cessation
- 1992-01-06 ZW ZW1/92A patent/ZW192A1/en unknown
- 1992-01-06 BG BG095726A patent/BG60110B2/en unknown
- 1992-01-08 NO NO920105A patent/NO303738B1/en not_active IP Right Cessation
- 1992-01-08 CA CA002059042A patent/CA2059042C/en not_active Expired - Fee Related
- 1992-01-08 SK SK45-92A patent/SK280035B6/en unknown
- 1992-01-08 FI FI920071A patent/FI102391B/en not_active IP Right Cessation
- 1992-01-08 BR BR929200035A patent/BR9200035A/en not_active IP Right Cessation
- 1992-01-08 RU SU925010549A patent/RU2061115C1/en not_active IP Right Cessation
- 1992-01-08 IE IE005392A patent/IE920053A1/en not_active IP Right Cessation
- 1992-01-08 JP JP4001348A patent/JP3072442B2/en not_active Expired - Lifetime
- 1992-01-08 PL PL92293116A patent/PL169424B1/en unknown
- 1992-01-08 PT PT99990A patent/PT99990A/en not_active Application Discontinuation
- 1992-01-08 HU HU9200066A patent/HU212701B/en not_active IP Right Cessation
- 1992-01-08 CZ CS9245A patent/CZ282935B6/en unknown
- 1992-01-09 EP EP92890003A patent/EP0494851B1/en not_active Expired - Lifetime
- 1992-01-09 IL IL100619A patent/IL100619A0/en unknown
- 1992-01-09 TR TR92/0017A patent/TR25874A/en unknown
- 1992-01-09 MX MX9200098A patent/MX9200098A/en not_active IP Right Cessation
- 1992-01-09 ES ES92890003T patent/ES2109333T3/en not_active Expired - Lifetime
- 1992-01-09 DE DE59208903T patent/DE59208903D1/en not_active Expired - Lifetime
-
1997
- 1997-12-10 GR GR970403284T patent/GR3025632T3/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO303738B1 (en) | Process for preparing cellulosic moldings | |
RU2072006C1 (en) | Method for manufacture of cellulose molded product | |
US6852413B2 (en) | Lyocell multi-filament for tire cord and method of producing the same | |
US7014807B2 (en) | Process of making polypeptide fibers | |
KR100575378B1 (en) | Process for preparing a cellulose fiber | |
JP4326401B2 (en) | Lyocell monofilament, lyocell multifilament and method for producing lyocell filament | |
US5543101A (en) | Process of making cellulose fibres | |
JP2008542560A (en) | Non-toxic processes and systems for pilot scale production of cellulosic products | |
US4454091A (en) | Solutions, which can be shaped, from mixtures of cellulose and polyvinyl chloride, and shaped articles resulting therefrom and the process for their manufacture | |
US4097652A (en) | Poly (ethylene oxide) monofilament | |
RU2766477C1 (en) | Method of removing liquid from yarn or fibers with cellulose threads | |
JPS61108713A (en) | Polyvinyl alcohol fiber having good fiber properties and its production | |
US3801691A (en) | Wet-spinning process for tough,ribbon-shaped,acrylonitrile polymer fibers | |
JPS61215711A (en) | Polyvinyl alcohol multifilament yarn having high tenacity and modulus | |
US3760053A (en) | Wet-spinning process for {37 dog-bone{38 {0 shaped acrylonitrile polymer fibers | |
CA2511030C (en) | Lyocell multi-filament for tire cord and method of producing the same | |
JP2000273718A (en) | High-speed spinning of polyvinyl alcohol-based yarn | |
JPH0345122B2 (en) | ||
JPS636108A (en) | Production of poly(p-phenylene terephthalamide) fiber | |
JPS6088117A (en) | Preparation of high-modulus yarn | |
JPH02229208A (en) | Production of multifilament yarn | |
JPS6071709A (en) | Novel fiber | |
JPH0299607A (en) | Production of polyvinyl alcohol-based fiber | |
JPH02277809A (en) | Production of high-tenacity polyvinyl alcohol fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |