NO301291B1 - Process of enhanced oil recovery from an underground oil-bearing formation - Google Patents

Process of enhanced oil recovery from an underground oil-bearing formation Download PDF

Info

Publication number
NO301291B1
NO301291B1 NO904778A NO904778A NO301291B1 NO 301291 B1 NO301291 B1 NO 301291B1 NO 904778 A NO904778 A NO 904778A NO 904778 A NO904778 A NO 904778A NO 301291 B1 NO301291 B1 NO 301291B1
Authority
NO
Norway
Prior art keywords
surfactant
oil
foam
group
hydrocarbon
Prior art date
Application number
NO904778A
Other languages
Norwegian (no)
Other versions
NO904778L (en
NO904778D0 (en
Inventor
William Alan Rendall
Conrad Ayasse
Jaromir Novosad
Original Assignee
Alberta Oil Sands Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alberta Oil Sands Tech filed Critical Alberta Oil Sands Tech
Publication of NO904778D0 publication Critical patent/NO904778D0/en
Publication of NO904778L publication Critical patent/NO904778L/en
Publication of NO301291B1 publication Critical patent/NO301291B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte ved forsterket oljegjenvinning slik som angitt i krav 1's in-gress . The present invention relates to a method for enhanced oil recovery as stated in claim 1's introduction.

Ved utvinning av olje fra en underjordisk oljebærende formasjon kan kun en begrenset mengde tilstedeværende olje utvin-nes ved anvendelse av primære og sekundære utvinningspro-sesser. Følgelig har flere tertiære eller forsterkede olje-utvinningsprosesser blitt utviklet. Slike prosesser innbefatter termiske prosesser som kan eksemplifiseres med damp-flømming og in situ forbrenning, kjemiske flømmeteknikker og gjenvinning ved fortrengning ved gassformig fluidum. Gassene som anvendes innbefatter damp, karbondioksyd, nitrogen eller hydrokarboner. Foreliggende oppfinnelse vedrører gjenvinn-ingsmetoder ved fortrengning med gassformig fluidum. Det er visse problemer beheftet med anvendelse av metoder vedrøren-de fortrengning ved gassformig fluidum. For det første kan det oppstå lokal inntrengning av gassfasen i oljen med derav medfølgende degradering av den jevne fortrengningsfront. Dette som følge av det uheldige mobilitetsforhold mellom fortrengningsmassen og oljen. Det andre problem er tyngde-kraft "override" som fremmes som følge av densitetsforskjel-len mellom gass og oljefåsene. Således vil fremføringseffek-tiviteten eller kontakten mellom det injiserte fluidum og olje i reservoaret nedsettes på grunn av disse problemer og den forøkede gjenutvinning vil nedsettes som følge derav. When extracting oil from an underground oil-bearing formation, only a limited amount of the oil present can be extracted using primary and secondary extraction processes. Consequently, several tertiary or enhanced oil recovery processes have been developed. Such processes include thermal processes exemplified by steam flocculation and in situ combustion, chemical flocculation techniques and gaseous fluid displacement recovery. The gases used include steam, carbon dioxide, nitrogen or hydrocarbons. The present invention relates to recovery methods by displacement with gaseous fluid. There are certain problems associated with the application of methods relating to displacement by gaseous fluid. Firstly, local penetration of the gas phase into the oil can occur, with consequent degradation of the uniform displacement front. This is as a result of the unfavorable mobility relationship between the displacement mass and the oil. The second problem is gravity "override" which is promoted as a result of the density difference between the gas and the oil basins. Thus, the delivery efficiency or the contact between the injected fluid and oil in the reservoir will be reduced due to these problems and the increased recovery will be reduced as a result.

Reservoarheterogenitet vil ytterligere forsterke disse problemer ved å fremme kanaldannelse og derved ytterligere nedsette fremdriftseffektiviteten. Reservoir heterogeneity will further exacerbate these problems by promoting channel formation and thereby further reducing propulsion efficiency.

Skum har blitt innført i et reservoar som et middel for å forhindre lokal fremtrengning eller gravitasjons-"override" av det gassformige fortrengningsfluidum. Slike skum blir normalt dannet ved å anvende en gass, et overflateaktivt middel og en væske. Skummet blir enten generert in situ ved injisering av bestanddelene inn i formasjonene eller dannes på overflaten og innføres som et skum. Den beste fremgangsmåte innbefatter injisering av den overflateaktive oppløs-ning og når denne er på plass inne i reservoaret, injiseres gassen for å danne skummet. Foam has been introduced into a reservoir as a means of preventing local displacement or gravity "override" of the gaseous displacement fluid. Such foams are normally formed by using a gas, a surfactant and a liquid. The foam is either generated in situ by injecting the components into the formations or is formed on the surface and introduced as a foam. The best method involves injecting the surfactant solution and once this is in place inside the reservoir, the gas is injected to form the foam.

Anvendelse av skum for mobilitetskontroll er vel dokumentert og beskrevet i patentlitteraturen. Eksempelvis er en slik fremgangsmåte beskrevet i US patent nr. 2.623.596 hvori anvendes karbondioksyd som en blandbar oppløsnings-middelgass. I US patent nr. 3.342.256 er beskrevet en fremgangsmåte for å forbedre fremføringseffektiviteten når gass og vann injiseres i et reservoar og hvor et antall overflateaktive midler er tilsatt vannet. Vellykkede feltanvendel-ser under anvendelse av skum er rapportert. Castanmier rapporterte resultatene av 16 feltforsøk med overflateaktive midler anvendt i forbindelse med damp, både med og uten inerte gasser. (Proe. 4th European Symposium on EOR, okt. 27-30, Hamburg, Tyskland, 1987). Hirasaki rapporterte resultater av 10 feltforsøk under anvendelse av dampskum, hvilke alle var vellykkede. (Journal of Petroleum Technology, mai, 1989, s. 449-456). Smith har vist resultatene av 4 vellykkede ikke-varme skumflømminger (ACS Symposium Series 373, kapittel 22, 1987). The use of foam for mobility control is well documented and described in the patent literature. For example, such a method is described in US patent no. 2,623,596 in which carbon dioxide is used as a miscible solvent gas. US patent no. 3,342,256 describes a method for improving the delivery efficiency when gas and water are injected into a reservoir and where a number of surfactants are added to the water. Successful field applications using foam have been reported. Castanmier reported the results of 16 field trials with surfactants used in conjunction with steam, both with and without inert gases. (Proe. 4th European Symposium on EOR, Oct. 27-30, Hamburg, Germany, 1987). Hirasaki reported the results of 10 field trials using vapor foam, all of which were successful. (Journal of Petroleum Technology, May, 1989, pp. 449-456). Smith has shown the results of 4 successful non-hot foam flotation (ACS Symposium Series 373, Chapter 22, 1987).

Skummet utviser en viskositet som er større enn den for både gassen og væskefåsene av hvilke det består. Virkningen av skummet er å nedsette mobiliteten av den etterfølgende injiserte gass i de deler av reservoaret hvor skummet be-finner seg. Skummet akkumulerer fortrinnsvis i de "well-swept" og/eller høypermeabilitetssoner i formasjonen som ellers ville forbruke store mengder av den injiserte gass. Anvendelse av skum vil således forårsake at injisert gass blir rettet mot andre deler av formasjonen som enten ikke er spylt, eller er underspylt tidligere. The foam exhibits a viscosity greater than that of both the gas and the liquid phases of which it is composed. The effect of the foam is to reduce the mobility of the subsequently injected gas in the parts of the reservoir where the foam is located. The foam preferentially accumulates in the "well-swept" and/or high permeability zones of the formation which would otherwise consume large amounts of the injected gas. The use of foam will thus cause injected gas to be directed towards other parts of the formation which have either not been flushed, or have been underflushed previously.

Nyligere studier har indikert at oljefasen vil influere på stabiliteten og effekten av skum. Det er generelt ak-septert at råoljer vil virke som et de-skumningsmiddel. Imidlertid vil ikke ethvert skum bli de-stabilisert av oljefasen, i realiteten kan i visse tilfeller det motsatte skje. Typisk vil virkningen av skummet i et porøst medium bestemmes av dets evne til å motstå trykkfallet over det porøse medium. Recent studies have indicated that the oil phase will influence the stability and effect of foam. It is generally accepted that crude oils will act as a defoamer. However, not every foam will be destabilized by the oil phase, in fact in certain cases the opposite can happen. Typically, the effect of the foam in a porous medium will be determined by its ability to withstand the pressure drop across the porous medium.

Det er velkjent at fluorkarbonoverflateaktive midler vil virke som grenseflatespenningsnedsettende midler i et olje-medium. Ytterligere er det kjent at slike overflateaktive midler vil generere stabiliserte skum i et oljefasemedium. Dette er eksemplifisert i US patent nr. 4.836.281. Det er ytterligere funnet at amfotære og anioniske hydrokarbonoverflateaktive midler er ekstremt oljefølsomme og utviser dårlig stabilitet i nærvær av en oljefase. It is well known that fluorocarbon surfactants will act as interfacial tension lowering agents in an oil medium. Furthermore, it is known that such surfactants will generate stabilized foams in an oil phase medium. This is exemplified in US patent no. 4,836,281. It has further been found that amphoteric and anionic hydrocarbon surfactants are extremely oil sensitive and exhibit poor stability in the presence of an oil phase.

I henhold til foreliggende oppfinnelse er det overraskende funnet at oljefølsomheten for amfotære og anioniske hydrokarbonoverflateaktive midler kan gjøres mindre alvorlig ved tilsetning av en relativt liten mengde av et fluorkarbon-overflateaktivt middel. Det eksisterer en syn-ergistisk effekt mellom de to typer overflateaktive midler når de anvendes i kombinasjon for skumgenerering idet de gir et overflateaktivt stabilisert skum som er meget mer tolerant overfor olje. Det er fordelaktig at kun en liten mengde av det mer kostbare fluorkarbonoverflateaktive middel er nød-vendig når det kombineres med amfotære eller anioniske hydrokarbonoverflateaktive midler. Fluorkarbonoverflateaktive midler er typisk 10 ganger så kostbare som hydrokarbon-overf lateaktive midler og følgelig er det av stor økonomisk betydning for skumflømming at fluorkarbonoverflateaktive midler gir oljetolerans til den overflateaktive kombinasjon. Oppfinnelsen er således særpreget med det som er angitt i krav 1's karakteriserende del, ytterligere trekk fremgår av kravene 2-5. According to the present invention, it has surprisingly been found that oil sensitivity to amphoteric and anionic hydrocarbon surfactants can be made less severe by the addition of a relatively small amount of a fluorocarbon surfactant. There is a synergistic effect between the two types of surfactants when they are used in combination for foam generation in that they provide a surfactant stabilized foam that is much more tolerant to oil. It is advantageous that only a small amount of the more expensive fluorocarbon surfactant is necessary when combined with amphoteric or anionic hydrocarbon surfactants. Fluorocarbon surfactants are typically 10 times as expensive as hydrocarbon surfactants and consequently it is of great economic importance for foam flooding that fluorocarbon surfactants provide oil tolerance to the surfactant combination. The invention is thus characterized by what is stated in claim 1's characterizing part, further features appear in claims 2-5.

Sammensetningen av skum stabilisert med overflateaktive midler skal nå ytterligere belyses: Det amfotære hydrokarbon overflataktive middel er fortrinnsvis valgt fra gruppen bestående av betainer, sulfobetainer og karboksylerte betainer. De mest foretrukne amfotære hydrokarbon overflateaktive midler er «Varion-CADG-HS<*>", iiVarion-CAS<*>" eller «Empigen BT*<11>. The composition of foams stabilized with surfactants will now be further elucidated: The amphoteric hydrocarbon surfactant is preferably selected from the group consisting of betaines, sulfobetaines and carboxylated betaines. The most preferred amphoteric hydrocarbon surfactants are "Varion-CADG-HS<*>", iiVarion-CAS<*>" or "Empigen BT*<11>.

De anioniske hydrokarbon overflateaktive midler er fortrinnsvis valgt fra gruppen bestående av sulfater og sulfonater. Mere foretrukket er det anioniske hydrokarbon overflateaktive middel et oc-olefinsulfonat, et alkylert difenyl-oksydsulfonat eller et petroleumsulfonat, og mere fortrinnsvis er det uSterling AOS<*>", «Dowfax 2A1<*>" eller «Reed Lignin D254-4*11.The anionic hydrocarbon surfactants are preferably selected from the group consisting of sulfates and sulfonates. More preferably, the anionic hydrocarbon surfactant is an oc-olefin sulfonate, an alkylated diphenyl oxide sulfonate, or a petroleum sulfonate, and more preferably it is uSterling AOS<*>", "Dowfax 2A1<*>" or "Reed Lignin D254-4*11 .

Det fluorkarbon overflateaktive middel er fortrinnsvis valgt fra gruppen vist i US patent nr. 4.836.281. Mere foretrukket er det fluorkarbon overflateaktive middel valgt fra gruppen bestående av perfluorbetainer, perfluorsulfobetainer og perfluorkarboksylerte betainer. Det mest foretrukkede fluorkarbon overf lateaktive middel er iiFluorad FC-751*". The fluorocarbon surfactant is preferably selected from the group shown in US Patent No. 4,836,281. More preferably, the fluorocarbon surfactant is selected from the group consisting of perfluorobetains, perfluorosulfobetaines and perfluorocarboxylated betaines. The most preferred fluorocarbon surfactant is iiFluorad FC-751*".

De relative forhold mellom bestanddelene av den overflateaktive blanding er på vektbasis som følger: fluorkarbon overflateaktivt middel - 0,1-20% av blandingen The relative proportions of the components of the surfactant mixture are on a weight basis as follows: fluorocarbon surfactant - 0.1-20% of the mixture

hydrokarbon overflateaktivt middel - 99,9-80% av blandingen. hydrocarbon surfactant - 99.9-80% of the mixture.

Det foretrukkede forhold mellom hydrokarbon overflateaktivt middel (vekt%) til fluorkarbon overflateaktivt middel er 90-99. The preferred ratio of hydrocarbon surfactant (wt%) to fluorocarbon surfactant is 90-99.

Gassen som anvendes for dannelse av skummet er konvensjo-nell, og er en inert gass såsom C02, N2 eller metan. The gas used to form the foam is conventional, and is an inert gas such as CO 2 , N 2 or methane.

Generelt vedrører oppfinnelsen et overflateaktivt stabilisert skum for anvendelse i underjordiske oljebærende formasjoner, hvilket skum er generert ved å blande en fluorkarbon overflateaktiv oppløsning med en hydrokarbon overflateaktiv oppløsning. In general, the invention relates to a surface-active stabilized foam for use in underground oil-bearing formations, which foam is generated by mixing a fluorocarbon surface-active solution with a hydrocarbon surface-active solution.

I henhold til et bredere aspekt vedrører oppfinnelsen en fremgangsmåte for å nedsette og kontrollere mobiliteten av et gassformig fortrengningsfluidum i en oljebærende formasjon, hvilken fremgangsmåte omfatter å innføre skura i formasjonen, hvilket skum er generert ved å blande et fluorkarbon overflateaktivt middel og et hydrokarbon overflateaktivt middel. According to a broader aspect, the invention relates to a method for reducing and controlling the mobility of a gaseous displacement fluid in an oil-bearing formation, which method comprises introducing scum into the formation, which foam is generated by mixing a fluorocarbon surfactant and a hydrocarbon surfactant .

I den vedlagte fig. 1 er vist et skjematisk diagram for kjerneflømmingsapparatet som anvendes til å gi gassmobili-tetsnedsettende faktorer (MRFs), In the attached fig. 1 shows a schematic diagram of the core flocculation apparatus used to provide gas mobility reducing factors (MRFs),

fig. 2 viser grafisk mobilitetsnedsettende faktorer mot prosent perfluor overflateaktivt middel i forhold til den totale mengde overflateaktivt middel anvendt ved skumkjeme-flømming, og fig. 2 graphically shows mobility-decreasing factors versus percent perfluoro surfactant in relation to the total amount of surfactant used in foam core flotation, and

fig. 3 viser grafisk normaliserte skumhøyder mot prosent-andel tilsatt petroleumolje i nærvær av forskjellige substitusjoner av fluorkarbon ("perfluor") overflateaktivt middel for hydrokarbon overflateaktivt middel. fig. 3 graphically shows normalized foam heights versus percentage added petroleum oil in the presence of various substitutions of fluorocarbon ("perfluoro") surfactant for hydrocarbon surfactant.

Oppfinnelsen vil illustreres ved hjelp av de følgende eksempler. The invention will be illustrated by means of the following examples.

EKSEMPEL 1 EXAMPLE 1

Skumforsøk ble utført i en "Osterizer*" blandeanordning ved 21°C. En 6 x 60 cm gjennomsiktig målesylinder ble forsynt med en 3 mm rustfri stålkjølespiral og et kalibrert termoelement, og kombinasjonen ble festet på blandeanor-dningens base. Temperaturen ble kontrollert av vannstrømmen i kjølespiralen. 250 ml 0,5 vekt% overflateaktivt middel i en 2,1% saltlake-oppløsning ble tilsatt målesylinderen og oppløsningen ble skummet i 5 min. ved "liquify" innstilling. Skumhøyden ble målt. Forsøket ble gjentatt hvor den totale mengde overflateaktivt middel besto av en blanding av iiVarion CAS<*>" sulfobetain amfotært overf lateaktivt middel (Sherex Chemical Co. Inc.) og uFluorad FC-751<*>" perfluor-overflateaktivt middel (3-M Corporation). Skumhøydemålingene ble utført både i og fravær av petroleumråolje og i nærvær av forskjellige mengder olje. En Alberta råolje fra Kaybob-feltet (40 API-grader densitet) ble brukt. Resultatene er vist i fig. 3 hvor den normaliserte skumhøyde er: Foam tests were carried out in an "Osterizer*" mixer at 21°C. A 6 x 60 cm transparent measuring cylinder was fitted with a 3 mm stainless steel cooling coil and a calibrated thermocouple, and the combination was attached to the mixer base. The temperature was controlled by the water flow in the cooling coil. 250 ml of 0.5% by weight surfactant in a 2.1% brine solution was added to the measuring cylinder and the solution was foamed for 5 min. at "liquify" setting. The foam height was measured. The experiment was repeated where the total amount of surfactant consisted of a mixture of iiVarion CAS<*>" sulfobetaine amphoteric surfactant (Sherex Chemical Co. Inc.) and uFluorad FC-751<*>" perfluoro surfactant (3-M Corporation). The foam height measurements were carried out both in and in the absence of petroleum crude oil and in the presence of different amounts of oil. An Alberta crude from the Kaybob field (40 API degrees density) was used. The results are shown in fig. 3 where the normalized foam height is:

Tilsetning av 2% olje nedsatte skumhøyden for nVarion CAS" med 33%, mens den overf lateaktive blanding av 95% n Var ion CAS"/5%nFluorad FC-751" kun viste en 5% nedsettelse. Dette resultat var fullstendig uventet da konsentrasjonen av per fluor overf lateaktivt middel kun var 250 ppm. En meget strek synergistisk effekt ble erholdt fra kombinasjonen av de overflateaktive midler. Addition of 2% oil reduced the foam height of nVarion CAS" by 33%, while the surfactant mixture of 95% nVar ion CAS"/5%nFluorad FC-751" showed only a 5% reduction. This result was completely unexpected as the concentration of per fluorine surfactant was only 250 ppm A very strong synergistic effect was obtained from the combination of the surfactants.

EKSEMPEL 2 EXAMPLE 2

Skumningsforsøkene ifølge eksempel 1 ble utført under anvendelse av «Dowfax 2A1<*>", alkyldifenyloksydsulfonat overflateaktivt middel (Dow Chemical) alene og i blanding med 90% Dowfax 2A1"/10% uFluorad FC-751". Den anvendte petroleumolje kom fra Cynthia-feltet (Texaco Kanada, API-grader: 36) og 4 ml av oljen ble tilsatt. I nærvær av olje var den normaliserte skumhøyde for «Dowfax 2A1" 0,20 mens for blandingen var skumhøyden 0,75. The foaming tests according to Example 1 were carried out using "Dowfax 2A1<*>", alkyl diphenyl oxide sulfonate surfactant (Dow Chemical) alone and in admixture with 90% Dowfax 2A1"/10% uFluorad FC-751". The petroleum oil used was from Cynthia- field (Texaco Canada, API grades: 36) and 4 ml of the oil was added. In the presence of oil, the normalized foam height of "Dowfax 2A1" was 0.20 while for the mixture the foam height was 0.75.

EKSEMPEL 3 EXAMPLE 3

Skumningsforsøkene ifølge eksempel 2 ble utført under anvendelese av «Varion CADG-HS*" betain amfotært overflateaktivt middel (Sherex Chemical Co. Ltd.) alene og i blanding med 90% nVarion CADG-HS"/10% «Fluorad FC-751". I nærvær av olje var den normaliserte skumhøyde for nVarion CADG-HS*" 0,13 mens for blandingen var skumhøyden 0,49. The foaming tests according to example 2 were carried out using "Varion CADG-HS*" betaine amphoteric surfactant (Sherex Chemical Co. Ltd.) alone and in admixture with 90% nVarion CADG-HS"/10% "Fluorad FC-751". In the presence of oil, the normalized foam height for nVarion CADG-HS*" was 0.13 while for the mixture the foam height was 0.49.

EKSEMPEL 4 EXAMPLE 4

Skumningsforsøkene ifølge eksempel 2 ble utført under anvendelse av «Sterling AOS*" oc-olefinsulfonat-overflateaktivt middel (Canada Packers Ltd.) alene og i en blanding av 90% «Sterling A0S"/10% «Fluorad FC-751". I nærvær av olje var den normaliserte skumhøyde for «Sterling OAS" 0,13 mens for blandingen var skumhøyden 0,49. The foaming tests of Example 2 were carried out using "Sterling AOS*" oc-olefin sulfonate surfactant (Canada Packers Ltd.) alone and in a mixture of 90% "Sterling AOS"/10% "Fluorad FC-751". In the presence of oil the normalized foam height for "Sterling OAS" was 0.13 while for the mixture the foam height was 0.49.

EKSEMPEL 5 EXAMPLE 5

Skumningsforsøkene ifølge eksempel 2 ble utført under anvendelse av «Sterling AOS"/«Dowfax 2A1" 50/50 (vekt%)-blanding. I nærvær av olje var den normaliserte skumhøyde 0,11 og i en blanding med 40% «Sterling AOS"740% «Dowfax 2A1"710% «Fluorad FC-751" var den 0,33. The foaming tests of Example 2 were carried out using "Sterling AOS"/"Dowfax 2A1" 50/50 (wt%) mixture. In the presence of oil the normalized foam height was 0.11 and in a mixture with 40% "Sterling AOS" 740% "Dowfax 2A1" 710% "Fluorad FC-751" it was 0.33.

EKSEMPEL 6 EXAMPLE 6

Skumningsforsøkene ifølge eksempel 2 ble utført under anvendelse av «Reed Lignin 254-4*" petroleumsulfonat overf lateaktivt middel alene og i blanding av 90% «Reed Lignin 254-4"/10% «Fluorad FC-751". I nærvær av olje var den normaliserte skumhøyde for «Reed Lignin 254-4" 0,60 mens den for blandingen var 2,95. The foaming tests according to example 2 were carried out using "Reed Lignin 254-4*" petroleum sulphonate surfactant alone and in a mixture of 90% "Reed Lignin 254-4"/10% "Fluorad FC-751". In the presence of oil, the normalized foam height for "Reed Lignin 254-4" was 0.60 while that of the blend was 2.95.

