NO20150289A1 - Circuit for supply of short-circuit current - Google Patents

Circuit for supply of short-circuit current Download PDF

Info

Publication number
NO20150289A1
NO20150289A1 NO20150289A NO20150289A NO20150289A1 NO 20150289 A1 NO20150289 A1 NO 20150289A1 NO 20150289 A NO20150289 A NO 20150289A NO 20150289 A NO20150289 A NO 20150289A NO 20150289 A1 NO20150289 A1 NO 20150289A1
Authority
NO
Norway
Prior art keywords
circuit
short
capacitor
current
circuit current
Prior art date
Application number
NO20150289A
Other languages
Norwegian (no)
Other versions
NO341135B1 (en
Inventor
Bjarte Hoff
Original Assignee
Bjarte Hoff
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bjarte Hoff filed Critical Bjarte Hoff
Priority to NO20150289A priority Critical patent/NO341135B1/en
Publication of NO20150289A1 publication Critical patent/NO20150289A1/en
Publication of NO341135B1 publication Critical patent/NO341135B1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Details Of Television Scanning (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Oppfinninga angår ein krets som kan levera kortslutningsstraum til ein elektrisk installasjon der det elektriske anlegget sjølv ikkje har kapasitet til å levera denne kortslutningsstraumen. Det kan væra i eit svakt elektrisk kraftnett, eller ein isolert installasjon med eigen distribuert generering av elektrisitet, som mikronett i øydrift. Kretsen består av eit energilager beståande av minst ein kondensator (C) der kretsen blir aktivert av eit signal frå ei kontrolleining (KE). Ved aktivering lukkar halvleiarbrytaren (T) ei forbinding mellom kondensatoren (C) og den elektriske installasjonen (LI, L2/N), der spenninga i kondensatoren driv ein kortslutningsstraum gjennom den elektriske installasjonen. Kondensatoren (C) blir lada opp gjennom dioden (D) der motstand (RI) avgrensar ladestraumen. Ein ekstra motstand (R2) kan nyttast til å avgrensa kortslutningsstraumen for å beskytta kondensatoren (C) mot overstraum.The invention relates to a circuit which can supply short-circuit current to an electrical installation where the electrical system itself does not have the capacity to supply this short-circuit current. It may be in a weak electrical power grid, or an isolated installation with its own distributed generation of electricity, such as a micro grid in eye operation. The circuit consists of an energy store consisting of at least one capacitor (C) where the circuit is activated by a signal from a control unit (KE). Upon activation, the semiconductor switch (T) closes a connection between the capacitor (C) and the electrical installation (LI, L2 / N), where the voltage in the capacitor drives a short-circuit current through the electrical installation. The capacitor (C) is charged through the diode (D) where resistance (RI) defines the charging current. An additional resistor (R2) can be used to define the short-circuit current to protect the capacitor (C) from overcurrent.

Description

BRUKSOMRÅDE AREA OF USE

Oppfinninga angår ein krets som leverar kortslutningsstraum til bruk i svake eller isolerte elektriske anlegg, inkludert mikronett, der nettet sjølv ikkje kan levera tilstrekkelig kortslutningsstraum til å løyse ut installasjonen sine overstrømsvern. Eit aktuelt bruksområde er levering av kortslutningsstraum i kombinasjon med distribuert småskala produksjon av elektrisitet som solcellepanel, vindturbin eller små vasskraftverk. The invention relates to a circuit that supplies short-circuit current for use in weak or isolated electrical installations, including microgrids, where the grid itself cannot supply sufficient short-circuit current to trip the installation's overcurrent protection. A relevant area of application is the supply of short-circuit current in combination with distributed small-scale production of electricity such as solar panels, wind turbines or small hydropower plants.

