NO20011669L - Polyglucan and polyglucan derivatives obtainable from amylosucrase by biocatalytic preparation in the presence of biogenic substances - Google Patents

Polyglucan and polyglucan derivatives obtainable from amylosucrase by biocatalytic preparation in the presence of biogenic substances

Info

Publication number
NO20011669L
NO20011669L NO20011669A NO20011669A NO20011669L NO 20011669 L NO20011669 L NO 20011669L NO 20011669 A NO20011669 A NO 20011669A NO 20011669 A NO20011669 A NO 20011669A NO 20011669 L NO20011669 L NO 20011669L
Authority
NO
Norway
Prior art keywords
polyglucan
amylosucrase
derivative according
derivatives
polymer
Prior art date
Application number
NO20011669A
Other languages
Norwegian (no)
Other versions
NO20011669D0 (en
Inventor
Karl-Christian Gallert
Holger Bengs
Claus Simandi
Original Assignee
Celanese Ventures Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures Gmbh filed Critical Celanese Ventures Gmbh
Publication of NO20011669D0 publication Critical patent/NO20011669D0/en
Publication of NO20011669L publication Critical patent/NO20011669L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to polyglucans and polyglucan derivatives which can be produced from polyglucan sucrase or from amylosucrase by biocatalytic production in the presence of biogenic substances. The invention also relates to a method for the production thereof and to their use.

Description

Oppfinnelsen angår fremstilling av polyglukanderivater ved rekombinant amylosukrase i nærvær av biogene substanser og en fremgangsmåte for deres fremstilling og anvendelse. The invention relates to the production of polyglucan derivatives by recombinant amylosucrase in the presence of biogenic substances and a method for their production and use.

Bioteknologiindustrien er interessert i fremstilling av nye biologisk kompatible substanser og fremgangsmåter for billig produksjon av disse. The biotechnology industry is interested in the production of new biologically compatible substances and methods for their cheap production.

Fremstilling av uforgrenede polyglukaner ved biokatalytisk produksjon er beskrevet i WO 95/31553 ved anvendelse av rekombinant amylosukrase. I denne sammenheng av oppfinnelsen er denne publikasjon eksplisitt inkorporert ved referanse. I særdeleshet utøver den rekombinante amylosukrase beskrevet der aktiviteten til nativ amylosukrase. Production of unbranched polyglucans by biocatalytic production is described in WO 95/31553 using recombinant amylosucrase. In this context of the invention, this publication is explicitly incorporated by reference. In particular, the recombinant amylosucrase described therein exerts the activity of native amylosucrase.

WO 95/31553 beskriver vider fremstilling av uforgrenede polysakkarider ved hjelp av biotransformasjon, der det uforgrenede polysakkarid fremstilles ved katalytisk reaksjon av fundamentale monomere byggestener slik som oligomere sakkarider, for eksempel mono- og/eller disakkarider. I særdeleshet syntetiseres (poly(l,4-alfa-D-glucan) i WO 95/31553 ved en polysakkarid syntase, alfa-l,4-glykosyltransferase eller, synonymt amylosukrase (EC 1.4.1.4) W095/31553 og PCT/EP98/05573 beskriver også nukleinsyresekvenser som, i E. Coli fører til et protein med en amylosukraseaktivitet. WO 95/31553 further describes the production of unbranched polysaccharides by means of biotransformation, where the unbranched polysaccharide is produced by catalytic reaction of fundamental monomeric building blocks such as oligomeric saccharides, for example mono- and/or disaccharides. In particular, (poly(l,4-alpha-D-glucan) in WO 95/31553 is synthesized by a polysaccharide synthase, alpha-l,4-glycosyltransferase or, synonymously, amylosucrase (EC 1.4.1.4) WO95/31553 and PCT/EP98 /05573 also describes nucleic acid sequences which, in E. Coli, lead to a protein with an amylosucrase activity.

De uforgrenede polymerer oppnådd biokatalytisk på denne måten ved mange applikasjoner har en fordel sammenliknet med forgrenede polymerer med hensyn på evne til prosessering eller spesielle egenskaper, for eksempel mekanisk stabilitet eller stressbærende kapasitet. Videre innen de farmasøytiske område (human og veterinærområder), medisin (human og veterinærområde), kosmetikk og landbrukskjemikaliesektoren finnes det applikasjoner med stor kommersiell viktighet der egenskaper eller kombinasjoner av egenskaper er nødvendig som enten ikke kan oppnås ved uforgrenede polymerer eller deres spesielle egenskaper går ut over det omfang som er nødvendig for den spesielle anvendelse ved en av de ovennevnte applikasjoner, eller andre applikasjonsområder. Oppnåelse av spesielle egenskaper er forbundet med relativt høye produksjonskostnader. Dersom disse egenskaper ikke er nødvendig ved applikasjonen, må denne prosedyre unngås. Egenskaper som ikke nødvendigvis krever anvendelse av uforgrenede polymerer kan for eksempel være forbedret formelighet ved produksjon av prøvelegemer med spesiell geometri, porøsitet av prøvelegemer for generell frigjøring av aktive stoffer av en hvilken som helt type, i særdeleshet innen den farmasøytiske sektor og landbrukskjemikaliesektoren, svellbarhet, lettere kjemisk modifisering på grunn av enklere tilgjengelige funksjonelle grupper etc. The unbranched polymers obtained biocatalytically in this way in many applications have an advantage compared to branched polymers with regard to ability to process or special properties, for example mechanical stability or stress-bearing capacity. Furthermore, within the pharmaceutical area (human and veterinary areas), medicine (human and veterinary area), cosmetics and the agricultural chemical sector, there are applications of great commercial importance where properties or combinations of properties are required that either cannot be achieved with unbranched polymers or their special properties expire above the extent necessary for the particular application in one of the above-mentioned applications, or other areas of application. Achieving special properties is associated with relatively high production costs. If these properties are not required by the application, this procedure must be avoided. Properties that do not necessarily require the use of unbranched polymers can be, for example, improved formality when producing specimens with special geometry, porosity of specimens for the general release of active substances of any type, in particular within the pharmaceutical and agricultural chemical sectors, swellability, easier chemical modification due to more easily accessible functional groups etc.

Okada et al. (J. Biol. Chem. (1974), 249, 126) beskriver at I nærvær av nativ amylosukrase inneholdende forurensninger av dekstrinyltransferase fører til spesiell forgrening I molekylet. Okada et al. (J. Biol. Chem. (1974), 249, 126) describes that in the presence of native amylosucrase containing impurities of dextrinyltransferase leads to special branching in the molecule.

Det er også kjent at primere påvirker aktiviteten til nativ amylosukrase (se DE 19860376.2). It is also known that primers affect the activity of native amylosucrase (see DE 19860376.2).

Overraskende er det blitt funnet at aktiviteten til amylosukrase i nærvær av biogene substanser, fortrinnsvis andre enzymer, ikke svekkes, men snarere økes fordelaktiv når det gjelder produksjon. Surprisingly, it has been found that the activity of amylosucrase in the presence of biogenic substances, preferably other enzymes, is not impaired, but rather is advantageously increased in terms of production.

For industriell fremstilling er det viktig å oppnå økonomisk verdifulle produkter. I tillegg må det oppnås produkter som er biokompatible og kan anvendes ved mange biologiske vitenskapelig applikasjoner og materialvitenskapelig applikasjoner. Fordelen med slike produkter er at de blant annet er egnet for anvendelse på og i levende organismer, spesielt innenfor det humane område (kosmetikk, matvarer, farmasøytiske preparater, medisin) og, på grunn av biokompabiliteten, er avfallshåndtering etter deres anvendelse innen industrielle områder i hovedsak uten problem. For industrial production, it is important to achieve economically valuable products. In addition, products must be obtained that are biocompatible and can be used in many biological scientific applications and material science applications. The advantage of such products is that, among other things, they are suitable for use on and in living organisms, especially in the human area (cosmetics, foodstuffs, pharmaceutical preparations, medicine) and, due to their biocompatibility, waste management after their use in industrial areas is essentially no problem.

Derfor er det et formål ved oppfinnelsen å anvende rekombinant amylosukrose modifisert i bioteknologiske prosesser for fremstilling av polyglukan og dens derivater in vitro og å oppnå nye produkter. In vitro fremgangsmåte gjør det mulig å fremstille reproduserbare produkter av den samme kvalitet og standard (se eksempel). Therefore, it is an object of the invention to use recombinant amylosucrose modified in biotechnological processes for the production of polyglucan and its derivatives in vitro and to obtain new products. The in vitro method makes it possible to produce reproducible products of the same quality and standard (see example).

Formålet ifølge oppfinnelsen oppnås ved å anvende rekombinant polyglukan-sukrase i nærvær av biogene substanser, fortrinnsvis enzymer, og anvendes for å fremstille polyglukan og polyglukanderivater. The object according to the invention is achieved by using recombinant polyglucan sucrase in the presence of biogenic substances, preferably enzymes, and is used to produce polyglucan and polyglucan derivatives.

Spesielt fortrinn gis til de polyglukansukraser som beskrives i PCT/EP98/05573 (se SEQ. ID. No. 1). Oppfinnelsen angår derfor en amylosukrase med aminosyresekvens SEQ.ID. No. 1 eller en redundansvariant. Particular preference is given to the polyglucansucrases described in PCT/EP98/05573 (see SEQ. ID. No. 1). The invention therefore relates to an amylosucrase with amino acid sequence SEQ.ID. No. 1 or a redundancy variant.

Innenfor rammen av denne oppfinnelsen omfatter betegnelsen polyglukan og polyglukanderivater i særdeleshet amylose og amylosederivater. Within the scope of this invention, the term polyglucan and polyglucan derivatives includes, in particular, amylose and amylose derivatives.

Fordelaktig her er den overraskende høye produktensartethet av de dannede polyglukan og polyglukanderivater, i særdeleshet av de oppnådde molekylvekter avhengig av anvendelse av enkelte biogene substanser, i særdeleshet enzymer, kan svært forskjellige polyglukaner og/eller polyglukanderivater oppnås; deres molekylvekt kan variere fra 10<3>til IO<9>dalton. Foretrukne molekylvekter er i området fra 5 x IO3 til IO6 dalton, helst i området 5 x IO3 til 5 x 104 dalton. Advantageous here is the surprisingly high product specificity of the formed polyglucan and polyglucan derivatives, in particular of the obtained molecular weights depending on the use of certain biogenic substances, in particular enzymes, very different polyglucans and/or polyglucan derivatives can be obtained; their molecular weight can vary from 10<3> to IO<9>daltons. Preferred molecular weights are in the range of 5 x 10 3 to 10 6 daltons, most preferably in the range of 5 x 10 3 to 5 x 10 4 daltons.

Variasjonen av de resulterende produkter og deres mulige kombinasjoner er fordelaktig. Fra dette, i særdeleshet i tilfellet av en egnet kombinasjon av polymerer og deres molekylvekt og/eller underliggende primærstrukturer, kan spesielle egenskaper kombineres eller evne til prosessering kan påvirkes på en spesiell måte. Dette gjelder i særdeleshet prosessering ved fremgangsmetoder innen klassisk polymerkjemi, i særdeleshet ved industrielle applikasjoner. The variety of the resulting products and their possible combinations is advantageous. From this, in particular in the case of a suitable combination of polymers and their molecular weight and/or underlying primary structures, special properties can be combined or ability to process can be affected in a special way. This applies in particular to processing using advanced methods in classical polymer chemistry, in particular to industrial applications.

Polyglukanene og polyglukanderivatene ifølge oppfinnelsen er videre forskjellig ved en høy variasjon som bestemmes ved polyglukanene og polyglukanderivatene. Polydispersiteten kan varieres innen brede områder. For ulike applikasjoner er ganske forskjellig polydispersiteter av interesse. Polydispersitet som angis ved kvotienten av gjennomsnittlig polymervekt og gjennomsnittlig polymerantall kan variere fra 1,0 til 100 eller mer, polydispersiteter i området fra 1,1 til 15 er foretrukket for spesielle applikasjoner. Særlig fordelaktig er polyglukaner og polyglukanderivater som har polydispersiteter i området fra 1,1 til 5. The polyglucans and polyglucan derivatives according to the invention are further distinguished by a high variation which is determined by the polyglucans and polyglucan derivatives. The polydispersity can be varied within wide areas. For different applications, quite different polydispersities are of interest. Polydispersity as indicated by the quotient of average polymer weight and average polymer number can vary from 1.0 to 100 or more, polydispersities in the range of 1.1 to 15 are preferred for particular applications. Particularly advantageous are polyglucans and polyglucan derivatives which have polydispersities in the range from 1.1 to 5.

I foreliggende oppfinnelse betyr "biokompatibel" at de anvendte polysakkarider utsettes for fullstendig biodegradering og ingen skadelig akkumulering oppstår i næringskjeden, i særdeleshet i den humane organisme. In the present invention, "biocompatible" means that the polysaccharides used are subjected to complete biodegradation and no harmful accumulation occurs in the food chain, in particular in the human organism.

Biodegradering beskriver her enhver prosess som foregår in vivo som fører til degradering eller destruksjon av polymeren. I særdeleshet faller hydrolyttiske og Biodegradation here describes any process that takes place in vivo that leads to degradation or destruction of the polymer. In particular, hydrolytic and

enzymatiske prosesser innenfor dette område. For biokompabilitet til polysakkarider og deres nedbrytningsprodukter (metabolitter), ikke minst, den naturidentiske egenskap til polysakkaridene som anvendes er også av stor viktighet. Derfor er polysakkaridene som kommer i betraktning også særlig egnet for terapeutisk, diagnostisk eller profylaktisk anvendelse. enzymatic processes within this area. For the biocompatibility of polysaccharides and their breakdown products (metabolites), not least, the nature-identical property of the polysaccharides used is also of great importance. Therefore, the polysaccharides that come into consideration are also particularly suitable for therapeutic, diagnostic or prophylactic use.

I særdeleshet kan økt utbytte av polyglukan og polyglukonderivater oppnås ved anvendelse av enzymblandinger. In particular, an increased yield of polyglucan and polyglucon derivatives can be achieved by using enzyme mixtures.

Foretrukne enzymer som helst kommer i betraktning er, uten at listen nedenfor er fullstendig: transferaser og glykosyltransferaser Preferred enzymes preferably contemplated are, without the list below being exhaustive: transferases and glycosyltransferases

Oppfinnelsen angår derfor rimelige derivater av polyglukan. The invention therefore relates to inexpensive derivatives of polyglucan.

Derivatisering, innenfor rammen av denne oppfinnelse, betyr at funksjonelle grupper naturlig forekommende i polyglukan, hydroksylgrupper (også: alkoholfunkjoner), derivatiseres, erstattes, modifiseres eller substitueres kjemisk. Derivatisering betyr derfor også introduksjon av forgreninger ved hjelp av biogene substanser, i særdeleshet nevnte enzymer. Derivatization, within the scope of this invention, means that functional groups naturally occurring in polyglucan, hydroxyl groups (also: alcohol functions), are derivatized, replaced, modified or substituted chemically. Derivatization therefore also means the introduction of branches by means of biogenic substances, in particular the aforementioned enzymes.

Derivater innenfor rammen av disse oppfinnelser er også de som gjennomgår en reaksjon spesielt på en av C-atomene C-2, C-2 eller C-6 mer presist fra > 0 % til et maksimum på 100 %, eller blandinger oppstår, dvs. forskjellig prosentvis derivatisering ved forskjellige posisjoner i C-6-skjelettet til en glukanenhet. I tilfelle av hydroksylgruppe på C-6-atomet av glukanbyggestenen i polyglukan, kan i særdeleshet fordelaktig forgreningsnivå på 1 til 40 % oppnås. I særdeleshet utmerkes disse polyglukanderivater ved fortreningsnivåer på 2 til 10 %. Derivatives within the scope of these inventions are also those which undergo a reaction particularly on one of the C atoms C-2, C-2 or C-6 more precisely from > 0% to a maximum of 100%, or mixtures occur, i.e. different percent derivatization at different positions in the C-6 skeleton of a glucan unit. In the case of the hydroxyl group on the C-6 atom of the glucan building block in polyglucan, particularly advantageous branching levels of 1 to 40% can be achieved. In particular, these polyglucan derivatives are distinguished at pretraining levels of 2 to 10%.

I særdeleshet utmerkes forgreningstypen og forgreningsantallet i de beskrevne polyglukanderivater det at de er forskjellig fra naturlige polyglukaner, dvs. polyglukaner forekommende i naturen, som kan produseres fra planter, dyr eller andre organismer. In particular, the type of branching and the number of branches in the described polyglucan derivatives are distinguished by the fact that they differ from natural polyglucans, i.e. polyglucans occurring in nature, which can be produced from plants, animals or other organisms.

Oppfinnelsen angår derfor modifisert produksjon av polyglukan ved hjelp av biogene substanser. Dette betyr innenfor rammen av foreliggende oppfinnelse tilsetting av biogene substanser så tidlig som under ekspresjon av amylosukrase med etterfølgende biotransformasjon og syntese av polyglukaner eller polyglukanderivater og/eller behandling etterpå ved hjelp av biogene substanser av slike produserte produkter. The invention therefore relates to modified production of polyglucan using biogenic substances. Within the scope of the present invention, this means the addition of biogenic substances as early as during expression of amylosucrase with subsequent biotransformation and synthesis of polyglucans or polyglucan derivatives and/or treatment afterwards using biogenic substances of such produced products.

I særdeleshet, blandinger av amylosukrase eller andre enzymer som syntetiserer polyglukaner kjent for fagpersonen innen teknikken, i nærvær av andre molekyler med enzymatisk aktivitet eller nøytral oppførsel med hensyn til dannelse av polyglukaner, men som har en positiv effekt på reaksjonen (nedenfor og ovenfor "abiogene substanser"). I videste forstand skal disse bety biotiske substanser som anvendes av biologiske organismer eller påvirker dem, i særdeleshet ved metabolske prosesser. Disse forbedringer er utbytteøkninger, spalting av biprodukter (for eksempel resulterende fruktose, der nedbrytningsprodukter fungerer som et kvasinæringsmedium for ytterligere polyglukansyntese) og andre reaksjonsparametere kjent ved enzymatisk reaksjon kjent for fagpersoner innen området enzymatiske reaksjoner. • "biogene" substanser kan også være de som fortrinnsvis har de følgende grunnstoffer: C, H, 0, N, P, S, B, Si, Se, alkali metaller, jordalkalimetaller halogener, Co, Fe, Hg, In particular, mixtures of amylosucrase or other enzymes that synthesize polyglucans known to the person skilled in the art, in the presence of other molecules with enzymatic activity or neutral behavior with regard to the formation of polyglucans, but which have a positive effect on the reaction (below and above "abiogenic substances"). In the broadest sense, these shall mean biotic substances that are used by biological organisms or affect them, in particular in metabolic processes. These improvements are yield increases, cleavage of by-products (for example, resulting fructose, where degradation products act as a quasi-nutrient medium for further polyglucan synthesis) and other reaction parameters known by enzymatic reaction known to those skilled in the art of enzymatic reactions. • "biogenic" substances can also be those which preferably have the following elements: C, H, 0, N, P, S, B, Si, Se, alkali metals, alkaline earth metals, halogens, Co, Fe, Hg,

og/ellerand or

har funksjonelle bindinger som er forskjellig fra karbonhydrogenbinding, slik som amid, fosfat, sulfat, karboksyl, hydroksyl, karbonyl, carbamyl, urea, uretan, ester, eter, lacton, lactam, have functional bonds different from carbon hydrogen bond, such as amide, phosphate, sulfate, carboxyl, hydroxyl, carbonyl, carbamyl, urea, urethane, ester, ether, lactone, lactam,

og/ellerand or

• være klasser av substanser slik som peptider, proteiner, enzymer, nukleotider og nukleinsyrer eller andre klasser av substanser kjent for fagpersoner innen teknikken, klassifisert innen betydningen organisk kjemi • be classes of substances such as peptides, proteins, enzymes, nucleotides and nucleic acids or other classes of substances known to those skilled in the art, classified within the meaning of organic chemistry

og/ellerand or

en forbindelse som har en fordelaktig biologisk aktivitet i biologiske organismer. a compound that has a beneficial biological activity in biological organisms.

Så langt kan ved hjelp av den beskrevne oppfinnelse de følgende derivater oppnås, uten at denne liste anses som fullstendig. So far, with the help of the described invention, the following derivatives can be obtained, without this list being considered complete.

A) PolyglukanestereA) Polyglucan esters

acetateracetates

nitraternitrates

fosfaterphosphates

xantogenaterxanthogenates

citratercitrates

B) PolyglukanestereB) Polyglucan esters

hydroksyetylhydroxyethyl

hydroksypropylhydroxypropyl

1,2-dihydroksypropyl1,2-dihydroxypropyl

karboksymetylcarboxymethyl

dialdehydamylosedialdehyde amylose

karboksyamylosecarboxyamylose

persulfat av nedbrutt polyglukanpersulfate of degraded polyglucan

C) Produkter av polyglukan nedbrutt ved oksidasjon ellerC) Products of polyglucan degraded by oxidation or

partial ringåpningpartial ring opening

dialdehydamylosedialdehyde amylose

karboksyamylosecarboxyamylose

persulfat av nedbrutt polyglukanpersulfate of degraded polyglucan

D) Naturlige polymerer (naturidentiske polymerer/polyglukaner)D) Natural polymers (nature-identical polymers/polyglucans)

amylopektinamylopectin

glykogenglycogen

og/eller podede polymerer, blokkpolymerer, kopolymerer, tilfeldige kopolymerer, alternerende kopolymerer og dendrittiske kopolymerer, inkludert stjernepolymerer og stigepolymerer, og også båndpolymerer. and/or grafted polymers, block polymers, copolymers, random copolymers, alternating copolymers and dendritic copolymers, including star polymers and ladder polymers, and also ribbon polymers.

Betegnelsen kopolymer innenfor betydningen av denne oppfinnelsen omfatter polyglukan og/eller polyglukanderivater fra to eller flere fundamentale enheter (monomerer). The term copolymer within the meaning of this invention includes polyglucan and/or polyglucan derivatives from two or more fundamental units (monomers).

For innholdet ifølge oppfinnelsen er det kritisk enten å utføre nevnte biotransformasjon i modifisert form eller å modifisere det resulterende polyglukanprodukt etter polymerisering er blitt utført i en annen reaksjon, fortrinnsvis en biokatalyse. Dette oppnås ved å isolere polyglukan eller polyglukanderivatet så langt som mulig fra alle reaksjonepartnere/parametere av biotransformasjon og ytterligere modifisere det i en annen reaksjon. Dette kan utføres ved å anvende tilsetting av ytterligere biogene forbindelser, fortrinnsvis enzymer. For the content according to the invention, it is critical either to carry out said biotransformation in a modified form or to modify the resulting polyglucan product after polymerization has been carried out in another reaction, preferably a biocatalysis. This is achieved by isolating polyglucan or the polyglucan derivative as far as possible from all reaction partners/parameters of biotransformation and further modifying it in another reaction. This can be carried out by using the addition of further biogenic compounds, preferably enzymes.

En annen klassifisering av de ulike reaksjonsveier for fremstilling av polyglukaner og/eller polyglukanderivater kan beskrives som følger. Another classification of the various reaction pathways for the production of polyglucans and/or polyglucan derivatives can be described as follows.

Modifiseringen av polyglukaner og/eller polyglukanderivater kan utføres i henhold til om bare biotransformasjonsforløpet, dvs. reaksjon av sukkrose og dens derivater for å danne polyglukan og/eller polyglukanderivater, skal endres (dette kan foregå for eksempel ved å konsumere den fruktose som er dannet ved biotransformasjonen), eller et polyglukan og/eller en eller flere polyglukanderivater kan dannes direkte ved reaksjonen eller reaksjonsprosedyren ved reaksjonen mellom amylosukrase og biogene substanser. I dette tilfelle utelukker ikke det ene det andre. Et eksempel som kan nevnes her er det endrede reaksjonsforløp som resulterer fra å oppnå, ved fosforylering og/eller metylering og/eller sulfatering og/eller ytterligere modifiseringer, en økt eller redusert løselighet av polyglukanet og på denne måten for eksempel oppnå endrede kjedelengder eller liknende. The modification of polyglucans and/or polyglucan derivatives can be carried out according to whether only the biotransformation process, i.e. reaction of sucrose and its derivatives to form polyglucan and/or polyglucan derivatives, is to be changed (this can take place, for example, by consuming the fructose formed by the biotransformation), or a polyglucan and/or one or more polyglucan derivatives can be formed directly by the reaction or reaction procedure by the reaction between amylosucrase and biogenic substances. In this case, one does not exclude the other. An example that can be mentioned here is the changed course of reactions that results from achieving, by phosphorylation and/or methylation and/or sulphation and/or further modifications, an increased or reduced solubility of the polyglucan and in this way, for example, achieving changed chain lengths or the like .

I tillegg kan det kodes for andre modifiserende enzymer i det samme operon som amylosukrasen, og kan renses parallelt med dette enzym. På denne måten, så tidlig som under produksjonen og separasjonen av amylosukrose, dannes en blanding av ulike biogene substanser, fortrinnsvis ulike enzymer omfattende amylosukrase, som kan anvendes ved biokatalyse (biotransformasjon). In addition, other modifying enzymes can be coded in the same operon as amylosucrase, and can be purified in parallel with this enzyme. In this way, as early as during the production and separation of amylosucrose, a mixture of different biogenic substances is formed, preferably different enzymes including amylosucrase, which can be used in biocatalysis (biotransformation).

Slike blandinger er også kjent for fagpersoner innen teknikken under navnet "polymerblandinger". For eksempel kan aminosukraser modifisert på denne måten medføre sukkere, monosakkarider, disakkarider, oligosakkarider som varierer i deres kjemiske struktur og blir bedre inkorporert i polymerstrukturen, i betydningen av en raskere reaksjon eller en høyere kompabilitet med andre monomere sukkerenheter som inkorporeres i polymerskjelettet. Imidlertid kan ikke kjedespalting, som kan føre til spesielle funksjonelle molekyler på grunn av deres spesielle polymerendegrupper som har spesielle egenskaper som for eksempel overflateaktive egenskaper i bredeste betydning av amfifile molekyler, ikke ekskluderes og kan til og med bli den foretrukne reaksjon. Such mixtures are also known to those skilled in the art under the name "polymer mixtures". For example, aminosucraces modified in this way can involve sugars, monosaccharides, disaccharides, oligosaccharides that vary in their chemical structure and are better incorporated into the polymer structure, in the sense of a faster reaction or a higher compatibility with other monomeric sugar units that are incorporated into the polymer skeleton. However, chain cleavage, which can lead to special functional molecules due to their special polymer end groups that have special properties such as surface-active properties in the broadest sense of amphiphilic molecules, cannot be excluded and may even become the preferred reaction.

Polyglukanene som modifiseres enzymatisk ved anvendelse av biogene forbindelser kan anvendes som utgangsmaterialer for ytterligere kjemiske modifiseringer. The polyglucans that are modified enzymatically using biogenic compounds can be used as starting materials for further chemical modifications.

Oppfinnelsen angår videre anvendelse av polyglukaner og/polyglukanderivater ifølge oppfinnelsen, som følger: anvendelse som farmasøytisk formulering og/eller landbrukskjemisk formulering for anvendelse innen landbruk (som tabletter, kapsler, suspensjoner, emulsjoner og andre formuleringer kjent for fagpersoner innen teknikken), bærere og/eller depotformuleringer, i særdeleshet tabletteringshjelpestoffer, anvendelse som næring og/eller næringstilsetning, anvendelse som kosmetisk additiver. Disse fordelaktige anvendelser av polyglukaner ifølge oppfinnelsen skyldes biokompatbiliteten ved denne anvendelse av biogene substanser ifølge oppfinnelsen. The invention further relates to the use of polyglucans and/polyglucan derivatives according to the invention, as follows: use as a pharmaceutical formulation and/or agricultural chemical formulation for use in agriculture (as tablets, capsules, suspensions, emulsions and other formulations known to those skilled in the art), carriers and/ or depot formulations, in particular tableting excipients, use as food and/or food additive, use as cosmetic additives. These advantageous uses of polyglucans according to the invention are due to the biocompatibility of this use of biogenic substances according to the invention.

Aktive forbindelser innenfor rammen av foreliggende oppfinnelse er fortrinnsvis alle forbindelser som har en lindrende eller kurerende effekt på en biologisk organisme, i særdeleshet menneske, dyr, planter. Betegnelsen aktive forbindelser generelt omfatter også landbrukskjemiske forbindelser med fungicid, pesticid, insekticid eller herbicid effekt, men også generelt de forbindelser som har en nyttig effekt innen landbruket, skogbruk eller hagebruk, for eksempel gjødsel. Dufter eller aroma som anvendes i særdeleshet innenfor næringsmiddelområdet eller kosmetikk kommer også inn under betegnelsen aktiv forbindelse. Frem til nå er alle aktive forbindelser også eksplisitt inkludert, som har en terapeutisk og/eller profylaktisk og/eller dekorativ effekt. Active compounds within the scope of the present invention are preferably all compounds which have a soothing or curative effect on a biological organism, in particular humans, animals, plants. The term active compounds in general also includes agricultural chemical compounds with a fungicide, pesticide, insecticide or herbicidal effect, but also generally those compounds which have a useful effect in agriculture, forestry or horticulture, for example fertiliser. Fragrances or aromas that are used in particular within the food sector or cosmetics also come under the term active compound. Until now, all active compounds are also explicitly included, which have a therapeutic and/or prophylactic and/or decorative effect.

EksemplerExamples

Beskrivelse av de mest viktige sekvenser:Description of the most important sequences:

SEQ ID No. 1 beskriver en aminosyresekvens med aktiviteten til en amylosukrase som kan oppnås ved rekombinant teknologi i E. coli fra et DNA fra organismen Neisseira polysaccharea og som vist i WO 95/31553 og PCT/EP 98/05573. SEQ ID No. 1 describes an amino acid sequence with the activity of an amylosucrase which can be obtained by recombinant technology in E. coli from a DNA from the organism Neisseira polysaccharea and as shown in WO 95/31553 and PCT/EP 98/05573.

Eksempel 1:Example 1:

Blanding av amylosukrase og et annet enzym med forskjellig aktivitet fører til et derivatisert amyloseprodukt som følger: et eksempel er her blanding av amylosukrase med amylo-1,4—>l,4-transglykosylat. Dette enzym katalyserer introduksjon av 1,6 forgreninger i uforgrenede amylosemolekyler med en minimumslengde på 6-11 glukoseenheter. Dett e størrelsesområde er midt i området for glukosepolymerer fremstilt ved amylosukrase. Dette produserer følgelig et høyt forgrenet men svært kortkjedet molekyl. Mixing amylosucrase and another enzyme with different activity leads to a derivatized amylose product as follows: an example here is mixing amylosucrase with amylo-1,4->1,4-transglycosylate. This enzyme catalyzes the introduction of 1,6 branches into unbranched amylose molecules with a minimum length of 6-11 glucose units. This size range is in the middle of the range for glucose polymers produced by amylosucrase. This consequently produces a highly branched but very short-chain molecule.

For å utføre forsøket tilsettes 200 U rekombinant amylosukrase til 2 g D-glukose og 0,02 % NaN3 i et volum på 10 ml av 50 mM Na-sitratbuffer med pH på 6,5.1 tillegg tilsettes 10 U av amylol,4->l,6-transglykosylase til løsningen. Løsningen innkuberes ved 37 °C i 72 timer uten omrøring. De resulterende produkter presipiteres med etanol og analyseres ved GPC. Under nevnte betingelser fremstilles omtrent 0,75 g polymert produkt med en forgreningsgrad på 10 %. To carry out the experiment, 200 U of recombinant amylosucrase is added to 2 g of D-glucose and 0.02% NaN3 in a volume of 10 ml of 50 mM Na-citrate buffer with a pH of 6.5. In addition, 10 U of amylol,4->l is added ,6-transglycosylase to the solution. The solution is incubated at 37 °C for 72 hours without stirring. The resulting products are precipitated with ethanol and analyzed by GPC. Under the aforementioned conditions, approximately 0.75 g of polymeric product is produced with a degree of branching of 10%.

Claims (12)

1. Polyglukan og/eller polyglukanderivater, karakterisert ved at de kan oppnås fra polyglykansukrase eller amylosukrase i nærvær av minst en transferase og/eller en glykosyltransferase.1. Polyglucan and/or polyglucan derivatives, characterized in that they can be obtained from polyglycansucrase or amylosucrase in the presence of at least one transferase and/or one glycosyltransferase. 2. Amylosukrase ifølge krav 1, karakterisert ved at den har aminosyresekvensen ifølge SEQ ID No i.2. Amylosucrase according to claim 1, characterized in that it has the amino acid sequence according to SEQ ID No i. 3. Polyglukanderivat ifølge et hvilket som helst av de foregående krav, karakterisert ved at polyglukanderivatet er en polyglukanester eller en polyglukaneter eller en naturidentisk polymer.3. Polyglucan derivative according to any one of the preceding claims, characterized in that the polyglucan derivative is a polyglucan ester or a polyglucan ether or a nature-identical polymer. 4. Polyglukanderivat ifølge et av de foregående krav, karakterisertvedat polyglukanderivatet er en podet polymer, blokkpolymer, kopolymer, tilfeldig kopolymer eller en stjernepolymer, stigepolymer eller båndpolymer.4. Polyglucan derivative according to one of the preceding claims, characterized in that the polyglucan derivative is a graft polymer, block polymer, copolymer, random copolymer or a star polymer, ladder polymer or ribbon polymer. 5. Fremgangsmåte for fremstilling av polyglukaner og/eller polyglukanderivater ifølge krav 1-4, karakterisert ved at den omfatter minst en transferase og/eller en glukosidtransferase som tilsettes amylosukrasen in vitro.5. Process for producing polyglucans and/or polyglucan derivatives according to claims 1-4, characterized in that it comprises at least one transferase and/or one glucoside transferase which is added to the amylosucrase in vitro. 6. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge 1 til 5 for anvendelse som eksipens.6. Use of at least one polyglucan and/or a polyglucan derivative according to 1 to 5 for use as an excipient. 7. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 som depotsystem for minst en aktiv forbindelse med en terapeutisk eller profylaktisk effekt.7. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 as a depot system for at least one active compound with a therapeutic or prophylactic effect. 8. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 innen den farmasøytiske sektor, fortrinnsvis som eksipiens og/eller tabletteringshjelpestoff.8. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 within the pharmaceutical sector, preferably as an excipient and/or tableting aid. 9. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 innen landbrukskjemikaliesektoren, fortrinnsvis som bærer.9. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 within the agricultural chemicals sector, preferably as a carrier. 10. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 for kosmetiske applikasjoner.10. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 for cosmetic applications. 11. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 som næringsmiddel og/eller næringsmiddeladditiv.11. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 as food and/or food additive. 12. Anvendelse av minst et polyglukan og/eller et polyglukanderivat ifølge krav 1 til 5 som bærer for aroma- og duftstoffer.12. Use of at least one polyglucan and/or a polyglucan derivative according to claims 1 to 5 as a carrier for aroma and fragrance substances.
NO20011669A 1998-10-09 2001-04-03 Polyglucan and polyglucan derivatives obtainable from amylosucrase by biocatalytic preparation in the presence of biogenic substances NO20011669L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19846492 1998-10-09
PCT/EP1999/007518 WO2000022155A2 (en) 1998-10-09 1999-10-07 Polyglucan and polyglucan derivatives which can be obtained from amylosucrase by biocatalytic production in the presence of biogenic substances

Publications (2)

Publication Number Publication Date
NO20011669D0 NO20011669D0 (en) 2001-04-03
NO20011669L true NO20011669L (en) 2001-06-07

Family

ID=7883887

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20011669A NO20011669L (en) 1998-10-09 2001-04-03 Polyglucan and polyglucan derivatives obtainable from amylosucrase by biocatalytic preparation in the presence of biogenic substances

Country Status (8)

Country Link
EP (1) EP1117822B1 (en)
AT (1) ATE325202T1 (en)
AU (1) AU6335399A (en)
CA (1) CA2345901A1 (en)
DE (1) DE59913391D1 (en)
NO (1) NO20011669L (en)
PL (1) PL347238A1 (en)
WO (1) WO2000022155A2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL113776A (en) * 1994-05-18 2008-12-29 Bayer Bioscience Gmbh Dna sequences coding for enzymes which catalyze the synthesis of linear alpha 1,4 - glucans in plants, fungi and microorganisms
HUP0103414A3 (en) * 1998-09-02 2005-12-28 Bayer Bioscience Gmbh Nucleic acid molecules encoding an amylosucrase
CN1325449A (en) * 1998-10-09 2001-12-05 普兰泰克生物技术研究与开发有限公司 Nucleic acid molecules which code a branching enzyme from bacteria of the Genus Neisseria, and a method for producing alpha-1,6-branched alpha-1,4-glucans

Also Published As

Publication number Publication date
ATE325202T1 (en) 2006-06-15
EP1117822A2 (en) 2001-07-25
CA2345901A1 (en) 2000-04-20
WO2000022155A3 (en) 2000-11-09
NO20011669D0 (en) 2001-04-03
DE59913391D1 (en) 2006-06-08
PL347238A1 (en) 2002-03-25
EP1117822B1 (en) 2006-05-03
WO2000022155A2 (en) 2000-04-20
AU6335399A (en) 2000-05-01

Similar Documents

Publication Publication Date Title
Srikanth et al. Review on production, characterization and applications of microbial levan
Carvalho et al. Production and characterization of a new dextrin based hydrogel
US10793648B2 (en) Fucose-containing bacterial biopolymer
US20060116348A1 (en) Polymer grafting by polysaccharide synthases
Muzzarelli et al. Chitosans depolymerized with the aid of papain and stabilized as glycosylamines
SG178349A1 (en) K5 heparosan fermentation and purification
Burek et al. Trehalose–properties, biosynthesis and applications
Ci et al. Properties and potential applications of mannuronan C5-epimerase: A biotechnological tool for modifying alginate
CN1192114C (en) Polysaccharides containing alpha-1,4-glucan chains and method for producing same
EP2513325B1 (en) Fucose-containing bacterial biopolymer
NO20011669L (en) Polyglucan and polyglucan derivatives obtainable from amylosucrase by biocatalytic preparation in the presence of biogenic substances
Reddy et al. An Insight into pullulan and its potential applications
Ullah et al. Recent developments in the synthesis, properties, and applications of various microbial polysaccharides
EP1121453B1 (en) Heteropolysaccharide produced by an agrobacterium radiobacter
US7285409B1 (en) Isolated gum operon from Xyllela fastidiosa, isolated nucleic acid molecules therefrom, and uses thereof
Jia et al. Enzymatic synthesis of galactosyl lactic ethyl ester and its polymer for use as biomaterials
Abid et al. Exopolysaccharides from lactic acid bacteria
JPH06277085A (en) Production of low-molecular weight branched beta-1,3-glucan and branched laminarioligosaccharide
Tingirikari et al. Dextransucrase: A Microbial Enzyme with Wide Industrial Applications
Rathna¹ et al. Bacterial polymers: resources, synthesis and applications
Devi et al. Structural analysis and characterization of a clinically important low molecular weight natural dextran synthesized by Leuconostoc lactis KU665298 dextransucrase
Aquinas et al. Progress in bioproduction, characterization and applications of pullulan: a review
WO2023062185A1 (en) Hydrogel for immobilization of one or more enzyme(s) and method for preparing the same
T I CARBO-XXVIII
AU774722B2 (en) Polymer grafting by polysaccharide synthases

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application