EKSEMPEL 7 EXAMPLE 7

Skumningsforsøkene i følge eksempel 2 ble utført under anvendelse av «Varion CAS" sulfobetain amfotært overflateaktivt middel (Sherex Chemical Co. Ltd.) alene og i blanding av 90% «Varion CAS"/10% «Fluorad FC-751". I nærvær av olje var den normaliserte skumhøyde for «Varion CAS" null, mens den for blandingen var 0,60. The foaming tests according to example 2 were carried out using "Varion CAS" sulfobetaine amphoteric surfactant (Sherex Chemical Co. Ltd.) alone and in a mixture of 90% "Varion CAS"/10% "Fluorad FC-751". In the presence of oil, the normalized foam height for "Varion CAS" was zero, while that for the blend was 0.60.

EKSEMPEL 8 EXAMPLE 8

Skumningsforsøkene ifølge eksempel 2 ble utført under anvendelse av «Empigen BT<*>" karboksylatbetain amfotært overflateaktivt middel (Albright & Wilson) alene og i en blanding av 90% iiEmpigen BT"/10% uFluorad FC-751". I nærvær av olje var den normaliserte skumhøyde for «Empigen BT" 0,18 mens den for blandingen var 0,57. The foaming tests according to Example 2 were carried out using "Empigen BT<*>" carboxylate betaine amphoteric surfactant (Albright & Wilson) alone and in a mixture of 90% iiEmpigen BT"/10% uFluorad FC-751". In the presence of oil, the normalized foam height of "Empigen BT" 0.18 while that of the mixture was 0.57.

EKSEMPEL 9 EXAMPLE 9

iiEmpigen BT" og «Fluorad FC-751" ble undersøkt ved kjerne-flømming i oljefrie kjerner ved lavt trykk og omgivelses-temperatur og i kjerner inneholdende olje fra Judy Creek-feltet, Beaverhill Lake pool med en densitet på 0,8296 g/ml og en viskositet på 4,6 mPa.s ved 23,0 ± 0,5°C. Det porøse medium var en Berea sandsten kuttet i 2,5 cm x 2,5 cm x 20 cm blokker som var omhyllet med fiberglassbånd og støpt i en epoksyharpiks. Kjerneflømmingsapparatet er vist i fig. 1. Kjernene ble flømmet med olje og deretter i en 2,1% saltlakeoppløsning. Rest-oljemettningen ved dette punkt Sor = 28% av porevolumet. Kjernene ble deretter flømmet med en blanding av 96% nitrogen + saltlake på volumbasis og trykkfallet over kjernen ble bestemt. Volumhastigheten var 19 ml/time. Det overflateaktive middel ble tilsatt i en mengde på 0,5 vekt% i forhold til saltlaken og trykkfallet over kjernen ble igjen bestemt. Mobilitetsnedsettelses-faktoren (MRF) ble beregnet som følger: iiEmpigen BT" and "Fluorad FC-751" were tested by core-flooding in oil-free cores at low pressure and ambient temperature and in cores containing oil from the Judy Creek field, Beaverhill Lake pool with a density of 0.8296 g/ml and a viscosity of 4.6 mPa.s at 23.0 ± 0.5°C. The porous medium was a Berea sandstone cut into 2.5 cm x 2.5 cm x 20 cm blocks that were wrapped with fiberglass tape and cast in an epoxy resin. The core flocculation apparatus is shown in fig. 1. The cores were flooded with oil and then in a 2.1% saline solution. The residual oil saturation at this point Sor = 28% of the pore volume. The cores were then flooded with a mixture of 96% nitrogen + brine by volume and the pressure drop across the core was determined. The volume rate was 19 ml/hour. The surfactant was added in an amount of 0.5% by weight in relation to the brine and the pressure drop across the core was again determined. The mobility impairment factor (MRF) was calculated as follows:

Hvis ikke noe skum genereres inne i kjernen, vil MRF være lik 1 (en). Kraftige skum er representert ved store MRF-verdier. Resultatene erholdt ved anvendelse av blandinger av forskjellige overflateaktive midler er vist i den efter-følgende tabell 1. If no foam is generated inside the core, the MRF will be equal to 1 (en). Strong foams are represented by large MRF values. The results obtained using mixtures of different surfactants are shown in the following table 1.

Det betainhydrokarbon overflateaktive middel viste en sterk følsomhet for nærvær av reste-olje idet MRF falt fra 14 til 2. Imidlertid, ved å erstatte kun 2% av hydrokarbonbetainet med et perfluor overflateaktivt middel, gjenopprettet MRF til 10 i nærvær av 28% olje. Disse resultater er også vist grafisk i fig.2. The betaine hydrocarbon surfactant showed a strong sensitivity to the presence of residual oil as the MRF dropped from 14 to 2. However, by replacing only 2% of the hydrocarbon betaine with a perfluoro surfactant, the MRF recovered to 10 in the presence of 28% oil. These results are also shown graphically in fig.2.

EKSEMPEL 10 EXAMPLE 10

En blanding av sulfonerte anioniske overflateaktive midler ble evaluert på samme måte som i eksempel 9, bortsett fra at kjernen ble holdt inne i en blymansjett inne i en høytrykks-stålkjerneholder. Kaybob råolje ble anvendt (4 0 API-grader) og trykket ble bibeholdt ved 6,9 mPa inne i kjernen. Som basis hydrokarbon overflateaktivt middel ble anvendt en 50/50 blanding av nDowfax 2A1" alkyldifenyloksydsulfonat og «Sterling OAS" cx-sulfonat anioniske overflateaktive midler. Disse materialer vil bli betegnet som blanding A. Kjerneflømminger ble utført under anvendelse av blanding A og forskjellige blandinger av blanding A med uFluorad FC-751" perfluor overflateaktivt middel i nærvær og fravær av reste-olje. Resultatene er vist i tabell II og fig.2. Igjen kan det observeres en sterk og uventet synergisme ved lave nivåer av tilsatt perfluor overflateaktivt middel. 10% «Fluorad FC-751" ga en forøkning i MRF på nesten det tredobbelte. A mixture of sulfonated anionic surfactants was evaluated in the same manner as in Example 9, except that the core was contained within a lead sleeve within a high pressure steel core holder. Kaybob crude oil was used (40 API degrees) and the pressure was maintained at 6.9 mPa inside the core. As the base hydrocarbon surfactant, a 50/50 mixture of nDowfax 2A1" alkyl diphenyl oxide sulfonate and "Sterling OAS" cx-sulfonate anionic surfactants was used. These materials will be designated as Compound A. Core flotations were performed using Compound A and various mixtures of Compound A with uFluorad FC-751" perfluoro surfactant in the presence and absence of residual oil. The results are shown in Table II and Figs. 2. Again, a strong and unexpected synergism can be observed at low levels of added perfluorosurfactant. 10% "Fluorad FC-751" gave an increase in MRF of almost threefold.

Claims (5)

1. Fremgangsmåte ved forsterket oljegjenvinning fra en underjordisk oljeførende formasjon, hvor et skum dannes fra en vandig oppløsning av et overflateaktivt middel og en gass anvendes for å nedsette og kontrollere mobiliteten for et etterfølgende, injisert, gassformig fortrengningsfluidum, ved å innføre skummet i formasjonen, enten ved injisering av forformet skum eller ved alternativ injisering av den overflateaktive oppløsning og gass inn i formasjonen, karakterisert ved at det som overflateaktivt middel anvendes en blanding omfattende 0,1-20 vekt% fluorkarbon-overflateaktivt middel og 80-99,9 vekt% av et hydrokarbon-overflateaktivt middel valgt fra gruppen bestående av amfotære og anioniske hydrokarbonoverflateaktive midler.1. Method of enhanced oil recovery from an underground oil-bearing formation, where a foam is formed from an aqueous solution of a surfactant and a gas is used to reduce and control the mobility of a subsequent, injected, gaseous displacement fluid, by introducing the foam into the formation, either by injection of preformed foam or by alternative injection of the surface-active solution and gas into the formation, characterized in that the surface-active agent used is a mixture comprising 0.1-20% by weight fluorocarbon surfactant and 80-99.9% by weight of a hydrocarbon surfactant selected from the group consisting of amphoteric and anionic hydrocarbon surfactants. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som fluorkarbon-overf lateaktivt middel anvendes et valgt fra gruppen bestående av perfluorbetainer, perfluorsulfobetainer og perfluorkarboksylerte betainer.2. Method according to claim 1, characterized in that the fluorocarbon surface-active agent used is one selected from the group consisting of perfluorobetains, perfluorosulfobetaines and perfluorocarboxylated betaines. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at det som amfotært hydrokarbon-overflateaktivt middel anvendes et valgt fra gruppen bestående av betainer, sulfobetainer og karboksylerte betainer.3. Method according to claim 1, characterized in that the amphoteric hydrocarbon surfactant used is one selected from the group consisting of betaines, sulfobetaines and carboxylated betaines. 4. Fremgangsmåte ifølge krav 1, karakterisert ved at det som anionisk hydrokarbon-overflateaktivt middel anvendes et valgt fra gruppen bestående av sulfater og sulfonater.4. Method according to claim 1, characterized in that the anionic hydrocarbon surface-active agent selected from the group consisting of sulfates and sulfonates is used. 5. Fremgangsmåte ifølge krav 1 og 4, karakterisert ved at det som anionisk hydrokarbon-overflateaktivt middel anvendes et valgt fra gruppen bestående av a-olefinsulfonater, alkyldifenyl-oksysulfonater og petroleumsulfonater.5. Method according to claims 1 and 4, characterized in that the anionic hydrocarbon surfactant used is one chosen from the group consisting of α-olefin sulfonates, alkyl diphenyl oxysulfonates and petroleum sulfonates.
NO904778A 1990-05-24 1990-11-02 Process of enhanced oil recovery from an underground oil-bearing formation NO301291B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2017517 CA2017517C (en) 1990-05-24 1990-05-24 Surfactant-stabilized foams

