NO20180201A1 - High performance waterproof fabric - Google Patents
High performance waterproof fabric Download PDFInfo
- Publication number
- NO20180201A1 NO20180201A1 NO20180201A NO20180201A NO20180201A1 NO 20180201 A1 NO20180201 A1 NO 20180201A1 NO 20180201 A NO20180201 A NO 20180201A NO 20180201 A NO20180201 A NO 20180201A NO 20180201 A1 NO20180201 A1 NO 20180201A1
- Authority
- NO
- Norway
- Prior art keywords
- fabric
- fibers
- core
- sheath
- performance
- Prior art date
Links
- 239000004744 fabric Substances 0.000 title claims description 57
- 239000000835 fiber Substances 0.000 claims description 63
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000009941 weaving Methods 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 244000198134 Agave sisalana Species 0.000 claims description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 3
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 3
- 240000008564 Boehmeria nivea Species 0.000 claims description 3
- 240000000491 Corchorus aestuans Species 0.000 claims description 3
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 3
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 3
- 241000219146 Gossypium Species 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 244000082204 Phyllostachys viridis Species 0.000 claims description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 3
- 229920000297 Rayon Polymers 0.000 claims description 3
- 229920002334 Spandex Polymers 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 229920003235 aromatic polyamide Polymers 0.000 claims description 3
- 239000011425 bamboo Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 239000002964 rayon Substances 0.000 claims description 3
- 239000004759 spandex Substances 0.000 claims description 3
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 8
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102000010637 Aquaporins Human genes 0.000 description 1
- 108010063290 Aquaporins Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0035—Protective fabrics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/083—Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/24—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/06—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/008—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0471—Layered armour containing fibre- or fabric-reinforced layers
- F41H5/0478—Fibre- or fabric-reinforced layers in combination with plastics layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0471—Layered armour containing fibre- or fabric-reinforced layers
- F41H5/0485—Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2008—Fabric composed of a fiber or strand which is of specific structural definition
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
HIGH PERFORMANCE WATERPROOF FABRIC
TECHNICAL FIELD OF THE INVENTION
The invention disclosed herein generally relates to a high performance, waterproof fabric. More particularly, the invention relates to an Ultra-High Molecular Weight Polyethylene (UHMWPE) based high performance fabric manufactured with core or sandwich type structure using 3D weaving technique.
BACKGROUND
Ultra-high-molecular-weight polyethylene (UHMWPE) is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene, (HMPE), it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. Henceforth, UHMWPE characterized with high impact strength property of any other known thermoplastic material.
UHMWPE is odorless, tasteless, and non-toxic material. It embodies all the characteristics of high-density polyethylene (HDPE). UHMWPE is used in mooring and towing ropes, trawl ropes and nets, aquaculture nets, crane ropes, heavy lift slings, air cargo containers and nets, draglines and rope shovels for surface mining.
UHMWPE fibers or their blended fibers and like fibers are mostly used in dry state. To incorporate waterproof property in said fibers, the fibers are temporarily coated or laminated. However, this is not a permanent solution to the fibers and unreliable due to the occurrence of cracks between the plastic lamination layers of the fiber. The dried fibers may be exposed to oil, gas, water, sand, UV light, etc., which can damage, and minimize the life-cycle of the fibers. Further, UHMWPE like fibers are essentially one long molecule, or a linkage chain of molecules, which does not allow any chemicals, adhesives, or dyes to provide waterproofness, any fluid proof (gas, oil, etc.), UV proof and chemical resistant solution.
In light of the foregoing, there is need of a three-dimensional Ultra-High Molecular Weight Polyethylene (UHMWPE) based high performance fabric with good dimensional stability and strength, soft and light weight, waterproof, any fluid proof (gas, oil, etc.), UV proof and chemical resistant properties.
SUMMARY OF THE INVENTION
This summary is provided to introduce a selection of concepts in a simplified form that are further disclosed in the detailed description of the invention. This summary is not intended to identify key or essential inventive concepts of the claimed subject matter, nor is it intended for determining the scope of the claimed subject matter.
The present invention relates to a high-performance fabric, characterized by a core fiber comprising an Ultra-High Molecular Weight Polyethylene (UHMWPE) and a sheath or surface fiber comprising any one of natural, synthetic or combination thereof. Said sheath or surface fibers and core fibers are woven using 3D weaving technique to form Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type three-dimensional (3D) fabric. The Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type three-dimensional (3D) fabric is further treated with one or more resins to provide waterproof characteristics and enhances the mechanical property of the fabric. In one embodiment, the natural sheath fiber includes cotton, sisal, ramie, jute, bamboo and coir fibers. In another embodiment, the synthetic sheath fiber includes polyester, nylon, rayon, acrylic, aramids, modal, glass, and spandex fibers.
In one embodiment, the strength of the sheath fibers is comparatively lower to the core fibers. In some embodiments, the resin is, but not limited to, silicone or soft resins. In one embodiment, the resin is configured to adhere to the sheath fibers on either side of the core fiber such that the core fiber is unable to separate away from the resin and sheath fibers. Further, the core and sheath fibers are configured to distribute impact-load uniformly for ballistic fabric applications. In one embodiment, the core fibers are configured to absorb tension. In some embodiments, there are two weight (GSM) versions of high performance fabric in dry state with, 500 gm/m<2>at 8000 N, and 1100 gm/m<2>at 19000 N. Further, the weight (GSM) will be doubled as, 1000 gm/m<2>at 8000 N, and 2200 gm/m<2>at 19000 N during waterproof state of the high-performance fabric.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing summary, as well as the following detailed description of the invention, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, exemplary constructions of the invention are shown in the drawings. However, the invention is not limited to the specific methods and structures disclosed herein. The description of a method step or a structure referenced by a numeral in a drawing is applicable to the description of that method step or structure shown by that same numeral in any subsequent drawing herein.
FIG. 1 exemplarily illustrates a cross-sectional view of a high-performance fabric according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Disclosed herein, an Ultra-High Molecular Weight Polyethylene (UHMWPE) based high performance fabric manufactured with core or sandwich type structure using 3D weaving technique.
Referring to FIG.1, a cross-sectional view of a high-performance fabric 100 is illustrated, according to an embodiment of the present invention. In an embodiment, the high-performance fabric 100 includes, a sheath or surface fiber 102 and a core fiber 104. In one embodiment, the core fibers 104 includes an Ultra-High Molecular Weight Polyethylene (UHMWPE) and sheath or surface fibers 102 comprises any one of natural, synthetic or combination thereof.
According to the present invention, said sheath or surface fibers 102 and core fibers 104 are woven using three-dimensional (3D) weaving technique to form Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type threedimensional (3D) fabric 100. The Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type three-dimensional (3D) fabric 100 is further treated with one or more resins to provide waterproof characteristics and enhances the mechanical property of the fabric.
In some embodiments, the resin is, but not limited to, silicone or soft resins. Silicone or any soft resin soaks and adheres to the surface fibers 102, and soaks through the strong core UHMWPE fibers 104. In one embodiment, the resin composition in the fabric 100, helps in incorporating different shore hardness, thickness, and contours of the soft-resin surface. In the present invention, the composition of the resin in the fabric 100 is tuned to provide “leather” like finish. In another embodiment, the resin composition in the fabric 100 is adjusted to provide more buoyancy, wear and tear resistance. In another embodiment, the resin composition in the fabric 100 is adjusted to provide different contours of the soft-resin surface, such that the fabric 100 is flat or with fine waterchannels for optimal fluid flow/less resistance. This makes the fabric 100 capable of being dyeable, printable, attachable, UV proof, chemical resistant, high friction resistant and rip-proof, with in technical specifications of each application.
In one embodiment, the natural sheath fiber 102 includes any one or combination of cotton, sisal, ramie, jute, bamboo and coir fibers. In another embodiment, the synthetic sheath fiber 102 includes any one or combination of polyester, nylon, rayon, acrylic, aramids, modal, glass, and spandex fibers. In one embodiment, the strength of the sheath fibers 102 is comparatively lower to the core fibers 104. In one embodiment, the resin is configured to adhere to the sheath fibers 102 on either side of the core fiber 104 such that the core fiber 104 is unable to separate away from the resin and sheath fibers 102.
Further, the core 104 and sheath fibers 102 is configured to distribute impact-load uniformly for ballistic fabric applications. In one embodiment, the core fibers 104 is a strong fiber, which is not woven, configured to absorb tension. In one embodiment, the strength of the fabric 100 could be adjusted by including more core fibers 104. In some embodiments, there are two strength/weight versions of high performance fabric 100 with, 500 gm/m<2>at 8000 N, and 1100 gm/m<2>at 19000 N. The fabric 100 could be packaged into rolls, up to 250 cm wide. Further, the fabric 100 could be printed or dyed, according to the requirement of the end-users.
Said high performance fabric 100 is processed to provide waterproof, any fluid proof (gas, oil, etc.), UV proof, chemical resistant solution and withstand considerable pressure in different circumstances (even under water), which opens a wide range of applications including, fluid tanks, transportation, armor, boats, etc. The fabric 100 further characterized with neutral buoyancy, where the fabric tends to float, which could be used as gas-container to avoid explosions. Further, if the gas-container made by this fabric 100 emptied, the gas-container is very light and can be shipped flat-packed, thereby provide saving on return freight, storage, etc. The fabric 100 could be incorporated in any application that require light weight, high strength, flexible, environmental proof properties. Further, the fabric 100 is customizable to required stiffness, colors, finishes, prints and contours (i.e. contours of surface of the soft resin).
The fabric 100 could be used for manufacturing knee-caps, helmets, protective garments, and further in a wide variety of industrial and personal use. The high-performance fabric 100, according to the present invention, comprises high modulus fibers and resins, configured to absorb huge amount of force and disperse the impact force uniformly along the surface of the fabric. This facilitates usage of fabric in ballistic protection, combat and defense applications. The fabric 100 could be packaged as a roll, a lightweight and waterproof material, which is 15 times stronger than the steel.
The foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present concept disclosed herein. While the concept has been described with reference to various embodiments, it is understood that the words, which have been used herein, are words of description and illustration, rather than words of limitation. Further, although the concept has been described herein with reference to particular means, materials, and embodiments, the concept is not intended to be limited to the particulars disclosed herein; rather, the concept extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
Claims (9)
1. A high-performance fabric (100), characterized by:
a core fiber (104) comprising an Ultra-High Molecular Weight Polyethylene (UHMWPE) and a sheath fiber (102) comprising any one of natural, synthetic or combination thereof, are woven using threedimensional (3D) weaving technique to form Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type threedimensional (3D) fabric (100),
wherein, the Ultra-High Molecular Weight Polyethylene (UHMWPE) based core or sandwich type three-dimensional (3D) fabric (100) is further treated with one or more resins to provide waterproof characteristics, any fluid proof (gas, oil, etc.), UV proof and chemical resistant property and enhance mechanical property of the fabric (100).
2. The high-performance fabric (100) of claim 1, characterized by the natural sheath fiber (102) including any one or combination of cotton, sisal, ramie, jute, bamboo and coir fibers.
3. The high-performance fabric (100) of claim 1, characterized by the synthetic sheath fiber (102) including any one or combination of polyester, nylon, rayon, acrylic, aramids, modal, glass and spandex fibers.
4. The high-performance fabric (100) of claim 1, characterized by the sheath fibers (102) being comparatively lower in strength to the core fibers (104).
5. The high-performance fabric (100) of claim 1, characterized by the resins including silicone or soft resins.
6. The high-performance fabric (100) of claim 1, characterized by the resins adhering to the sheath fibers (102) on either side of the core fiber (104) such that the core fiber (104) is unable to separate away from the resin and sheath fibers (102).
7. The high-performance fabric (100) of claim 1, characterized by the core (104) and sheath fibers (102) being configured to distribute impact-load uniformly for ballistic fabric applications.
8. The high-performance fabric (100) of claim 1, characterized by the core fibers (104) being configured to absorb tension.
9. The high-performance fabric (100) of claim 1, characterized by fabric weight of 500 gm/m<2>at 8000 N.
The high-performance fabric (100) of claim 1, characterized by fabric weight of 1100 gm/m<2>at 19000 N.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20180201A NO20180201A1 (en) | 2018-02-07 | 2018-02-07 | High performance waterproof fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20180201A NO20180201A1 (en) | 2018-02-07 | 2018-02-07 | High performance waterproof fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
NO20180201A1 true NO20180201A1 (en) | 2019-08-08 |
Family
ID=67809762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20180201A NO20180201A1 (en) | 2018-02-07 | 2018-02-07 | High performance waterproof fabric |
Country Status (1)
Country | Link |
---|---|
NO (1) | NO20180201A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1517112A1 (en) * | 2003-09-17 | 2005-03-23 | Andrew D. Park | Hard armor composite |
US20150343738A1 (en) * | 2011-01-19 | 2015-12-03 | Angel Armor, Llc | Flexible ballistic resistant panel with internal fiber stitches |
US20160312399A1 (en) * | 2015-04-24 | 2016-10-27 | Honeywell International Inc. | Composite fabrics combining high and low strength materials |
US20170080678A1 (en) * | 2015-09-17 | 2017-03-23 | Honeywell International Inc. | Low porosity high strength uhmwpe fabrics |
-
2018
- 2018-02-07 NO NO20180201A patent/NO20180201A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1517112A1 (en) * | 2003-09-17 | 2005-03-23 | Andrew D. Park | Hard armor composite |
US20150343738A1 (en) * | 2011-01-19 | 2015-12-03 | Angel Armor, Llc | Flexible ballistic resistant panel with internal fiber stitches |
US20160312399A1 (en) * | 2015-04-24 | 2016-10-27 | Honeywell International Inc. | Composite fabrics combining high and low strength materials |
US20170080678A1 (en) * | 2015-09-17 | 2017-03-23 | Honeywell International Inc. | Low porosity high strength uhmwpe fabrics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110097021A1 (en) | Bullet resistant backpack | |
RU2293682C2 (en) | Coat for soft hermetic container used for liquid and method of manufacture of such containers | |
CN101522514B (en) | Protective marine barrier system | |
US9499035B1 (en) | Vehicle cover | |
US20110159264A1 (en) | Multifunctional protective fabric | |
KR20140022909A (en) | Antiballistic panel | |
CN201538077U (en) | Fabric tape and safety belt device | |
CN101460300A (en) | Improved liquid submersion ballistic performance through hybridization | |
Ansell | Natural fibre composites in a marine environment | |
Kumar et al. | A review on mechanical behaviour of bast-glass fibre based hybrid polymer composites | |
CN104002522A (en) | Puncture-proof and shock-resisting material | |
Singh et al. | Evaluation of mechanical behavior of multifilament discarded fishnet/glass fiber and polyester composites for marine applications | |
NO20180201A1 (en) | High performance waterproof fabric | |
JP2014121806A (en) | Pneumatic fender | |
CN1266000C (en) | Coating for a flexible fluid containment vessel and a method of making the same | |
Rajf et al. | Evaluation of mechanical behavior of multifilament waste fish net/glass fiber in polyester matrix for the application of mechanized boat deckhouse in marine composites | |
EA031117B1 (en) | Single yarn and product based thereon | |
KR101879202B1 (en) | The floating bodies for fishing net | |
CN102717866A (en) | Anti-wear composite material hull and forming process thereof | |
EP3302959A1 (en) | Outer coating of a ship's hull | |
CN203741639U (en) | Lightweight high-strength cable for marine fixed point mooring | |
Boopalakrishnan et al. | Polyester-Based Bio-Composites for Marine Applications | |
Terry et al. | Comparative analysis of synthetic fibres for marine rope | |
CN213972989U (en) | Low water absorption BOPA membrane | |
CN209305450U (en) | A kind of anti-high-intensitive puller strap isolated |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FC2A | Withdrawal, rejection or dismissal of laid open patent application |