NO20220105A1 - Flow stabilizing gas regulator - Google Patents

Flow stabilizing gas regulator Download PDF

Info

Publication number
NO20220105A1
NO20220105A1 NO20220105A NO20220105A NO20220105A1 NO 20220105 A1 NO20220105 A1 NO 20220105A1 NO 20220105 A NO20220105 A NO 20220105A NO 20220105 A NO20220105 A NO 20220105A NO 20220105 A1 NO20220105 A1 NO 20220105A1
Authority
NO
Norway
Prior art keywords
gas
seat
chamber
pressure
piston
Prior art date
Application number
NO20220105A
Other languages
Norwegian (no)
Inventor
Nils Terje Ottestad
Original Assignee
Obs Tech As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obs Tech As filed Critical Obs Tech As
Priority to NO20220105A priority Critical patent/NO20220105A1/en
Priority to PCT/NO2023/050015 priority patent/WO2023140742A1/en
Publication of NO20220105A1 publication Critical patent/NO20220105A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/023Special adaptations of indicating, measuring, or monitoring equipment having the mass as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule
    • G05D7/012Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule the sensing element being deformable and acting as a valve
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0173Control of flow without auxiliary power using pivoting sensing element acting as a valve mounted within the flow-path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0368By speed of fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)

Description

Beskrivelse Description

Oppfinnelsen angår en strømningsstabiliserende gassregulator som konstruert for å kunne koples opp mot høytrykks gasstanker med formål å tømme disse med en høy og mest mulig stabil strømningsrate. Regulatoren omfatter et hus med et innløp for mottak av gass, et utløp for avgivelse av tilført gass til omgivende atmosfære, og en ventilinnretning som regulerer strømningstverrsnittet gjennom huset slik at en forinnstilt strømningsrate kan opprettholdes mest mulig stabilt etter hvert som tanktrykket faller. En regulator ifølge oppfinnelsen er spesielt innrettet til tømming av hydrogentanker, men virkemåten gjør den relevant for de fleste gasstyper. The invention relates to a flow-stabilizing gas regulator designed to be connected to high-pressure gas tanks with the aim of emptying these with a high and most stable flow rate. The regulator comprises a housing with an inlet for receiving gas, an outlet for releasing added gas to the surrounding atmosphere, and a valve device that regulates the flow cross-section through the housing so that a preset flow rate can be maintained as stable as possible as the tank pressure falls. A regulator according to the invention is specially designed for emptying hydrogen tanks, but the way it works makes it relevant for most types of gas.

Ved tømming av trykktanker er det i dag vanlig å benytte dyser eller innsnevringer som begrenser massestrømmen ut av angjeldende tanker til et sikkerhetsmessig forsvarlig nivå. Strømningsraten for gass avgis gjennom en fast dyse vil grovt sett avta lineært med trykket oppstrøms dysen. Følgelig vil strømningsraten avta med anslagsvis faktor 10 fra tømming iverksettes og fram til tanktrykket har falt til en tiendedel. For ulike applikasjoner vil sikkerhetsmessige aspekter tilsi ulik dimensjoneringen av dysen, men det vil normalt anses som fordelaktig å kunne opprettholde massestrømmen mest mulig stabilt på et valgt maksimalnivå under hele tømmeprosessen. Dette krever at strømningstverrsnittet for gassen må kunne økes i samsvar med fallende gasstrykk. When emptying pressure tanks, it is common today to use nozzles or constrictions that limit the mass flow out of the tanks in question to a level that is acceptable from a safety point of view. The flow rate of gas emitted through a fixed nozzle will roughly decrease linearly with the pressure upstream of the nozzle. Consequently, the flow rate will decrease by an estimated factor of 10 from the time emptying is initiated until the tank pressure has dropped to one-tenth. For different applications, safety aspects will require different dimensions of the nozzle, but it will normally be considered advantageous to be able to maintain the mass flow as stable as possible at a selected maximum level during the entire emptying process. This requires that the flow cross-section for the gas must be able to be increased in accordance with falling gas pressure.

En gassregulator ifølge oppfinnelsen har en virkemåte som minimerer fare for kritisk funksjonssvikt. Den er innrettet til at gassens strømningstverrsnitt ligger på forstilt minstenivå idet tømmeprosessen igangsettes, og sikrer derved at strømningsraten uansett ikke vil være mindre enn det som oppnås ved bruk av fast dyse. Den innebygde ventilinnretningen er gjerne dimensjonert slik at strømningstverrsnittet kan økes med en faktor 10 i forhold til det forstilte minstenivå. A gas regulator according to the invention has a mode of operation that minimizes the risk of critical malfunction. It is arranged so that the gas flow cross-section is at a pre-set minimum level when the emptying process is initiated, thereby ensuring that the flow rate will not be less than that achieved when using a fixed nozzle. The built-in valve device is usually dimensioned so that the flow cross-section can be increased by a factor of 10 in relation to the preset minimum level.

Kjent teknikk Known technique

En regulator ifølge oppfinnelsen er innrettet for å kunne forestå tømming av tanker som kan være trykksatt til 350 bar og høyere. Den er basert på en ventilinnretning som utnytter trykket på tilført gass til å etablere et meget presist samvirke mellom et pilotlegeme og et vesentlig større ventillegeme som styrer strømningstverrsnittet gjennom huset. Vi er ikke kjent med at det finnes tilsvarende teknologi for denne type formål A regulator according to the invention is designed to be able to manage the emptying of tanks which can be pressurized to 350 bar and higher. It is based on a valve device that utilizes the pressure of supplied gas to establish a very precise interaction between a pilot body and a significantly larger valve body that controls the flow cross-section through the housing. We are not aware of similar technology for this type of purpose

Beskrivelse av oppfinnelsen Description of the invention

Virkemåten for oppfinnelsen vil i det følgende bli forklart med henvisning til fig.1 og fig.2. der The operation of the invention will be explained in the following with reference to fig.1 and fig.2. there

- Fig 1 A og Fig 1B viser to utførelser av komplett reguleringsventil ifølge oppfinnelsen - med to ulike utførelser av et ekspanderbart kammer i huset - Fig 1 A and Fig 1B show two versions of the complete control valve according to the invention - with two different versions of an expandable chamber in the housing

- Fig 2A og 2B viser en overføringsmekanisme i to posisjoner. - Figs 2A and 2B show a transmission mechanism in two positions.

Regulatoren omfatter i foretrukket utførelse et sylinderformet hus 22) med en sentralt anordnet innløp 1) for mottak av komprimert gass, og med et utløp 18) som har tre eller flere porter. Nedstrøms av innløpet er det en sentralt anordnet kanal 25 som på oppstrøms side har et ringformet sete 5) som samvirker med et aksialt forskyvbart ventillegeme 4) slik at strømningstverrsnittet gjennom denne kanalen kan reguleres innenfor definerte verdier ved å endre avstanden mellom dette ventillegemet og setet 5). In a preferred embodiment, the regulator comprises a cylindrical housing 22) with a centrally arranged inlet 1) for receiving compressed gas, and with an outlet 18) which has three or more ports. Downstream of the inlet there is a centrally arranged channel 25 which on the upstream side has an annular seat 5) which cooperates with an axially displaceable valve body 4) so that the flow cross-section through this channel can be regulated within defined values by changing the distance between this valve body and the seat 5 ).

Strømningstverrsnittet gjennom ventilen skal ha en gitt minsteverdi. Dette besørges fortrinnsvis ved at det anordnes en eller flere boringer 23) som tillater gassen å passere utenom kanalen 25). En alternativ løsning på dette er å anordne en stopper som hindrer ventillegemet 4) i å komme helt ned til setet 5). The flow cross-section through the valve must have a given minimum value. This is preferably achieved by arranging one or more bores 23) which allow the gas to pass outside the channel 25). An alternative solution to this is to arrange a stop which prevents the valve body 4) from coming all the way down to the seat 5).

På nedstrømsside av kanalen 25) blir gassen ført radielt ut fra senter av huset via et antall boringer 21), videre ut i en ringformet kanal 20) og derfra til omgivende atmosfære via en innsnevring 19) som er anordnet oppstrøms av utløpet. On the downstream side of the channel 25), the gas is led radially out from the center of the housing via a number of bores 21), further into an annular channel 20) and from there to the surrounding atmosphere via a constriction 19) which is arranged upstream of the outlet.

Gassen som strømmer gjennom huset vil generere et visst trykk på oppstrøms side av innsnevringen 19). Det vil ikke nødvendigvis være en lineær sammenheng mellom dette trykket og massestrømmen av gassen, men det er uvesentlig ettersom ventilinnretningen 2-16) har til oppgave å etablere en mest mulig statisk strømningssituasjon. The gas flowing through the housing will generate a certain pressure on the upstream side of the constriction 19). There will not necessarily be a linear relationship between this pressure and the mass flow of the gas, but that is immaterial as the valve device 2-16) has the task of establishing the most static flow situation possible.

Massestrømmen kan anses for å være konstant så lenge trykket oppstrøms innsnevringen 19) ligger på et konstant nivå i forhold til omgivende atmosfæretrykk. Ventilinnretningen (2-16) vil således ha til oppgave å styre strømningstverrsnittet gjennom kanalen 25) slik at trykknivået oppstrøms innsnevringen 19) holdes mest mulig stabilt på et nivå som samsvarer med ønsket strømningsrate. Innsnevringen 19) kan typisk bli valgt slik at dette nivået ligger på 8–10 bar. The mass flow can be considered to be constant as long as the pressure upstream of the constriction 19) is at a constant level in relation to ambient atmospheric pressure. The valve device (2-16) will thus have the task of controlling the flow cross-section through the channel 25) so that the pressure level upstream of the constriction 19) is kept as stable as possible at a level that corresponds to the desired flow rate. The constriction 19) can typically be chosen so that this level is 8–10 bar.

Reguleringen av strømningstverrsnitt for gassen er basert på at man utnytter trykkenergien i tilført gass til å frembringe kreftene som trengs til for at ventillegemet 4) til enhver tid blir posisjoneres slik at ønsket strømningsrate opprettholdes. Dette oppnås ved hjelp av et kammer III som er innrettet til å endre volum ved lekkasjefri forskyvning av et element 9). Dette elementet er mekanisk koplet til ventillegemet 4), og ved å øke kammerets trykk vil ventillegemet (4) kunne løftes opp fra setet 5) slik at strømningstverrsnittet gjennom huset 1) økes. The regulation of the flow cross-section for the gas is based on utilizing the pressure energy in supplied gas to generate the forces needed for the valve body 4) to be positioned at all times so that the desired flow rate is maintained. This is achieved by means of a chamber III which is designed to change volume by leak-free displacement of an element 9). This element is mechanically connected to the valve body 4), and by increasing the chamber's pressure, the valve body (4) can be lifted up from the seat 5) so that the flow cross-section through the housing 1) is increased.

Ventilinnretningen omfatter et aksialt anordnet stempel (15) som avføler trykkforskjellen mellom oppstrømssiden av innsnevringen (19) og omgivende trykk, og en overføringsmekanisme (13) som sørger for at det vil være en entydig sammenheng mellom en aksial forskyvning av stempelet (15) og en resulterende forskyvning av et pilotlegeme (2). Dette pilotlegemet (2) har en manøverstang 7) som er ført i en kanal (6) som løper aksialt gjennom ventillegemet (4), videre gjennom kammeret III, og via en trang føring (11) fram til et kammer I hvor manøverstangen får kontakt med nevnte overføringsmekanisme 13). The valve device comprises an axially arranged piston (15) which senses the pressure difference between the upstream side of the constriction (19) and ambient pressure, and a transfer mechanism (13) which ensures that there will be a clear connection between an axial displacement of the piston (15) and a resulting displacement of a pilot body (2). This pilot body (2) has a maneuvering rod 7) which is guided in a channel (6) which runs axially through the valve body (4), further through chamber III, and via a narrow guide (11) to a chamber I where the maneuvering rod makes contact with said transfer mechanism 13).

Pilotlegemet (2) er innrettet til å kunne tette mot et ringformet sete (3) som er sentralt anordnet i ventillegemet (4). Når pilotlegemet presses ut fra dette setet strømmer komprimert gass inn i kammer III. Dette frembringer en trykkøkning i dette kammeret, og det genereres krefter som forskyver ventillegemet 4) ut fra setet 5). Ved denne forskyvningen reduseres klaringen mellom setet 3) og pilotlegemet, med den følge at gasstrømmen inn i kammer III reduseres. Dette samvirket mellom pilotlegemet 2) og setet 3) innebærer at ventillegemet 4) slavestyres til å forskyves i samsvar med pilotlegemets forskyvning. Det skyldes at ventillegemet 4) vil posisjoneres slik at det til enhver tid er balanse mellom gasstilførselen til kammer III og gassavgivelse fra kammer II til kammer I via passasjen mellom manøverstangen 7) og føringen 11). The pilot body (2) is arranged to be able to seal against an annular seat (3) which is centrally arranged in the valve body (4). When the pilot body is pushed out from this seat, compressed gas flows into chamber III. This produces an increase in pressure in this chamber, and forces are generated which displace the valve body 4) out from the seat 5). With this displacement, the clearance between the seat 3) and the pilot body is reduced, with the result that the gas flow into chamber III is reduced. This cooperation between the pilot body 2) and the seat 3) means that the valve body 4) is slave controlled to be displaced in accordance with the displacement of the pilot body. This is because the valve body 4) will be positioned so that there is at all times a balance between the gas supply to chamber III and gas release from chamber II to chamber I via the passage between the operating rod 7) and the guide 11).

Figurene 1A og 1B viser to alternative utførelser av kammeret III. Figures 1A and 1B show two alternative designs of chamber III.

I fig.1A er dette kammeret anordnet mellom et sylindrisk bolt 10) og et forskyvbart element 9) med en hettelignende form. I fig 1B er kammer III etablert mellom et fastmontert element 10) i form av en hylse og et forskyvbart element 9) i form av et stempel med tverrsnitt A. In fig.1A, this chamber is arranged between a cylindrical bolt 10) and a displaceable element 9) with a cap-like shape. In Fig 1B, chamber III is established between a fixed element 10) in the form of a sleeve and a displaceable element 9) in the form of a piston with cross-section A.

Trykket som etableres i kammer III vil påvirke trykkflaten A. Denne trykkflaten vil typisk bli valgt til å være 4 ganger større enn tverrsnittet på det ringformede setet 5). I en driftsituasjon vil følgelig trykket i kammer III måtte være omtrentlig en fjerdedel av innløpstrykket for at presset mot elementet 9) skal være tilstrekkelig stort til at ventillegemet 4) kan bli presset ut fra setet 5). The pressure established in chamber III will affect the pressure surface A. This pressure surface will typically be chosen to be 4 times larger than the cross-section of the annular seat 5). In an operating situation, the pressure in chamber III will therefore have to be approximately a quarter of the inlet pressure in order for the pressure against the element 9) to be sufficiently great for the valve body 4) to be pushed out from the seat 5).

Setet 3) kan typisk ha en innvendig diameter på anslagsvis 3 mm, og klaringen mellom manøverstangen (7) og føringen (11) kan typisk være 0,02 mm. Ved slik dimensjonering vil gapet mellom pilotlegemet (2) og setet (3) normalt være mindre enn 1/10 mm når det oppnås likevekt mellom tilførsel og avgivelse av gass fra kammer III. Uansett hvilken retning pilotlegemet forskyves vil ventillegemet 4) bli tvunget til å følge etter uten at det oppstår noen signifikant endring av dette gapet før innløpstrykket er for lavt til massestrømmen kan opprettholdes på ønsket nivå. The seat 3) can typically have an internal diameter of approximately 3 mm, and the clearance between the maneuvering rod (7) and the guide (11) can typically be 0.02 mm. With such dimensioning, the gap between the pilot body (2) and the seat (3) will normally be less than 1/10 mm when equilibrium is achieved between the supply and release of gas from chamber III. In whatever direction the pilot body is displaced, the valve body 4) will be forced to follow without any significant change of this gap occurring before the inlet pressure is too low for the mass flow to be maintained at the desired level.

Stemplet 15) påvirkes i retning mot innløpet av kraften fra en forspent fjær 16). Denne forspenningen velges slik at kraften mot stempelet 15) balanserer ut de motsatt rettede trykkreftene som frembringes når trykkforskjellen mellom omgivende trykk og trykket oppstrøms innsnevringen 19) er på valgt nivå (som fortrinnsvis kan være 8 – 10 bar). Trykket oppstrøms innsnevringen 19) avføles i kammer I via en kanal 14), og omgivende trykk avføles via en kanal 17). The piston 15) is influenced in the direction towards the inlet by the force from a pre-tensioned spring 16). This bias is chosen so that the force against the piston 15) balances out the oppositely directed pressure forces which are produced when the pressure difference between the ambient pressure and the pressure upstream of the constriction 19) is at the selected level (which can preferably be 8 - 10 bar). The pressure upstream of the constriction 19) is sensed in chamber I via a channel 14), and the ambient pressure is sensed via a channel 17).

Ved dette oppsettet vil pilotlegemet 2, og dermed ventilelementet 4), til en hver tid bli forskjøvet skyves mot posisjonen der trykket oppstrøms innsnevringen i størst mulig grad opprettholdes på ønsket nivå. With this set-up, the pilot body 2, and thus the valve element 4), will be pushed towards the position where the pressure upstream of the constriction is maintained at the desired level to the greatest extent possible until it is displaced.

Fig.1 A illustrerer en situasjon der ventillegemet 4) er forskjøvet nesten maksimalt vekk fra setet 5), men slik at klaringen mellom pilotlegemet 2) og sete 3) fortsatt er på anslagsvis 1/10 mm. Fig.1 B illustrerer situasjonen at ønsket strømningsnivå oppnås uten at det har vært nødvendig å åpne for gasstrøm via ventillegemet 4). Fig.1 A illustrates a situation where the valve body 4) is displaced almost maximally away from the seat 5), but so that the clearance between the pilot body 2) and seat 3) is still approximately 1/10 mm. Fig.1 B illustrates the situation where the desired flow level is achieved without it having been necessary to open the gas flow via the valve body 4).

Figuren 2A og 2 B viser et forstørret riss av overføringsmekanismen 13) i to posisjoner, Denne overføringsmekanismen er omfatter en festeplate 32) som på den ene siden har feste til en aksling 26) som samvirker med den ene enden av en roterbar første arm 27), og som på den motsatte side har feste til en aksling 30) som samvirker med den ene enden av enden av en roterbar andre arm 31). På den andre enden av armen 31) er det anordnet en første rulle 28) som samvirker med den andre enden av armen 27) som i sitt midtparti har kontakt med manøverstangen 7). Denne mekanismen bevirker at overføringen av kraft fra stempelet 15) til manøverstangen er tilnærmet friksjonsfri. Ved å endre avstanden mellom de to rullene 28) og 29) kan man enkelt endre forholdet mellom stempelets forskyvning og den resulterende forskyvning av manøverstangen. Figures 2A and 2B show an enlarged view of the transmission mechanism 13) in two positions. This transmission mechanism comprises a fastening plate 32) which on one side has attachment to a shaft 26) which cooperates with one end of a rotatable first arm 27) , and which on the opposite side has attachment to a shaft 30) which cooperates with one end of the end of a rotatable second arm 31). On the other end of the arm 31) there is arranged a first roller 28) which cooperates with the other end of the arm 27) which in its middle part is in contact with the maneuvering rod 7). This mechanism means that the transfer of power from the piston 15) to the operating rod is almost friction-free. By changing the distance between the two rollers 28) and 29), one can easily change the relationship between the displacement of the piston and the resulting displacement of the operating rod.

Dette forholdet kan typisk velges å være rundt 4:1. This ratio can typically be chosen to be around 4:1.

Claims (1)

KravClaim 1. En strømningsstabiliserende gassregulator som omfatter et hus (22) med et innløp (1) for mottak av høytrykks gass, et utløp (18) for dumping av tilført gass til omgivende atmosfære, og en ventilinnretning (2-16) som bevirker at massestrømmen av gass som dumpes blir holdt på et mest mulig konstant nivå etter hvert som mottakstrykket faller, k a r a k t e r i s e r t ved a t1. A flow-stabilizing gas regulator comprising a housing (22) with an inlet (1) for receiving high-pressure gas, an outlet (18) for dumping added gas to the surrounding atmosphere, and a valve device (2-16) which causes the mass flow of gas that is dumped is kept at as constant a level as possible as the receiving pressure drops, characterized by - Ventilinnretningen er innrettet til kontinuerlig å regulere avstanden mellom et ventillegeme (4) og et sete (5) som er anordnet på oppstrøms side av en sentralt anordnet kanal (27) slik at det opprettholdes et konstant trykk på oppstrøms side av en innsnevring (19) som gassen passerer før den avgis via utløpsportene (18) til omgivende atmosfære, og ved at- The valve device is designed to continuously regulate the distance between a valve body (4) and a seat (5) which is arranged on the upstream side of a centrally arranged channel (27) so that a constant pressure is maintained on the upstream side of a constriction (19 ) through which the gas passes before it is emitted via the outlet ports (18) to the surrounding atmosphere, and by - ventilinnretningen omfatter et aksialt anordnet stempel (15) som avføler trykkforskjellen mellom oppstrømssiden av nevnte innsnevring (19) og omgivende trykk, og en overføringsmekanisme (13) som sørger for at det vil være en entydig sammenheng mellom en aksial forskyvning av stempelet (15) og en resulterende forskyvning av et pilotlegeme (2),idet- the valve device comprises an axially arranged piston (15) which senses the pressure difference between the upstream side of said constriction (19) and ambient pressure, and a transfer mechanism (13) which ensures that there will be a clear connection between an axial displacement of the piston (15) and a resulting displacement of a pilot body (2), whereby - pilotlegemet (2) har en manøverstang (7) som er ført i en kanal (6) som løper aksialt gjennom ventillegemet (4), videre gjennom et ekspanderbart kammer (III), og via en trang føring (11) fram til et kammer I hvor manøverstangen får kontakt med overføringsmekanismen 13),- the pilot body (2) has a maneuvering rod (7) which is guided in a channel (6) which runs axially through the valve body (4), further through an expandable chamber (III), and via a narrow guide (11) to a chamber In where the operating rod makes contact with the transfer mechanism 13), - Stempelet 15) påvirkes i retning mot innløpet (2) av forspent fjær (16) som er innrettet til at det oppstår en balanse mellom kreftene som påvirker stempelet i aksial retning når massestrømmen samsvarer med et ønsket nivå, - Kammeret III er innrettet til å kunne endre volum ved at den har en lekkasjefritt forskyvbar vegg (9) i form av et stempel eller en hette som er mekanisk bundet til ventillegemet (4), slik at en trykksetting av kammeret III medfører at ventillegemet (4) løftes opp fra setet (5) og er øker strømningstverrsnittet gjennom huset (22),- The piston 15) is influenced in the direction towards the inlet (2) by a pre-tensioned spring (16) which is arranged so that a balance occurs between the forces affecting the piston in the axial direction when the mass flow corresponds to a desired level, - Chamber III is arranged to could change volume by having a leak-free movable wall (9) in the form of a piston or a cap which is mechanically connected to the valve body (4), so that a pressurization of chamber III results in the valve body (4) being lifted from the seat ( 5) and is increases the flow cross-section through the housing (22), - Pilotlegemet (2) er innrettet til å kunne tette mot et ringformet sete (3) som er sentralt anordnet i ventillegemet (4), hvorved det å presse pilotlegemet (2) ut fra setet (3) vil føre til at det oppstår en klaring mellom pilotlegemet (2) og setet (3) slik at trykksatt gass vil strømme fra innløpet (1) og inn til kammeret III og derved kunne frembringe en trykkøkning som ekspanderer dette kammeret,- The pilot body (2) is arranged to be able to seal against an annular seat (3) which is centrally arranged in the valve body (4), whereby pushing the pilot body (2) out from the seat (3) will cause a clearance to occur between the pilot body (2) and the seat (3) so that pressurized gas will flow from the inlet (1) into chamber III and thereby produce a pressure increase that expands this chamber, - Dimensjoneringen av setet (3) og klaringen mellom manøverstangen (7) og føringen (11) er avpasset slik at det kreves liten klaring mellom pilotlegemet (2) og setet (3) før det oppstår en likevekt mellom gassmengden som kammer III får tilført og gassmengden som kammeret III avgir til kammeret I via nevnte klaring - The dimensions of the seat (3) and the clearance between the maneuvering rod (7) and the guide (11) are adjusted so that a small clearance is required between the pilot body (2) and the seat (3) before an equilibrium occurs between the amount of gas supplied to chamber III and the amount of gas that chamber III emits to chamber I via said clearance
NO20220105A 2022-01-21 2022-01-21 Flow stabilizing gas regulator NO20220105A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20220105A NO20220105A1 (en) 2022-01-21 2022-01-21 Flow stabilizing gas regulator
PCT/NO2023/050015 WO2023140742A1 (en) 2022-01-21 2023-01-23 Flow stabilizing gas regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20220105A NO20220105A1 (en) 2022-01-21 2022-01-21 Flow stabilizing gas regulator

Publications (1)

Publication Number Publication Date
NO20220105A1 true NO20220105A1 (en) 2023-07-24

Family

ID=85772061

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20220105A NO20220105A1 (en) 2022-01-21 2022-01-21 Flow stabilizing gas regulator

Country Status (2)

Country Link
NO (1) NO20220105A1 (en)
WO (1) WO2023140742A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183932A (en) * 1961-07-13 1965-05-18 Pneumo Dynamics Corp Regulator valve
US9870007B2 (en) * 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031917A (en) * 1974-04-08 1977-06-28 John Charles R De Constant flow gas regulator
US5520214A (en) * 1994-09-12 1996-05-28 Western/Scott Fetzer Company Regulator and fill valve
JP4506496B2 (en) * 2004-11-12 2010-07-21 株式会社ジェイテクト Pressure reducing valve
LU92963B1 (en) * 2016-01-28 2017-08-07 Luxembourg Patent Co Pressure reducer device with stepper motor for adjusting the flow rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183932A (en) * 1961-07-13 1965-05-18 Pneumo Dynamics Corp Regulator valve
US9870007B2 (en) * 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture

Also Published As

Publication number Publication date
WO2023140742A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
EP3762802B1 (en) Solenoid operated valve for reducing excessive piping pressure in a fluid distribution system
JP2004505331A (en) Pressure control device for pipeline
KR100194854B1 (en) Pilot Valves and Safety Relief Devices Containing the Same
JP2013127317A (en) Flow controlled actuator apparatus for use with self-closing stop valve
KR20090013239A (en) Fluid pressure regulator
NO342431B1 (en) Volume amplifier with reduced noise trim
CN107725852B (en) Detachable balance adjuster
GB2267950A (en) Emergency shut-off valve and regulator assembly
CN101888966A (en) Dual function dispensing head for carbonated beverage
NO20220105A1 (en) Flow stabilizing gas regulator
US10126758B2 (en) Flow control valve
NO178839B (en) Flow regulator for maintaining a steady flow of fluid
NO313601B1 (en) Pressure control valve for controlling upstream fluid pressure
JP2008256214A (en) Supply pipe structure for lpg filling device
US8091580B2 (en) Pilot switch
US2912997A (en) Flow control valve
CN108603497B (en) Active surge chamber
NO178121B (en) Servo gas control valve
EP0669499B1 (en) Device for regulating and controlling the flow of gas to burners of domestic boilers
EP2757432A2 (en) Adjustment device for automatically calibrating a pilot valve of a pressure reducer assembly for a fuel gas distribution network
JP5628196B2 (en) Device for controlling the flow rate
US246088A (en) Pressure-regulator
EP1602866A1 (en) Rapid opening unit in control cocks for delivering a fluid to a nozzle
US11746917B2 (en) Pressure regulator with outlet overpressure security
US399663A (en) Pressure-regulator

Legal Events

Date Code Title Description
CREP Change of representative