Publications (3)

Publication Number Publication Date
NO904778D0 NO904778D0 (en) 1990-11-02
NO904778L NO904778L (en) 1991-11-25
NO301291B1 true NO301291B1 (en) 1997-10-06

Family

ID=4145061

Family Applications (1)

Application Number Title Priority Date Filing Date
NO904778A NO301291B1 (en) 1990-05-24 1990-11-02 Process of enhanced oil recovery from an underground oil-bearing formation

Country Status (3)

Country Link
CA (1) CA2017517C (en)
GB (1) GB2245622B (en)
NO (1) NO301291B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363914A (en) * 1993-03-25 1994-11-15 Exxon Production Research Company Injection procedure for gas mobility control agents
US6506806B2 (en) * 2000-06-08 2003-01-14 E. I. Du Pont De Nemours And Company Reduction of surface tension
EP2451891B1 (en) * 2009-07-09 2015-08-19 3M Innovative Properties Company Methods for treating carbonate hydrocarbon-bearing formations with fluorinated amphoteric compounds
CN102838976A (en) * 2012-08-20 2012-12-26 大庆中英化工有限公司 Oil displacement type composite clay expansion inhibitor
CN105086980B (en) * 2015-07-03 2017-12-19 中国石油天然气股份有限公司 A kind of foam discharging agent for deep gas well water pumping gas production and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1141146A (en) * 1978-09-22 1983-02-15 Thomas W. Cooke Oil recovery by fluorochemical surfactant waterflooding

Also Published As

Publication number Publication date
GB9018818D0 (en) 1990-10-10
GB2245622A (en) 1992-01-08
GB2245622B (en) 1994-05-18
CA2017517A1 (en) 1991-11-24
NO904778L (en) 1991-11-25
NO904778D0 (en) 1990-11-02
CA2017517C (en) 1994-11-01

Similar Documents

Publication Publication Date Title
US5074358A (en) Surfactant-stabilized foams for enhanced oil recovery
US5203411A (en) Oil recovery process using mobility control fluid comprising alkylated diphenyloxide sulfonates and foam forming amphoteric surfactants
US5246072A (en) Method for enhancing the recovery of petroleum from an oil-bearing formation using a mixture including anionic and cationic surfactants
CA2538439C (en) Method and composition for enhanced hydrocarbons recovery
CA2714406C (en) Method and composition for enhanced hydrocarbons recovery
US4113011A (en) Enhanced oil recovery process
US9102862B2 (en) Method and composition for enhanced hydrocarbons recovery
US5363915A (en) Enhanced oil recovery technique employing nonionic surfactants
NO178118B (en) Process for reducing the mobility of a propellant introduced into an underground hydrocarbon-containing formation
EP2451890B1 (en) Method for enhanced hydrocarbon recovery from a formation containing a crude oil with specific solubility groups and chemical families
US4136738A (en) Enhanced recovery of oil from a dipping subterranean oil-bearing reservoir using light hydrocarbon and carbon dioxide
US3311167A (en) Secondary recovery technique
Suffridge et al. Foam performance under reservoir conditions
CA1301636C (en) Gas flooding processing for the recovery of oil from subterranean formations
GB2245012A (en) Enhanced liquid hydrocarbon recovery process
US5279367A (en) Fatty acid additives for surfactant foaming agents
US4572294A (en) Non-condensible gas injection including alpha-olefin sulfonate surfactant additives
US20160215200A1 (en) Composition and method for enhanced hydrocarbon recovery
US4295980A (en) Waterflood method
NO301291B1 (en) Process of enhanced oil recovery from an underground oil-bearing formation
EP2794810B1 (en) Oil recovery process
CN110997862A (en) Low temperature stable surfactant blends for enhanced oil recovery
US20160304767A1 (en) Internal olefin sulfonate composition and use thereof in enhanced oil recovery
US20160237337A1 (en) Composition and method for enhanced hydrocarbon recovery
WO2015048142A1 (en) Composition and method for enhanced hydrocarbon recovery

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees