NO20141145A1 - A composition for the production of building materials - Google Patents

A composition for the production of building materials Download PDF

Info

Publication number
NO20141145A1
NO20141145A1 NO20141145A NO20141145A NO20141145A1 NO 20141145 A1 NO20141145 A1 NO 20141145A1 NO 20141145 A NO20141145 A NO 20141145A NO 20141145 A NO20141145 A NO 20141145A NO 20141145 A1 NO20141145 A1 NO 20141145A1
Authority
NO
Norway
Prior art keywords
weight
water
composition according
mgo
building material
Prior art date
Application number
NO20141145A
Other languages
Norwegian (no)
Inventor
Mohammad Hajmohammadian Baghban
Original Assignee
Mohammad Hajmohammadian Baghban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mohammad Hajmohammadian Baghban filed Critical Mohammad Hajmohammadian Baghban
Publication of NO20141145A1 publication Critical patent/NO20141145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/301Oxides other than silica porous or hollow
    • C04B14/302Aerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/304Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Oppfinnelsen angår en sammensetning for produksjon av byggematerialer som har forbedrede egenskaper sammenlignet med tidligere kjente materialer. Sammensetningen blandes med vann i produksjonsprosessen for å gi denønskede byggematerialet. Denne oppfinnelsen angår nye materialsammensetninger og anvendelse av slike sammensetninger ved produksjon av bygge-elementer. The invention relates to a composition for the production of building materials which have improved properties compared to previously known materials. The composition is mixed with water in the production process to provide the desired building material. This invention relates to new material compositions and the use of such compositions in the production of building elements.

En byggemateriale som har egenskaper som høy varme- og lydisolasjon, god brannmotstand, lav vekt og rask produksjon og installasjon har alltid vært drømmemateriale for arkitekter og byggherrer. A building material that has properties such as high heat and sound insulation, good fire resistance, low weight and quick production and installation has always been a dream material for architects and builders.

Ulike typer av betong som lett tilslag betong eller luftet autoklaverte betong har vært under utvikling i de siste årene for å skaffe byggematerialer med forbedrede egenskaper. Different types of concrete such as lightweight aggregate concrete or aerated autoclaved concrete have been under development in recent years to provide building materials with improved properties.

WO 201166209 beskriver bruk av aerogel granulater som tilslag i betong for å forbedre materialegenskapene. Siden aerogel granulater har lav varmeledningsevne, relativt høy styrke og er motstandsdyktig mot brann; kan de være et godt alternativt til dette formålet. Et spesielt type av overflateaktivt middel er vanligvis brukt for å dispergere aerogel granulater i betongen. Men siden varmeledningsevne av herdet portland sement (eller matrisen) i kompositten er mye høyere enn til konvensjonelle aerogeler, fungerer matrisen som kuldebroer i dette systemet og fører til en betong med meget høyere varmeledningsevne enn til typiske aerogel granulater. WO 201166209 describes the use of airgel granules as aggregates in concrete to improve the material properties. Since airgel granules have low thermal conductivity, relatively high strength and are resistant to fire; they can be a good alternative for this purpose. A special type of surfactant is usually used to disperse airgel granules in the concrete. However, since the thermal conductivity of hardened portland cement (or the matrix) in the composite is much higher than that of conventional aerogels, the matrix acts as cold bridges in this system and leads to a concrete with much higher thermal conductivity than typical airgel granules.

US 5645518 beskriver bruk av fosfat keramikk som alternativer til Portland sement. Slike keramikk kan produseres uten avfyring som gjøre det enklere, billigere og mer miljøvennlig å produsere. Produksjonen av disse keramikk krever vanligvis mindre energi sammenlignet med produksjon av Portland sement. Magnesiumkaliumfosfat keramikk er et eksempel på en slik type keramikk. Oppløsning av monokaliumfosfat (KH2P04) i vann fører til en syrlig oppløsning som magnesiumoksyd (MgO) kan løses opp i den, og en syre-base-reaksjon initierer mellom de to oppløste komponentene. Vanligvis en liten mengde av borsyre er også brukt som hemmende middel til å bremse reaksjonen. Dessuten, siden den syre-base-reaksjonen er meget eksoterm, må reaksjonshastigheten bremses ved hjelp av andre materialer eller metoder særlig ved produksjon i store mengder. Derfor, MgO blir kalsinert ved 1300 ° C før blanding for å redusere løseligheten. Se for eksempel US patent no. 6.776.837 og 6.204.214, hvorønskede bruk av kalsinert MgO ved produksjonen av fosfat keramikk er vist. Hvis bruk av kalsinert MgO og borsyre ikke være nok til å redusere den eksoterme varmen fra reaksjonen, mono-kaliumfosfat med en lav oppløselighet av for eksempel ca. 15 g/l kan brukes for dette formålet, se Wagh, et al, Oil & Gas Journal 9. mai 2005, s. 53-55. Høyere trykkfasthet og lavere varmeledningsevne enn til vanlig Portlandsement kan også oppnås ved tilsetning av flyveaske [US patent 5.830.815] eller silikat [US patent 6.518.212]. Denne bakgrunnen viser at det er et behov for bygningsmaterialer som har forbedrede egenskaper sammenlignet med de tidligere kjente bygningsmaterialer. US 5645518 describes the use of phosphate ceramics as alternatives to Portland cement. Such ceramics can be produced without firing, which makes it easier, cheaper and more environmentally friendly to produce. The production of these ceramics usually requires less energy compared to the production of Portland cement. Magnesium potassium phosphate ceramic is an example of such a type of ceramic. Dissolving monopotassium phosphate (KH2P04) in water leads to an acidic solution into which magnesium oxide (MgO) can dissolve, and an acid-base reaction initiates between the two dissolved components. Usually a small amount of boric acid is also used as an inhibitor to slow down the reaction. Moreover, since the acid-base reaction is very exothermic, the reaction rate must be slowed down by means of other materials or methods, especially when producing large quantities. Therefore, MgO is calcined at 1300 °C before mixing to reduce its solubility. See, for example, US patent no. 6,776,837 and 6,204,214, where the desired use of calcined MgO in the production of phosphate ceramics is shown. If the use of calcined MgO and boric acid is not enough to reduce the exothermic heat from the reaction, mono-potassium phosphate with a low solubility of, for example, approx. 15 g/l can be used for this purpose, see Wagh, et al, Oil & Gas Journal May 9, 2005, pp. 53-55. Higher compressive strength and lower thermal conductivity than ordinary Portland cement can also be achieved by adding fly ash [US patent 5,830,815] or silicate [US patent 6,518,212]. This background shows that there is a need for building materials that have improved properties compared to the previously known building materials.

Denne oppfinnelsen gir et kompositt, eller blanding, som inneholder aerogel granulater, magnesiumoksid og et alkali-fosfatsalt. Fosfat og magnesiumoksydet danne et kjemisk bundet keramikk når de blandes med vann. Det bygningsmaterialet som ble oppnådd etter blanding ifølge oppfinnelsen vil ha en meget lavere varmeledningsevne enn til de tidligere kjente betonger. Det er verdt å merke at selv om å erstatte Portland sement med kjemisk bundet fosfat keramikk fører til en matrise med lavere varmeledningsevne, vil den varmeledningsevne til matrisen fremdeles være mye høyere enn til aerogel granulater. En måte er foreslått i denne oppfinnelsen for å redusere varmeledningsevne til matrisen som fører til en enda mer miljøvennlig byggemateriale, og en mer kostnadseffektiv sammensetning. This invention provides a composite, or mixture, containing airgel granules, magnesium oxide and an alkali phosphate salt. Phosphate and magnesium oxide form a chemically bonded ceramic when mixed with water. The building material obtained after mixing according to the invention will have a much lower thermal conductivity than the previously known concretes. It is worth noting that although replacing Portland cement with chemically bonded phosphate ceramics leads to a matrix with lower thermal conductivity, the thermal conductivity of the matrix will still be much higher than that of airgel granules. A way is proposed in this invention to reduce the thermal conductivity of the matrix which leads to an even more environmentally friendly building material, and a more cost-effective composition.

Porøsiteten av en betong-type byggemateriale er, blant mange faktorer, avhengig av vann-sementforholdet. Sementen blir her betraktet som den totale mengden av MgO og fosfatsalt. Det maksimale vann-sement-forhold kan for eksempel være begrenset til mindre enn 60% av sementvekten for vanlige portlandsement-pastaer. Spesielle teknikker og metoder, slik som roterende herding eller bruk av stabiliseringsmidler, trenges for å unngå separasjon med øket vanninnhold. Mengden av vann som normalt brukes i magnesium-kalium-fosfat keramikk blandinger er omtrent 50% av sementvekt (vekt av MgO og KH2P04). The porosity of a concrete-type building material is, among many factors, dependent on the water-cement ratio. The cement is considered here as the total amount of MgO and phosphate salt. For example, the maximum water-cement ratio may be limited to less than 60% of the cement weight for ordinary portland cement pastes. Special techniques and methods, such as rotary curing or the use of stabilizers, are needed to avoid separation with increased water content. The amount of water normally used in magnesium-potassium-phosphate ceramic mixtures is approximately 50% of cement weight (weight of MgO and KH2P04).

For å redusere den varmeledningsevne til byggematerialet ifølge oppfinnelsen, er porøsiteten til matrisen økt ved å øke vann-sementforholdet uten å forårsake separasjon. In order to reduce the thermal conductivity of the building material according to the invention, the porosity of the matrix is increased by increasing the water-cement ratio without causing separation.

Søkeren fant en metode for å øke mengden av vann til mer enn 550% av sementvekt (MgO og KH2P04) og samtidig oppnådd en pasta som er fast nok for å unngå separering under herding. The applicant found a method to increase the amount of water to more than 550% of cement weight (MgO and KH2P04) and at the same time obtain a paste that is firm enough to avoid separation during curing.

Denne betydeligeøkningen i vanninnholdet er hovedsakelig oppnådd ved å erstatte kalsinerte MgO med ukalsinert MgO i det ovennevnte sammensetning som omfatter aerogel granulater, magnesiumoksid og et alkali-fosfatsalt, helst mono-kaliumfosfat. Den ukalsinerte MgO har finere og mer porøse partikler sammenlignet med det kalsinerte MgO, og er også mye mer reaktive med vann og fosfat. Bruk av ukalsinert MgO fører også til en mer miljøvennlig produkt på grunn av eliminering av kalsineringsprosessen, som har et høyt energibehov. Bruk av ukalsinert MgO er utfordrende for praktiske anvendelser i de tidligere kjente blandinger som omfatter magnesium-kaliumfosfat keramikk, på grunn av en meget høy eksoterm reaksjon som kan svikte i produksjonen i stor skala. Men ved å bruke hydrofobe aerogel granulater i blandingen som tilslag reduseres den totale eksoterme varmeproduksjonen i volumet sammenlignet med vanlig magnesiumkaliumfosfat keramiske blandinger. Dessuten,økes behov for vann ved bruk av hydrofobe aerogel granulater, og denøkede mengden avvann i blandingen bidrar til avkjøling av blandingen under blandeprosessen. Faktisk, bruk av kalsinert MgO med finere partikler og hydrofobe aerogel granulater bidrar til å øke vanninnholdet i blandingen, og økt vanninnholdet sammen med hjelp av hydrofobe aerogel granulater som tilslag gjør det mulig å benytte ukalsinert MgO med fine partikler i stedet for kalsinert MgO. Partikkelstørrelsen av ukalsinert MgO er normalt mellom 5 nm og 400 \ xmkarakterisert vedat finere partikkelstørrelseøker vannbehovet. Bruk av MgO-pulver med partikkelstørrelse mindre enn 5 nm er også mulig, men slike pulvere er vanligvis svært kostbare. Derfor, ut fra et økonomisk aspekt, er det tilstrekkelig å bruke pulver med en partikkelstørrelse ikke større enn 5 nm. This significant increase in water content has mainly been achieved by replacing calcined MgO with uncalcined MgO in the above-mentioned composition comprising airgel granules, magnesium oxide and an alkali-phosphate salt, preferably mono-potassium phosphate. The uncalcined MgO has finer and more porous particles compared to the calcined MgO, and is also much more reactive with water and phosphate. Using uncalcined MgO also leads to a more environmentally friendly product due to the elimination of the calcination process, which has a high energy requirement. The use of uncalcined MgO is challenging for practical applications in the previously known mixtures comprising magnesium-potassium phosphate ceramics, due to a very high exothermic reaction which can fail in large-scale production. However, by using hydrophobic airgel granules in the mixture as aggregate, the total exothermic heat production in the volume is reduced compared to ordinary magnesium potassium phosphate ceramic mixtures. In addition, the need for water increases when using hydrophobic airgel granules, and the increased amount of water in the mixture contributes to cooling of the mixture during the mixing process. In fact, the use of calcined MgO with finer particles and hydrophobic airgel granules helps to increase the water content of the mixture, and increasing the water content together with the help of hydrophobic airgel granules as aggregate makes it possible to use uncalcined MgO with fine particles instead of calcined MgO. The particle size of uncalcined MgO is normally between 5 nm and 400 µm characterized by finer particle size increasing the water requirement. The use of MgO powder with a particle size smaller than 5 nm is also possible, but such powders are usually very expensive. Therefore, from an economic aspect, it is sufficient to use powder with a particle size not larger than 5 nm.

Aerogeler i foreliggende oppfinnelse omfatter kolloidale stoffer som er gelert og tørket. De har lave tetthet og høye porøsitet. Det faste stoff er bare ca. 1 til 15 volum% av aerogelen. Resten av sitt volum er gass eller vakuum. Det betyr at de har et høyt overflateareal (opp til 1000 m2 / g). Uorganiske aerogels er vanligvis hydrofile, og er en av de letteste materialene og en av de beste varme isolasjoner. Aerogel granulater kan oppnås ved sliping aerogel monolitter. De brukte hydrofobe aerogel granulater har en vann kontaktvinkel> 90 °. Hydrofobe aerogel granulater blir ofte oppnådd fra hydrofile aerogel granulater etter et hydrofoberende behandling. Alternativt blir hydrofobe aerogel produsert ved bruk av hydrofoberende midler under dannelse av aerogelen. Aerogels in the present invention comprise colloidal substances which have been gelled and dried. They have low density and high porosity. The solid matter is only approx. 1 to 15% by volume of the airgel. The rest of its volume is gas or vacuum. This means that they have a high surface area (up to 1000 m2 / g). Inorganic aerogels are usually hydrophilic, and are one of the lightest materials and one of the best thermal insulators. Airgel granules can be obtained by grinding airgel monoliths. The used hydrophobic airgel granules have a water contact angle > 90 °. Hydrophobic airgel granules are often obtained from hydrophilic airgel granules after a hydrophobic treatment. Alternatively, hydrophobic airgels are produced using hydrophobic agents during formation of the airgel.

Alkali-fosfatsalter omfatter alle slike salter som passer for bruk i en sammensetning til produsering byggematerialer. Disse omfatter vannoppløselige fosfater som forskjellige natrium- og kaliumsalter, og spesielt mono-kaliumfosfat. Fosfatsaltet, for eksempel mono-kaliumfosfatsalt har normalt en oppløselighet i vann på mer enn 15 g/l ved 25 ° C, og enda mer foretrukket omtrent 220 g/l ved 25 ° C. Den innledende oppløselighet av monokaliumfosfaten er justert av størrelse og konsistens av partiklene som benyttes. Bruk av monokaliumfosfat med høy vannløselighet i blandingen vil føre til enda høyere krav til vann, raskere herding, og enda lavere varmeledningsevne. Alkali-phosphate salts include all such salts which are suitable for use in a composition for producing building materials. These include water-soluble phosphates such as various sodium and potassium salts, and especially mono-potassium phosphate. The phosphate salt, for example mono-potassium phosphate salt, normally has a solubility in water of more than 15 g/l at 25 °C, and even more preferably about 220 g/l at 25 °C. The initial solubility of the mono-potassium phosphate is adjusted by size and consistency of the particles used. Using monopotassium phosphate with high water solubility in the mixture will lead to even higher requirements for water, faster curing, and even lower thermal conductivity.

Dessuten, flyveaske eller andre materialer som inneholder silikat kan også brukes i blandingen for å øke det totale vannbehovet og også øke styrken. Andre typer kjemisk bundet fosfat keramikk eller andre typer av bindemidler, som Portland sement og gips, kan også benyttes for modifikasjon av materialegenskaper. Also, fly ash or other materials containing silicate can also be used in the mix to increase the total water requirement and also increase the strength. Other types of chemically bound phosphate ceramics or other types of binders, such as Portland cement and gypsum, can also be used to modify material properties.

Skummemidler kan også tilsettes til blandingen for å innføre makro luftporer til komposittet og øke porøsiteten. Andre typer av tilsetningsstoffer som overflateaktive midler kan også brukes til å forbedre de mekaniske og termiske egenskaper. Bruk av hydrofobe midler under blandeprosessen eller etter blanding kan også øke holdbarheten og redusere den varmeledningsevne til materialet i fuktig tilstand. I tillegg, kan bruk av forskjellige typer fibre forbedre mekaniske eller termiske egenskaper av materialet. Faseforandringsmaterialer i enten innkapslet form eller uten innkapsling samt andre materialer med høy spesifikk varmekapasitet kan også innføres i blandingen for å forbedre de termiske egenskapene til materialet. Forskjellige typer av tilslag kan også brukes i blandingen for å modifisere materialegenskaper. Foaming agents can also be added to the mixture to introduce macro air pores into the composite and increase porosity. Other types of additives such as surfactants can also be used to improve the mechanical and thermal properties. The use of hydrophobic agents during the mixing process or after mixing can also increase the durability and reduce the thermal conductivity of the material in a moist state. In addition, the use of different types of fibers can improve the mechanical or thermal properties of the material. Phase change materials in either encapsulated or unencapsulated form as well as other materials with high specific heat capacity can also be introduced into the mixture to improve the thermal properties of the material. Different types of aggregates can also be used in the mix to modify material properties.

Denne oppfinnelsen er definert ved de etterfølgende krav, og oppfinnelsen er beskrevet i det følgende: This invention is defined by the following claims, and the invention is described in the following:

Denne oppfinnelsen gir en sammensetning for å produsere byggematerialer som omfatter: This invention provides a composition for producing building materials comprising:

-15-80 vekt% hydrofobe aerogel granulater basert på den totale vekt av sammensetning; -15-80% by weight of hydrophobic airgel granules based on the total weight of the composition;

- Ukalsinert MgO; og - Uncalcined MgO; and

- Et alkali fosfat salt; - An alkali phosphate salt;

karakterisert vedat det molekylære forhold mellom kalsinert MgO og fosfat er i området 0.75-1.25. characterized in that the molecular ratio between calcined MgO and phosphate is in the range 0.75-1.25.

I ett aspekt av oppfinnelsen, omfatter sammensetningen 20-80 vekt% hydrofobe aerogel granulater basert på den totale vekt av sammensetningen, fortrinnsvis 30-80 vekt-%. In one aspect of the invention, the composition comprises 20-80% by weight of hydrophobic airgel granules based on the total weight of the composition, preferably 30-80% by weight.

I et ytterligere aspekt av oppfinnelsen, omfatter sammensetningen 5-25 vekt% ukalsinert MgO. In a further aspect of the invention, the composition comprises 5-25% by weight of uncalcined MgO.

I et ytterligere aspekt av oppfinnelsen, omfatter sammensetningen 15-65 vekt% av alkali-fosfatsalt. In a further aspect of the invention, the composition comprises 15-65% by weight of alkali phosphate salt.

I et ytterligere aspekt av oppfinnelsen omfatter sammensetningen et alkali-fosfatsalt valgt fra gruppen bestående av monokaliumfosfat, dikaliumfosfat, mono-natriumfosfat og dinatriumfosfat, og en hvilken som helst kombinasjon av disse, fortrinnsvis alkali-fosfatsalt er mono- kaliumfosfat. In a further aspect of the invention, the composition comprises an alkali phosphate salt selected from the group consisting of monopotassium phosphate, dipotassium phosphate, monosodium phosphate and disodium phosphate, and any combination thereof, preferably the alkali phosphate salt is monopotassium phosphate.

I et ytterligere aspekt av oppfinnelsen, har den monokaliumfosfat en vann oppløselighet på minst 15 g/l, på minst 100 g/l, eller fortrinnsvis minst 200 g/l ved 25 ° C. In a further aspect of the invention, the monopotassium phosphate has a water solubility of at least 15 g/l, of at least 100 g/l, or preferably at least 200 g/l at 25 °C.

I et ytterligere aspekt av oppfinnelsen, kan sammensetningen danne en homogen oppslemming som herdes uten separasjon som ikke separerer i faser av forskjellig viskositet når det blandes med vann i området fra 50 til 600 vekt% basert på den totale vekt av ukalsinert MgO og alkali-fosfatsalt, fortrinnsvis i området 100 til 600 vekt%, eller 150 til 600 vekt%, og enda mer foretrukket 200 til 600 vekt%. In a further aspect of the invention, the composition can form a homogenous slurry which hardens without separation which does not separate into phases of different viscosity when mixed with water in the range of 50 to 600% by weight based on the total weight of uncalcined MgO and alkali phosphate salt , preferably in the range of 100 to 600% by weight, or 150 to 600% by weight, and even more preferably 200 to 600% by weight.

I et ytterligere aspekt av oppfinnelsen er mengden av vann i området fra 15 til 70 vekt% basert på den totale vekt av sammensetningen. I et ytterligere aspekt av oppfinnelsen omfatter den homogene eller ensartede oppslemmingen 5-65 vekt% av hydrofobe aerogel granulater basert på den totale vekt av oppslemmingen. I et ytterligere aspekt av oppfinnelsen omfatter sammensetningen minst et additiv valgt blant flyveaske, silikat-materialer, skummende midler, overflateaktive stoffer, fibre og tilslag. In a further aspect of the invention, the amount of water is in the range from 15 to 70% by weight based on the total weight of the composition. In a further aspect of the invention, the homogeneous or uniform slurry comprises 5-65% by weight of hydrophobic airgel granules based on the total weight of the slurry. In a further aspect of the invention, the composition comprises at least one additive selected from fly ash, silicate materials, foaming agents, surfactants, fibers and aggregates.

I et ytterligere aspekt gir oppfinnelsen et byggemateriale produsert ved å blande en sammensetningen ifølge oppfinnelsen og vann,karakterisert vedat mengden av vann er i området fra 50 til 600 vekt%, 100-600 vekt%, 150-600 vekt%, eller 200 til 600 vekt% basert på den totale vekt av ukalsinert MgO og alkaliske fosfatsalt. In a further aspect, the invention provides a building material produced by mixing a composition according to the invention and water, characterized in that the amount of water is in the range from 50 to 600% by weight, 100-600% by weight, 150-600% by weight, or 200 to 600 % by weight based on the total weight of uncalcined MgO and alkaline phosphate salts.

I et ytterligere aspekt av oppfinnelsen, har byggematerialet en varmeledningsevne på mindre enn 0,040 W/mK, mindre enn 0,030 W/mK, mindre enn 0,025 W/mK eller enda mer foretrukket mindre enn 0,020 W/mK. In a further aspect of the invention, the building material has a thermal conductivity of less than 0.040 W/mK, less than 0.030 W/mK, less than 0.025 W/mK or even more preferably less than 0.020 W/mK.

I et ytterligere aspekt av oppfinnelsen har den byggematerialet en trykkfasthet høyere enn 0,3 MPa, 1 MPa, 3 MPa, 10 MPa og 20 MPa, og enda mer foretrukket høyere enn 60 MPa. In a further aspect of the invention, the building material has a compressive strength higher than 0.3 MPa, 1 MPa, 3 MPa, 10 MPa and 20 MPa, and even more preferably higher than 60 MPa.

I et ytterligere aspekt av oppfinnelsen omfatter byggemateriale 5-65 vekt% av hydrofobe aerogel granulater basert på den totale vekt av byggematerialet. I et ytterligere aspekt gir oppfinnelsen bruk av en sammensetning i henhold til oppfinnelsen, for å produsere et byggemateriale, fortrinnsvis et selvbærende betongtype byggemateriale. In a further aspect of the invention, building material comprises 5-65% by weight of hydrophobic airgel granules based on the total weight of the building material. In a further aspect, the invention provides the use of a composition according to the invention, to produce a building material, preferably a self-supporting concrete type of building material.

I et ytterligere aspekt gir oppfinnelsen en fremgangsmåte for å produsere et byggemateriale ved blandingsmåte i henhold til oppfinnelsen,karakterisert vedat mengden av vann er i området fra 50 til 600 vekt%, 100- 600 vekt%, 150-600 vekt%, eller 200 til 600 vekt% basert på den totale vekt av ukalsinert MgO og alkaliske fosfatsalt. Alternativt, er mengden av vann mer enn 100 vekt%, basert på den totale vekt av ukalsinert MgO og alkaliske fosfatsalt, fortrinnsvis mer enn 150 vekt%, mer enn 200 vekt%, og enda mer foretrukket mer enn 300 vekt%. In a further aspect, the invention provides a method for producing a building material by mixing according to the invention, characterized in that the amount of water is in the range from 50 to 600% by weight, 100-600% by weight, 150-600% by weight, or 200 to 600% by weight based on the total weight of uncalcined MgO and alkaline phosphate salts. Alternatively, the amount of water is more than 100% by weight, based on the total weight of uncalcined MgO and alkaline phosphate salts, preferably more than 150% by weight, more than 200% by weight, and even more preferably more than 300% by weight.

I et ytterligere aspekt, er blandingen ifølge oppfinnelsen i stand til å danne en homogen oppslemming som herder uten separasjon når det blandes med vann i en mengde på mer enn 100 vekt%, basert på den totale vekt av ukalsinert MgO og alkaliske fosfatsalt, fortrinnsvis mer enn 150 vekt%, mer enn 200 vekt%, og enda mer foretrukket mer enn 300 vekt%. In a further aspect, the composition according to the invention is capable of forming a homogeneous slurry which hardens without separation when mixed with water in an amount of more than 100% by weight, based on the total weight of uncalcined MgO and alkaline phosphate salts, preferably more than 150% by weight, more than 200% by weight, and even more preferably more than 300% by weight.

I et ytterligere aspekt gir oppfinnelsen et byggemateriale produsert ved å blande en sammensetning ifølge oppfinnelsen og vann, hvori mengden av vann er mer enn 100 vekt%, basert på den totale vekt av ukalsinert MgO og alkaliske fosfatsalt, fortrinnsvis mer enn 150 vekt%, mer enn 200 vekt%, og enda mer foretrukket mer enn 300 vekt%. In a further aspect, the invention provides a building material produced by mixing a composition according to the invention and water, wherein the amount of water is more than 100% by weight, based on the total weight of uncalcined MgO and alkaline phosphate salts, preferably more than 150% by weight, more than 200% by weight, and even more preferably more than 300% by weight.

Eksempler på forskjellige utførelsesformer av oppfinnelsen er angitt i tabellen nedenfor. Examples of different embodiments of the invention are indicated in the table below.

Bruk av sammensetninger som er angitt i denne oppfinnelsen gir byggematerialer som har fordelaktige egenskaper som lav vekt, rask produksjon og montering, høy varmeisolasjon, brannmotstand og lydisolasjon. Use of compositions specified in this invention provides building materials that have advantageous properties such as low weight, quick production and assembly, high heat insulation, fire resistance and sound insulation.

Claims (1)

1- En sammensetning for å produsere byggematerialer, som omfatter: -15 til 80 vekt% hydrofobe aerogel granulater basert på den totale vekt av sammensetningen; - Ukalsinert MgO; og - Et alkali-fosfatsalt; karakterisert vedat det molekylære forhold mellom kalsinert MgO og fosfat er i området 0.75-1.25.1- A composition for producing building materials, comprising: -15 to 80% by weight of hydrophobic airgel granules based on the total weight of the composition; - Uncalcined MgO; and - An alkali phosphate salt; characterized in that the molecular ratio between calcined MgO and phosphate is in the range 0.75-1.25. 2- En sammensetning ifølge krav 1, omfattende 20-80 vekt% hydrofobe aerogel granulater basert på den totale vekt av sammensetningen, fortrinnsvis 30- 80 vekt%.2- A composition according to claim 1, comprising 20-80% by weight of hydrophobic airgel granules based on the total weight of the composition, preferably 30-80% by weight. 3- En sammensetning ifølge krav 1 eller 2, omfattende 5-25 vekt% ukalsinert MgO.3- A composition according to claim 1 or 2, comprising 5-25% by weight of uncalcined MgO. 4- En sammensetning ifølge hvilket som helst av de foregående krav, omfattende 15-65 vekt% av alkali-fosfatsalt.4- A composition according to any of the preceding claims, comprising 15-65% by weight of alkali phosphate salt. 5- En sammensetning ifølge hvilket som helst av de foregående krav,karakterisert vedat alkali-fosfatsaltet er valgt fra en gruppe bestående av monopotassium fosfat, dikaliumfosfat, mononatriumfosfat og dinatriumfosfat, og en hvilken som helst kombinasjon av disse, fortrinnsvis alkali-fosfatsaltet er monokaliumfosfat.5- A composition according to any of the preceding claims, characterized in that the alkali phosphate salt is selected from a group consisting of monopotassium phosphate, dipotassium phosphate, monosodium phosphate and disodium phosphate, and any combination of these, preferably the alkali phosphate salt is monopotassium phosphate. 6- En sammensetning ifølge krav 5,karakterisert vedat monokaliumfosfatet har en vannløselighet på minst 15 g/l, på minst 100 g/l, eller fortrinnsvis minst 200 g/l.6- A composition according to claim 5, characterized in that the monopotassium phosphate has a water solubility of at least 15 g/l, of at least 100 g/l, or preferably at least 200 g/l. 7- En sammensetning ifølge hvilket som helst av de foregående krav, i stand til å danne en homogen oppslemming som herder uten separasjon når det blandes med vann i området fra 50 til 600 vekt% basert på den totale vekt av ukalsinert MgO og alkali-fosfatsalt, fortrinnsvis i området fra 100 til 600 vekt%, eller 150 til 600 vekt%, og enda mer foretrukket 200 til 600 vekt%, eller i en mengde på mer enn 300 vekt%.7- A composition according to any of the preceding claims, capable of forming a homogeneous slurry which hardens without separation when mixed with water in the range of 50 to 600% by weight based on the total weight of uncalcined MgO and alkali phosphate salt , preferably in the range from 100 to 600% by weight, or 150 to 600% by weight, and even more preferably 200 to 600% by weight, or in an amount of more than 300% by weight. 8- En sammensetning ifølge krav 7,karakterisert vedat mengden av vann er i området fra 15 til 70 vekt% basert på den totale vekt av sammensetning.8- A composition according to claim 7, characterized in that the amount of water is in the range from 15 to 70% by weight based on the total weight of composition. 9- En sammensetning ifølge krav 7 eller 8,karakterisert vedat den homogene oppslemmingen vil omfatte 5 til 65 vekt% av hydrofobe aerogel granulater basert på den totale vekt av oppslemmingen.9- A composition according to claim 7 or 8, characterized in that the homogeneous slurry will comprise 5 to 65% by weight of hydrophobic airgel granules based on the total weight of the slurry. 10- En sammensetning ifølge hvilket som helst av de foregående krav, omfattende minst ett additiv valgt fra flyveaske, silikat-materialer, skummende midler, overflateaktive stoffer, fibre og aggregater.10- A composition according to any of the preceding claims, comprising at least one additive selected from fly ash, silicate materials, foaming agents, surfactants, fibers and aggregates. 11- Et byggemateriale produsert ved blanding av en sammensetning ifølge hvilket som helst av kravene 1-10 og vann, hvori mengden av vann er i området fra 50- 600 vekt%, 100-600 vekt%, 150-600 vekt%, eller 200-600 vekt%, eller mer enn 300 vekt%, basert på den totale vekt av ukalsinert MgO og alkali-fosfatsalt.11- A building material produced by mixing a composition according to any of claims 1-10 and water, wherein the amount of water is in the range of 50-600% by weight, 100-600% by weight, 150-600% by weight, or 200 -600% by weight, or more than 300% by weight, based on the total weight of uncalcined MgO and alkali phosphate salt. 12- Et byggemateriale i henhold til krav 11, som har en varmeledningsevne på mindre enn 0,040 W/mK, mindre enn 0,030 W/mK, mindre enn 0,025 W/mK eller enda mer foretrukket mindre enn 0,020 W/mK.12- A building material according to claim 11, which has a thermal conductivity of less than 0.040 W/mK, less than 0.030 W/mK, less than 0.025 W/mK or even more preferably less than 0.020 W/mK. 13- Et byggemateriale i henhold til krav 11 eller 12, har en trykkfasthet høyere enn 0,3 MPa, 1 MPa, 3 MPa, 10 MPa og 20 MPa, og enda mer foretrukket høyere enn 60 MPa.13- A building material according to claim 11 or 12, has a compressive strength higher than 0.3 MPa, 1 MPa, 3 MPa, 10 MPa and 20 MPa, and even more preferably higher than 60 MPa. 14- Et byggemateriale i henhold til hvilket som helst av kravene 11-13, omfattende 5-65 vekt% hydrofobe aerogel granulater basert på den totale vekt av byggematerialet.14- A building material according to any one of claims 11-13, comprising 5-65% by weight of hydrophobic airgel granules based on the total weight of the building material. 15- Anvendelse av en sammensetning ifølge hvilket som helst av kravene 1-10, for fremstilling av et byggemateriale, fortrinnsvis et selvbærende betongtypen byggemateriale.15- Use of a composition according to any one of claims 1-10, for the production of a building material, preferably a self-supporting concrete-type building material. 16- Fremgangsmåte for å produsere et byggemateriale ved blandingsmåte ifølge hvilket som helst av kravene 1-10 og vann,karakterisert vedat mengden av vann er i området 50-600 vekt%, 100-600 vekt%, 150-600 vekt%, eller 200-600 vekt%, eller mer enn 300 vekt%, basert på den totale vekten av ukalsinert MgO og alkali-fosfatsalt.16- Method for producing a building material by mixing according to any of claims 1-10 and water, characterized in that the amount of water is in the range 50-600% by weight, 100-600% by weight, 150-600% by weight, or 200 -600% by weight, or more than 300% by weight, based on the total weight of uncalcined MgO and alkali phosphate salt.
NO20141145A 2012-03-23 2014-09-21 A composition for the production of building materials NO20141145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20120355 2012-03-23
PCT/EP2013/056069 WO2013139961A1 (en) 2012-03-23 2013-03-22 A composition for production of construction materials