BAKGRUNN BACKGROUND

For at overstrømsvernet i ein elektrisk installasjon skal løyse ut ved feil som kortslutning, må det elektriske anlegget kunne levera ein tilstrekkelig stor kortslutningsstraum. I svake eller isolerte nett er ikkje alltid tilstrekkelig kortslutningsstraum tilgjengelig. Dette gjeld spesielt i små isolerte nett med lokal energiproduksjon, slik som solcellepanel, mindre vindturbinar eller små vasskraftverk. Tilhøyrande generatorar eller kraftelektroniske omformarar er ikkje nødvendigvis i stand til å sjølv levera tilstrekkelig kortslutningsstraum, enten på grunn av utstyret sin dimensjonerte straum, eller energireservar. Slike isolerte nett inkludera også ulike former for mikronett i øydrift. Mikronett er definert som små elektriske kraftnett som inkludera eigen generering av elektrisitet og energilager som kan driftast saman med det øvrige kraftnettet, eller som eit isolert nett (øydrift). Mikronett kan vera i from av eit avgrensa geografisk område, eller internt i ein bygning. In order for the overcurrent protection in an electrical installation to trip in the event of a fault such as a short circuit, the electrical installation must be able to deliver a sufficiently large short circuit current. In weak or isolated networks, sufficient short-circuit current is not always available. This applies especially in small isolated networks with local energy production, such as solar panels, smaller wind turbines or small hydropower plants. Associated generators or power electronic converters are not necessarily able to supply sufficient short-circuit current themselves, either because of the equipment's rated current or energy reserves. Such isolated grids also include various forms of microgrids in island operation. Microgrids are defined as small electrical power grids that include own generation of electricity and energy storage that can be operated together with the rest of the power grid, or as an isolated grid (island operation). Microgrids can be in the front of a limited geographical area, or internally in a building.

Ei kjent løysing er å overdimensjonere kraftelektroniske omformar kopla til eit energilager, for eksempel batteri, slik at tilstrekkelig kortslutningsstraum kan leverast av denne. Det er også foreslått å bruke avanserte vern, med eller utan digital kommunikasjon, for å detektera og kopla ut feil utan å basera seg på kortslutningsstraum. A known solution is to oversize power electronic converters connected to an energy storage, for example a battery, so that sufficient short-circuit current can be supplied by this. It is also proposed to use advanced protections, with or without digital communication, to detect and disconnect faults without relying on short-circuit current.

Å overdimensjonere av kraftelektroniske omformarar fører derimot til eit dyrare anlegg, utan at denne overkapasiteten kan nyttast i normal drift. On the other hand, oversizing power electronic converters leads to a more expensive system, without this excess capacity being used in normal operation.

Avanserte vern fører til eit dyrare og meir komplisert anlegg, samt ein meir arbeidskrevjande prosjektering og igangkjøring av anlegget. Ved ombygging av eksisterande elektriske anlegg til mikronett, er også ynskjelig å nytta eksisterande vern i installasjonen i størst mulig grad. Advanced protection leads to a more expensive and more complicated plant, as well as more labor-intensive planning and commissioning of the plant. When converting existing electrical installations to microgrids, it is also desirable to use existing protection in the installation to the greatest extent possible.

Ved å bruka kretsen i oppfinninga for å levera kortslutningsstraum, unngår ein ulempene med overdimensjonerte kraftelektroniske omformarar eller avanserte vernløysingar. By using the circuit in the invention to supply short-circuit current, one avoids the disadvantages of oversized power electronic converters or advanced protection solutions.

FIGURAR FIGURES

Figur 1 viser kretsskjema til oppfinninga. Figure 1 shows a circuit diagram of the invention.

Figur 2 viser eksempel på plassering i ein elektrisk installasjon. Figure 2 shows an example of placement in an electrical installation.

Figur 3 viser korleis fleire kretsar for levering av kortslutningsstraum kan brukast i eit trefasa elektrisk anlegg ved hjelp av stjernekopling. Figur 4 viser korleis fleire kretsar for levering av kortslutningsstraum kan brukast i eit trefasa elektrisk anlegg ved hjelp av trekantkopling. Figure 3 shows how several circuits for the supply of short-circuit current can be used in a three-phase electrical installation using a star connection. Figure 4 shows how several circuits for the supply of short-circuit current can be used in a three-phase electrical installation using a delta connection.

DETALJERT BESKRIVELSE DETAILED DESCRIPTION

Krets for å levera kortslutningsstraum til ein elektrisk installasjon erkarakterisert vedat eit energilager i form at ein eller fleire kondensatorar (C) blir lada opp til ei spenning lik nettspenninga sin amplitudeverdi ved hjelp av dioden (D), der motstanden (RI) avgrensar ladestraumen. Når ei kontrolleining (KE) detektera kortslutning i det elektriske anlegget, blir det sendt eit aktiveringssignal halvleiarbrytaren (T), som kan vera ein tyristor eller transistor. Eit slikt aktiveringssignal fører til at halvleiarbrytaren (T) lukkar ein forbindelse mellom kondensatoren (C) og den elektriske installasjonen (LI, L2/N). Spenninga over kondensatoren (C) driv dermed ein kortslutingsstraum i form av ein likestraum ut i det elektriske anlegget, gjennom overstraumsvernet (Fl) og kortslutningspunktet (KS) i den elektriske installasjonen, som vil ha lav impedans. Halvleiarbrytaren (T) blir haldt lukka heilt til likestraumen går til null. Den tilførte kortslutningsstraumen fører til at overstraumsvernet til kursen med feil (Fl) blir aktivert og isolera kursen med feil frå resten av det elektriske anlegget. The circuit for supplying short-circuit current to an electrical installation is characterized by an energy store in the form of one or more capacitors (C) being charged up to a voltage equal to the mains voltage's amplitude value by means of the diode (D), where the resistor (RI) limits the charging current. When a control unit (KE) detects a short circuit in the electrical system, an activation signal is sent to the semiconductor switch (T), which can be a thyristor or transistor. Such an activation signal causes the semiconductor switch (T) to close a connection between the capacitor (C) and the electrical installation (LI, L2/N). The voltage across the capacitor (C) thus drives a short-circuit current in the form of a direct current into the electrical system, through the overcurrent protection (Fl) and the short-circuit point (KS) in the electrical installation, which will have low impedance. The semiconductor switch (T) is kept completely closed until the direct current goes to zero. The supplied short-circuit current causes the overcurrent protection of the circuit with a fault (Fl) to be activated and isolate the circuit with a fault from the rest of the electrical system.

Ved behov, kan kortslutningsstraumen avgrensast med motstanden (R2) for å beskytta kondensatoren (C) mot overstraum. If necessary, the short-circuit current can be limited with the resistor (R2) to protect the capacitor (C) against overcurrent.

Sidan kondensatoren (C) ikkje oppnår større spenning enn amplitudeverdien til nettspenninga ved opplading, kan kretsen ikkje generera skadelig høg spenning i den elektriske installasjonen ved aktivering. Since the capacitor (C) does not achieve a greater voltage than the amplitude value of the mains voltage when charging, the circuit cannot generate harmful high voltage in the electrical installation when activated.

Levering av kortslutningsstraum i trefasa nett kan gjennomførast ved å kopla tre einingar i stjernekopling som vist i Figur 3, eller trekantkopling som vist i Figur 4. Delivery of short-circuit current in a three-phase network can be carried out by connecting three units in star connection as shown in Figure 3, or delta connection as shown in Figure 4.

Claims (6)

1. Krets for å levera kortslutningsstraum i ein elektrisk installasjon,karakterisertv e d at kortslutningsstraumen blir levert som ein likestraum frå eit energilager beståande av minst ein kondensator (C), at kretsen blir aktivert av halvleiarbrytaren (T), og at kondensatoren (C) blir lada opp gjennom dioden (D) der motstand (RI) avgrensar ladestraumen.1. Circuit for supplying short-circuit current in an electrical installation, characterized in that the short-circuit current is supplied as a direct current from an energy storage consisting of at least one capacitor (C), that the circuit is activated by the semiconductor switch (T), and that the capacitor (C) is charge up through the diode (D) where resistance (RI) limits the charging current. 2. Krets ifølge krav 1,karakterisert vedat ein kortslutningsstraum blir tilført det elektriske anlegget gjennom halvleiarbrytaren (T) ved aktiveringssignal frå ei kontrolleining (KE).2. Circuit according to claim 1, characterized in that a short-circuit current is supplied to the electrical system through the semiconductor switch (T) upon activation signal from a control unit (KE). 3. Krets ifølge krav 1-2,karakterisert vedat kondensatoren (C) driv ein likestraum gjennom kortslutingspunktet (KS) for å løyse ut overstraumsvernet i den elektriske installasjonen.3. Circuit according to claim 1-2, characterized in that the capacitor (C) drives a direct current through the short-circuit point (KS) to release the overcurrent protection in the electrical installation. 4. Krets ifølge krav 1-3,karakterisert vedat kondensatoren i full-lada tilstand har maksimal spenning lik amplitudeverdien til spenninga i den elektriske installasjonen.4. Circuit according to claims 1-3, characterized in that the capacitor in a fully charged state has a maximum voltage equal to the amplitude value of the voltage in the electrical installation. 5. Krets ifølge krav 1-4,karakterisert vedat kortslutningsstraumen kan avgrensast med ein motstand (R2).5. Circuit according to claims 1-4, characterized in that the short-circuit current can be limited by a resistor (R2). 6. Krets ifølge krav 1-5,karakterisert vedat kortslutningsstraum kan leverast i trefasa nett ved å bruka fleire einingar i stjerne- eller trekantkopling.6. Circuit according to claims 1-5, characterized in that short-circuit current can be supplied in a three-phase network by using several units in a star or delta connection.
NO20150289A 2015-03-03 2015-03-03 Circuit for supply of short-circuit current NO341135B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20150289A NO341135B1 (en) 2015-03-03 2015-03-03 Circuit for supply of short-circuit current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20150289A NO341135B1 (en) 2015-03-03 2015-03-03 Circuit for supply of short-circuit current

