NO20220803A1 - Energy trap 2 - Energy trap used in a windmill - Google Patents

Energy trap 2 - Energy trap used in a windmill Download PDF

Info

Publication number
NO20220803A1
NO20220803A1 NO20220803A NO20220803A NO20220803A1 NO 20220803 A1 NO20220803 A1 NO 20220803A1 NO 20220803 A NO20220803 A NO 20220803A NO 20220803 A NO20220803 A NO 20220803A NO 20220803 A1 NO20220803 A1 NO 20220803A1
Authority
NO
Norway
Prior art keywords
elements
vertical
windmill
attached
wind
Prior art date
Application number
NO20220803A
Other languages
Norwegian (no)
Inventor
Erling Magnar Haug
Original Assignee
Erling Magnar Haug
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erling Magnar Haug filed Critical Erling Magnar Haug
Priority to NO20220803A priority Critical patent/NO20220803A1/en
Publication of NO20220803A1 publication Critical patent/NO20220803A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

Energifanger 2 Energy trap 2

<1 Innledning><1 Introduction>

Dagens teknologi Today's technology

Store vindmøller med horisontal rotasjonsakse ser ut til å være vinnere ved dagens utbygginger av vindmøller. Large wind turbines with a horizontal axis of rotation seem to be winners in today's development of wind turbines.

Av større vindmøller med vertikal rotasjonsakse, henvises det til de historiske vindmøllene i Nashtifan, Iran. Disse sies å fortsatt være i bruk. Of larger windmills with a vertical axis of rotation, reference is made to the historic windmills in Nashtifan, Iran. These are said to still be in use.

Felles for de nevnte vindmøller er at de er avhengige av vindretningen. What the aforementioned windmills have in common is that they are dependent on the direction of the wind.

Den gjeldende oppfinnelsen adresserer vindretningsuavhengig energifanger (1) , samt fremming av oppstarten av vindmøllen ( tegning/fig.5 ), og vindmølle ( tegninger/ fig.4 og fig.8 ). The current invention addresses wind direction-independent energy capture (1), as well as promoting the start-up of the windmill (drawing/fig.5), and windmill (drawings/fig.4 and fig.8).

Behov for ny teknologi Need for new technology

En mengde ulike konsepter finnes både for horisontale og vertikale vindmøller. Fortsatt er det ønskelig med nye løsninger dersom disse er mer effektive og billigere, både å bygge og å drive og å gjenvinne materialene i de. A number of different concepts exist for both horizontal and vertical wind turbines. It is still desirable to have new solutions if these are more efficient and cheaper, both to build and to operate and to recover the materials in them.

2 Beskrivelse av henholdsvis energifanger og vindmølle 2 Description of energy capture and wind turbine respectively

Funksjon og beskrivelse av energifanger Function and description of energy trap

Uavhengigheten av vindretningen oppnås ved at det benyttes en gruppe av energi-fang-elementer (2) som har en konkav og en konveks side( tegning/ fig.5 ). Ellementene består av svakt bøyde rektangulære plateelementer festet til hvert sitt bjelkeelement (4). Bjelkeelementene er hengslet (7) til horisontale åk, som igjen står horisontalt ut fra en vertikal stamme, som igjen roterer når tilstrekkelig med vind tar tak i fang-elementene. De bøyde fang-elementene får en konveks side og en konkav side ( tegning /fig.5 ). For vind fra samme retning oppstår det ulike krefter på diametralt motsatt plasserte fang-elementer. I tillegg oppstår det ytterligere ulike krefter fordi de hengslete elementene i utgangspunktet henger på skrå p.g.a. tyngdekraften til fang-lementene ( tegning/fig.5 ) . Når viden tar tak i den konkave siden av et element, vil det svinge med vinden til det står vertikalt og gir størst motstand mot vinden. Tilsvarende vil et konvekst elment svinge med vinden til det blir liggende horisontalt og gir sin minste motstand mot vinden. Ligger et konkavt fang-element diametralt motsatt til et konvekst fang- element, vil det konkave fang-elementet gi et større dreiemoment enn det motsatt virkende konvekse fang-elementet. Når vinden kommer parallelt med de to fang-elementene, vil det også oppstå større krefter på den konkave siden av fang-elementene, enn på den konveksee siden, og derved oppstår et dreiemomentbidrag i samme retning som for vindretning normalt på fang-elementene. The independence of the wind direction is achieved by using a group of energy capture elements (2) which have a concave and a convex side (drawing/fig.5). The elements consist of slightly bent rectangular plate elements attached to each individual beam element (4). The beam elements are hinged (7) to horizontal yokes, which again stand horizontally from a vertical stem, which again rotates when sufficient wind takes hold of the catch elements. The bent catch elements have a convex side and a concave side ( drawing /fig.5 ). For wind from the same direction, different forces arise on diametrically oppositely placed catch elements. In addition, further different forces arise because the hinged elements initially hang at an angle due to the gravity of the catch elements ( drawing/fig.5 ). When the vine takes hold of the concave side of an element, it will swing with the wind until it is vertical and offers the greatest resistance to the wind. Similarly, a convex element will swing with the wind until it lies horizontally and offers its least resistance to the wind. If a concave catch element is located diametrically opposite to a convex catch element, the concave catch element will produce a greater torque than the oppositely acting convex catch element. When the wind comes parallel to the two fang elements, greater forces will also arise on the concave side of the fang elements, than on the convex side, and thereby a torque contribution occurs in the same direction as for wind direction normal to the fang elements.

Claims (2)

Alternative energi-fang-elementerAlternative energy capture elements Energi-fang-elementene kan alternativt ha største lengde i vertikal retning, og bestå av multiple delelementer. Delelementene kan primært bestå av halve rør, hvor veggtykkelsen kan variere fra helt tynne vegger til nærmere en halv sylinder. Mellom hvert av elementene er det en spalte (15). Fang-elementene er festet til ett, eller flere åk (5). En aksling (3) er festet til midten av åket / åkene (5).The energy capture elements can alternatively have the greatest length in the vertical direction, and consist of multiple sub-elements. The sub-elements can primarily consist of half pipes, where the wall thickness can vary from completely thin walls to closer to half a cylinder. Between each of the elements there is a gap (15). The catch elements are attached to one or more yokes (5). A shaft (3) is attached to the center of the yoke(s) (5). Funksjon og beskrivelse av vindmølleFunction and description of windmill En vindmølle med vertikal, eller overveiende vertikal rotasjonsakse ,( tegninger /fig.1 og fig.3 ), består av multiple energifangere (1) i ett eller multiple nivåer, og en aksling (3), samt ett eller flere nav / lager (14), og en kobling (11), og et gir (8), og en generator (9), samt en bærekonstruksjon (12).A windmill with a vertical, or predominantly vertical axis of rotation, (drawings /fig.1 and fig.3), consists of multiple energy collectors (1) in one or multiple levels, and a shaft (3), as well as one or more hubs / bearings ( 14), and a coupling (11), and a gear (8), and a generator (9), as well as a support structure (12). 3 Tegninger3 Drawings På tegningene/figurene 1, 4, 6, 8 og 9 vises energifanger med oppriss og grunnriss. Tegninger/fig.4 og fig.8, viser hvordan en hel vidmølle er satt sammen.On the drawings/figures 1, 4, 6, 8 and 9, energy traps are shown with elevation and ground plan. Drawings/fig.4 and fig.8 show how an entire wide mill is put together. 4 Patentkrav4 Patent requirements 1. Multiple bøyde og hengslede fang-elementer, med ett eller multiple hengsler festet til multiple åk, som igjen er festet til en roterende stamme/aksling som er vertikal eller med noen grader avvik fra vertikalen.1. Multiple bent and hinged catch elements, with one or multiple hinges attached to multiple yokes, which in turn are attached to a rotating stem/shaft that is vertical or with a few degrees of deviation from vertical. 2. En gruppe vertikale energifangelementer som består av en sum av delelmenter som har en konkav og en konveks side, med en spalte (15) mellom hvert av delelementene (22), og elementene (22) er primært halve rør ( half pipe), hvor veggtykkelsen kan variere fra tynn og opp mot en halv sylinder og hvor fang-elementene er festet til en buet bjelke som igjen er festet til en rett bjelk, som igjen er hengslet til et åk, som igjen er festet til en roterende stamme/aksling som er vertikal eller med noen grader avvik fra vertikalen.2. A group of vertical energy capture elements consisting of a sum of sub-elements having a concave and a convex side, with a gap (15) between each of the sub-elements (22), and the elements (22) are primarily half pipes, where the wall thickness can vary from thin and up to half a cylinder and where the catch elements are attached to a curved beam which in turn is attached to a straight beam, which in turn is hinged to a yoke, which is in turn attached to a rotating stem/axle which is vertical or with a few degrees of deviation from the vertical. 5 Sammendrag5 Summary En vindretningsuavhengig energifanger, anvendt i en vindmølle med vertikal, eller tilnærmet vertikal rotasjonsakse. Vindmøllen kan varieres fra en liten en til en meget stor mølle, som er uavhengig av vindretning. Vindfanger-«flatene» kan lages meget store. Vindmøllen trenger ikke å styres opp mot vinden, og har derfor ikke noe maskiner for den slags styring. Dette utgjør et kostnadsbesparende element i forhold til dagens store horisontale vindmøller.A wind direction-independent energy collector, used in a windmill with a vertical, or nearly vertical axis of rotation. The windmill can be varied from a small one to a very large mill, which is independent of wind direction. The wind catcher "surfaces" can be made very large. The windmill does not need to be steered against the wind, and therefore has no machinery for that kind of steering. This constitutes a cost-saving element compared to today's large horizontal wind turbines. Det nye som tilføres gjennom denne løsningen er at store « vindfanger – flater» kan benyttes i en vertikal vindmølle, samt at oppstartegenskapen fremmes. The new thing added through this solution is that large "wind catchers - surfaces" can be used in a vertical windmill, and that the start-up property is promoted.
NO20220803A 2022-07-17 2022-07-17 Energy trap 2 - Energy trap used in a windmill NO20220803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20220803A NO20220803A1 (en) 2022-07-17 2022-07-17 Energy trap 2 - Energy trap used in a windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20220803A NO20220803A1 (en) 2022-07-17 2022-07-17 Energy trap 2 - Energy trap used in a windmill

Publications (1)

Publication Number Publication Date
NO20220803A1 true NO20220803A1 (en) 2024-01-18

Family

ID=89942691

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20220803A NO20220803A1 (en) 2022-07-17 2022-07-17 Energy trap 2 - Energy trap used in a windmill

Country Status (1)

Country Link
NO (1) NO20220803A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2051252A (en) * 1979-06-19 1981-01-14 Jordan C G Apparatus for Extracting Energy from a Fluid Current
WO1989011595A2 (en) * 1988-05-27 1989-11-30 Rolando Poeta Vertical axis wind engine with counterpositioned orthogonal blades which oscillate on their diametral axis
GB2225061A (en) * 1988-11-21 1990-05-23 Liu Hsun Fa Vertical-axle wind turbine
WO1995003488A1 (en) * 1993-07-20 1995-02-02 Sontech Energy Research Turbine
EP2078849A2 (en) * 2008-01-10 2009-07-15 Osterhammer, Johann jun. Wind and water turbine with pivotable blades
ITBG20090036A1 (en) * 2009-06-13 2010-12-14 Eros Poeta WIND MOTOR WITH VERTICAL AXIS WITH PENDULAR REAR REACTION BLADES
CN102287324A (en) * 2011-06-02 2011-12-21 田壁斌 Windmill blade structure capable of altering actuated blade area automatically
CN108105014A (en) * 2018-01-30 2018-06-01 重庆大学 A kind of vertical axis double streamline automatic folding type hydraulic turbine
CN109931200A (en) * 2019-03-29 2019-06-25 重庆大学 A kind of streamlined automatic folding type hydraulic turbine of vertical axis three
RU2733120C2 (en) * 2018-03-15 2020-09-29 Владимир Иванович Исаев Power unit and method of its operation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2051252A (en) * 1979-06-19 1981-01-14 Jordan C G Apparatus for Extracting Energy from a Fluid Current
WO1989011595A2 (en) * 1988-05-27 1989-11-30 Rolando Poeta Vertical axis wind engine with counterpositioned orthogonal blades which oscillate on their diametral axis
GB2225061A (en) * 1988-11-21 1990-05-23 Liu Hsun Fa Vertical-axle wind turbine
WO1995003488A1 (en) * 1993-07-20 1995-02-02 Sontech Energy Research Turbine
EP2078849A2 (en) * 2008-01-10 2009-07-15 Osterhammer, Johann jun. Wind and water turbine with pivotable blades
ITBG20090036A1 (en) * 2009-06-13 2010-12-14 Eros Poeta WIND MOTOR WITH VERTICAL AXIS WITH PENDULAR REAR REACTION BLADES
CN102287324A (en) * 2011-06-02 2011-12-21 田壁斌 Windmill blade structure capable of altering actuated blade area automatically
CN108105014A (en) * 2018-01-30 2018-06-01 重庆大学 A kind of vertical axis double streamline automatic folding type hydraulic turbine
RU2733120C2 (en) * 2018-03-15 2020-09-29 Владимир Иванович Исаев Power unit and method of its operation
CN109931200A (en) * 2019-03-29 2019-06-25 重庆大学 A kind of streamlined automatic folding type hydraulic turbine of vertical axis three

Similar Documents

Publication Publication Date Title
US9284943B2 (en) Vertical axis wind turbine
US20070098542A1 (en) Rotational power system
US10378510B2 (en) Vertical axis wind turbine with self-orientating blades
MX2013003122A (en) Twin turbine system which follows the wind/water (windtracker) for wind and/or water power, with optimized blade shape.
NO324133B1 (en) Vannstromningsturbinhjul
US20090285689A1 (en) Vertical Axis Wind Turbine Having Angled Leading Edge
JP2010538198A (en) Device for converting the kinetic energy of running water into the kinetic energy of the rotating rotor shaft
NO20220803A1 (en) Energy trap 2 - Energy trap used in a windmill
US11236723B2 (en) Integrated vertical axis wind power generation system
JP2009543982A (en) Wind power generator
TWM403559U (en) Wind power generator with vertical type multi-layered wind wheel
US20130136601A1 (en) Large Contra-Rotating Wind Turbine
US20220003205A1 (en) Sail Device
Kyaw et al. Design and stress analysis of undershot waterwheel for water pumping system
JP2015166562A (en) Vertical axis drag type wind turbine capable of preventing its overspeed under strong wind and wind power generator
RU2170366C2 (en) Windmill
WO2014185758A1 (en) Wind wheel (with two alternatives)
JP2003254228A (en) Wind force energy collecting device and wind power generating device
JP4840890B1 (en) Top-type water wheel
KR100961814B1 (en) A rotor structure for wind propulsive power generators
US8202051B2 (en) Turbine apparatus
KR200417376Y1 (en) Rotation power generator using fluid flow
JP2014145293A (en) Wind turbine
Lee et al. Effect of helical angle on the performance of Savonius wind turbine
KR102343591B1 (en) Wind Power Generator With High Efficiency And Enhanced Torque