Publications (1)

Publication Number Publication Date
NO20141145A1 true NO20141145A1 (en) 2014-09-22

Family

ID=47915255

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20141145A NO20141145A1 (en) 2012-03-23 2014-09-21 A composition for the production of building materials

Country Status (2)

Country Link
NO (1) NO20141145A1 (en)
WO (1) WO2013139961A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028300A (en) * 2019-04-18 2019-07-19 北京碧海舟腐蚀防护工业股份有限公司 Aqueous ceramic insulating mold coating and its application, corrosion-inhibiting coating
CN112430018B (en) * 2020-11-27 2022-05-17 山东鲁阳节能材料股份有限公司 Toughened inorganic paper composite aerogel product and preparation method thereof
CN115849858B (en) * 2022-12-26 2023-11-28 中发创新(安徽)新材料有限公司 Heat preservation slurry of aerogel precursor composite magnesium-based gelatinizing agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100077698A1 (en) * 2007-06-30 2010-04-01 Tinianov Brandon D Low embodied energy sheathing panels with optimal water vapor permeance and methods of making same
WO2010096827A1 (en) * 2009-02-23 2010-08-26 Arun Wagh Fire protection compositions, methods, and articles
WO2011066209A2 (en) * 2009-11-25 2011-06-03 Cabot Corporation Aerogel composites and methods for making and using them

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR954618A (en) * 1946-10-24 1950-01-04
US5645518A (en) 1995-01-31 1997-07-08 The University Of Chicago Method for stabilizing low-level mixed wastes at room temperature
US6204214B1 (en) 1996-03-18 2001-03-20 University Of Chicago Pumpable/injectable phosphate-bonded ceramics
US5830815A (en) 1996-03-18 1998-11-03 The University Of Chicago Method of waste stabilization via chemically bonded phosphate ceramics
US6518212B1 (en) 2000-09-18 2003-02-11 The University Of Chicago Chemically bonded phospho-silicate ceramics
US6776837B2 (en) 2001-11-30 2004-08-17 The University Of Chicago Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder
CA2789156A1 (en) * 2010-02-09 2011-08-18 Latitude 18, Inc. Phosphate bonded composites and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100077698A1 (en) * 2007-06-30 2010-04-01 Tinianov Brandon D Low embodied energy sheathing panels with optimal water vapor permeance and methods of making same
WO2010096827A1 (en) * 2009-02-23 2010-08-26 Arun Wagh Fire protection compositions, methods, and articles
WO2011066209A2 (en) * 2009-11-25 2011-06-03 Cabot Corporation Aerogel composites and methods for making and using them

Also Published As

Publication number Publication date
WO2013139961A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
Abdulkareem et al. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation
JP7150742B2 (en) Inorganic foam based on calcium sulfoaluminate
EP2658823B1 (en) Lightweight fly ash based composition
US20110290153A1 (en) Environment friendly composite construction materials
CN102515608B (en) Modified metakaolin-based permeation-resistant and crack-resistant agent for concrete
JP2019513677A (en) Geopolymer foam formulation
US20120304894A1 (en) Reduction of carbon dioxide in the manufacturing of composite construction materials
CN104844263A (en) Thermal insulation material
CN103553380A (en) Cement containing large volume of fly ash and preparation method thereof
CN102295450A (en) Self-levelling gypsum mortar with high wear resistance
CN102786271A (en) Vitrified micro bubble thermal insulation and fire-proof mortar
CN105000907A (en) Light-weight ceramsite wastewater treatment method
NO20141145A1 (en) A composition for the production of building materials
AU2018232547B2 (en) Inorganic foam based on geopolymers
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
CN104556767A (en) Coated light-weight aggregate, and preparation method and application thereof
CN107162523A (en) Tile binding material and preparation method thereof
RU2572432C1 (en) Additive for modification of gypsum binders, construction mortars and concretes on their basis
CN104058673B (en) A kind of lightweight aggregate concrete containing low-quality regeneration aggregate and preparation method thereof
CN104045286A (en) Cement-based capillary crystalline waterproof material
TWI596076B (en) Artificial lightweight aggregate used for construction and building material and manufacturing method thereof
KR101642070B1 (en) Soil composition with improved insulating property
CN104098345B (en) A kind of light-weight foamed fire resistive material product and production technology thereof
CN106365500A (en) Additive for preparation of dry-mixed plastering mortar and dry-mixed plastering mortar
CN106116439A (en) Novel thermal insulation mortar

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application