Publications (2)

Publication Number Publication Date
NO20150289A1 true NO20150289A1 (en) 2016-09-05
NO341135B1 NO341135B1 (en) 2017-08-28

Family

ID=57183857

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20150289A NO341135B1 (en) 2015-03-03 2015-03-03 Circuit for supply of short-circuit current

Country Status (1)

Country Link
NO (1) NO341135B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959695A (en) * 1975-04-29 1976-05-25 Westinghouse Electric Corporation Circuit interrupter with ground fault trip control
US4258403A (en) * 1979-05-31 1981-03-24 Westinghouse Electric Corp. Ground fault circuit interrupter
US8058700B1 (en) * 2007-06-07 2011-11-15 Inpower Llc Surge overcurrent protection for solid state, smart, highside, high current, power switch
TW200929773A (en) * 2007-12-28 2009-07-01 Mobiletron Electronics Co Ltd Short circuit protection device for alternator

Also Published As

Publication number Publication date
NO341135B1 (en) 2017-08-28

Similar Documents

Publication Publication Date Title
Karimi et al. A new centralized adaptive underfrequency load shedding controller for microgrids based on a distribution state estimator
Sadeghkhani et al. Low‐voltage ride‐through of a droop‐based three‐phase four‐wire grid‐connected microgrid
US8692523B2 (en) Power generation system and method with voltage fault ride-through capability
US10523132B2 (en) Start-up of HVDC converters
US9369062B2 (en) Single-phase emergency operation of a three-phase inverter and corresponding inverter having a polyphase to single phase changeover operation
KR101665368B1 (en) Apparatus and method for power delivery and distribution between ship and shore power grid
Alatrash et al. Enabling large-scale PV integration into the grid
US20150333503A1 (en) Centralized dc curtailment for overvoltage protection
KR101670871B1 (en) Apparatus and method for power delivery and distribution between ship and shore power grid
Srivatchan et al. Control scheme for power quality improvement in islanded microgrid operation
Gu et al. Application of multi-agent systems to microgrid fault protection coordination
Faizal et al. Sumatra-Java HVDC transmission system modelling and system impact analysis
US11271403B2 (en) Method for operating a wind power facility
WO2017097308A1 (en) A wind power plant
Mozumder et al. Coordinated operation of multiple inverter based renewable distributed generators as an active power injector and reactive power compensator
NO20150289A1 (en) Circuit for supply of short-circuit current
Srivastava et al. Behavior of self polarized Mho characteristic on lines fed from DFIG based wind farms
Rones et al. Adaptive protection schemes for feeders with the penetration of SEIG based wind farm
Brenna et al. Real time simulation of smart grids for interface protection test and analysis
Yadav et al. Frequency regulation in non-synchronous ac system connected via MTDC network
Zhou et al. Autonomous control integrating fast voltage regulation and islanding detection for high penetration PV application
Shamraiz Optimal Volt Var control in Smart Distribution Networks
Niu et al. Low Voltage Ride-through Strategy for Wind Farm and VSC-HVDC
Korde et al. A novel fault monitoring mechanism on overhead transmission line in power grid
Fatheli et al. Development of Load Control Algorithm for PV Microgrid.

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees