NO180783B - Method of preventing hydrate formation - Google Patents

Method of preventing hydrate formation

Info

Publication number
NO180783B
NO180783B NO910619A NO910619A NO180783B NO 180783 B NO180783 B NO 180783B NO 910619 A NO910619 A NO 910619A NO 910619 A NO910619 A NO 910619A NO 180783 B NO180783 B NO 180783B
Authority
NO
Norway
Prior art keywords
fluid
cell
water
hydrates
pressure
Prior art date
Application number
NO910619A
Other languages
Norwegian (no)
Other versions
NO910619L (en
NO910619D0 (en
NO180783C (en
Inventor
Herman Mathieu Muijs
Mark Joseph Anselme
Nicolaas Cornelis Maria Beers
Nico Maria Van Os
Cornelus Elbertus Kind
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO910619D0 publication Critical patent/NO910619D0/en
Publication of NO910619L publication Critical patent/NO910619L/en
Publication of NO180783B publication Critical patent/NO180783B/en
Publication of NO180783C publication Critical patent/NO180783C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Oppfinnelsen vedrører en fremgangsmåte ved forhindring eller retardasjon av dannelsen av hydrater eller ved reduksjon av hydratenes tendens til å agglomerere under transporten av et fluid omfattende vann og hydrokarbon gjennom en rørledning. The invention relates to a method by preventing or retarding the formation of hydrates or by reducing the hydrates' tendency to agglomerate during the transport of a fluid comprising water and hydrocarbon through a pipeline.

Det er vel kjent i teknologien at dannelsen av hydrater i et rør, f.eks. en rørledning, under transport av olje og gass kan være et alvorlig problem, spesielt i områder med lave temperaturer i vintersesongen, eller i havet. Generelt vil temperaturene være så lave at hydratdannelsen, på grunn av den uunngåelige tilstede-værelse av samprodusert vann i brønnene, vil finne sted dersom ingen spesielle forholdsregler blir tatt. Det er mulig å isolere en rørledning når fluidets temperatur synker i rørledningen under transporten fra brønnen. Isolasjonen reduserer sjansen for hydrat-dannelse, men den er på den annen side dyr. Dersom feltet er relativt lite og langt fra produksjonsplattformen, kan kostnadene for isolasjonen være for høye til å gjøre feltøkonomien til-trekkende . It is well known in the art that the formation of hydrates in a pipe, e.g. a pipeline, during the transport of oil and gas can be a serious problem, especially in areas with low temperatures in the winter season, or in the sea. In general, the temperatures will be so low that hydrate formation, due to the inevitable presence of co-produced water in the wells, will take place if no special precautions are taken. It is possible to insulate a pipeline when the temperature of the fluid drops in the pipeline during transport from the well. The insulation reduces the chance of hydrate formation, but it is, on the other hand, expensive. If the field is relatively small and far from the production platform, the costs of the insulation may be too high to make the field economy attractive.

Det er også kjent å kontrollere hydratdannelsen ved tilsetning av kjemiske forbindelser i fluidet som transporteres, f.eks. ved anvendelse av glykoler, f.eks. etylenglykol eller dietylenglykol. En ulempe med dette er at det trenges store mengder glykol (av størrelsesorden 3 0 vektprosent beregnet på vannmengden). It is also known to control hydrate formation by adding chemical compounds to the fluid being transported, e.g. when using glycols, e.g. ethylene glycol or diethylene glycol. A disadvantage of this is that large amounts of glycol are needed (of the order of 30% by weight calculated on the amount of water).

I Sovjetunionens oppfinnersertifikat 697696 er det beskrevet en blanding som egner seg til å forhindre hydratdannelsen, hvilken blanding omfatter dietylenglykol med en mindre mengde alkylarylsulfonat (i en mengde på 0,3-0,5% basert på vekten av dietylenglykol) . In the Soviet Union's inventor's certificate 697696, a mixture suitable for preventing hydrate formation is described, which mixture comprises diethylene glycol with a small amount of alkylaryl sulphonate (in an amount of 0.3-0.5% based on the weight of diethylene glycol).

Overraskende er det blitt funnet at alkylarylsulfonsyrer eller alkalimetall- eller ammoniumsalter derav kan anvendes uten glykoler, til å kontrollere hydratdannelsen. Surprisingly, it has been found that alkylaryl sulfonic acids or alkali metal or ammonium salts thereof can be used without glycols to control hydrate formation.

Oppfinnelsen vedrører en fremgangsmåte til å forhindre eller retardere dannelsen av hydrater eller til å redusere hydratenes tendens til å agglomerere i en fluidstrøm omfattende vann og hydrokarbon under transport av fluidet gjennom en rørledning, idet fremgangsmåten omfatter tilsetning til fluidet av en alkylaryl-sulf onsyre eller et alkalimetall- eller ammoniumsalt derav, i fravær av glykol som strømmer i fluidet. Hydrokarbonet kan være en væske eller en gass, men er fortrinnsvis en gass såsom metan, etan, propan, isopropan, butan eller isobutan. Fluidet kan være produsert fra oljebrønner såvel som fra gassbrønner. Fluidet kan også omfatte naturgass. The invention relates to a method for preventing or retarding the formation of hydrates or for reducing the tendency of the hydrates to agglomerate in a fluid stream comprising water and hydrocarbon during transport of the fluid through a pipeline, the method comprising adding to the fluid an alkylaryl sulfonic acid or a alkali metal or ammonium salt thereof, in the absence of glycol flowing in the fluid. The hydrocarbon may be a liquid or a gas, but is preferably a gas such as methane, ethane, propane, isopropane, butane or isobutane. The fluid can be produced from oil wells as well as from gas wells. The fluid may also include natural gas.

Avhengig av trykket kan hydratene dannes ved temperaturer godt over vannets frysepunkt. Etanhydrater dannes f.eks. ved trykk mellom 10 og 30 bar (1 og 3 MPa) og temperaturer mellom 4°C og 14°C. Dannelse og agglomerering av hydratkrystaller vil således lett forekomme i rørledninger omgitt av en kald atmosfære. Depending on the pressure, the hydrates can form at temperatures well above the freezing point of water. Ethane hydrates are formed e.g. at pressures between 10 and 30 bar (1 and 3 MPa) and temperatures between 4°C and 14°C. Formation and agglomeration of hydrate crystals will thus easily occur in pipelines surrounded by a cold atmosphere.

Problemet med dannelse og agglomerering av gasshydrater er ikke begrenset til gassbrønner, men forekommer også i oljebrønner dersom vann og gass er tilstede i fluidet. The problem of formation and agglomeration of gas hydrates is not limited to gas wells, but also occurs in oil wells if water and gas are present in the fluid.

Alkylarylsulfonsyrene eller deres salter har fortrinnsvis en arylgruppe avledet fra benzen, toluen, orto-, meta- eller paraxylen. Alkylgruppen er fortrinnsvis en langkjedet alkylgruppe, som kan være forgrenet eller uforgrenet. Alkylgruppen kan være f.eks. en C8-C22-alkylgruppe. The alkylarylsulfonic acids or their salts preferably have an aryl group derived from benzene, toluene, ortho-, meta- or paraxylene. The alkyl group is preferably a long-chain alkyl group, which may be branched or unbranched. The alkyl group can be e.g. a C8-C22 alkyl group.

Foretrukne forbindelser er de med den kjemiske formel Preferred compounds are those of the chemical formula

hvori X er H, Na eller K og R er en C8-C22-alkylgruppe. wherein X is H, Na or K and R is a C8-C22 alkyl group.

Mer foretrukne forbindelser er de hvori R er en C13- og/ eller Cu-alkyl- eller en C18-alkylgruppe, såsom de som er kjent under varemerket Dobanax-320, Dobanax-313 og Dobanax-205. More preferred compounds are those in which R is a C 13 and/or Cu alkyl or a C 18 alkyl group, such as those known under the trademarks Dobanax-320, Dobanax-313 and Dobanax-205.

Andre grupper av foretrukne forbindelser er dialkylbenzen-sulfonater med den kjemiske struktur Other groups of preferred compounds are dialkylbenzene sulfonates having the chemical structure

hvori X er et alkalimetall og R1og R2er de samme eller for-skjellige C2-<C>20-alkylgrupper, fortrinnsvis C6-Cu-alkylgrupper. wherein X is an alkali metal and R1 and R2 are the same or different C2-<C>20 alkyl groups, preferably C6-Cu alkyl groups.

Alkylarylsulfonatene blir tilsatt i mengder fra 0,1% til 3 vektprosent, beregnet på vekten av det vann som er tilstede i fluidet. Et foretrukket område er fra 0,2 til 1%, mer foretrukket i området på fra 0,3 til 0,6%. The alkylarylsulfonates are added in amounts from 0.1% to 3% by weight, calculated on the weight of the water present in the fluid. A preferred range is from 0.2 to 1%, more preferably in the range of from 0.3 to 0.6%.

For å studere innvirkningen av små mengder alkylaryl-sulfonater på kjernedannelsestemperaturen, kinetikken for krystall-veksten og krystallenes morfologi, ble det bygget en høytrykks visuell celle med mantel. Cellen ble laget av rustfritt stål og hadde en avkjølingsmantel for å tillate god og lett temperatur-kontroll av cellen. To safirvinduer tillot visuell observasjon av celleinnholdet. Cellen var utstyrt med to ventiler, én for innføring av væske og én for gass. I bunnen av cellen sørget en rørstav for god blanding av celleinnholdet. Cellens indre volum var 66,4 ml, og dødvolumet var redusert til et minimum. Cellen ble dessuten testet sammen med sitt påfyllingssystem ved et trykk på 100 bar i løpet av en periode på 8 0 timer uten at det ble observert noe trykkfall. Cellen arbeidet vanligvis ved et trykk på under 30 bar. Cellen ble plassert i et plexiglassbur. To study the effect of small amounts of alkylaryl sulfonates on the nucleation temperature, crystal growth kinetics, and crystal morphology, a high-pressure jacketed visual cell was constructed. The cell was made of stainless steel and had a cooling jacket to allow good and easy temperature control of the cell. Two sapphire windows allowed visual observation of the cell contents. The cell was equipped with two valves, one for the introduction of liquid and one for gas. At the bottom of the cell, a pipe rod ensured good mixing of the cell contents. The cell's internal volume was 66.4 ml, and the dead volume was reduced to a minimum. The cell was also tested together with its filling system at a pressure of 100 bar over a period of 80 hours without any pressure drop being observed. The cell usually operated at a pressure of less than 30 bar. The cell was placed in a plexiglass cage.

Et data-akvisisjonssystem basert på en personlig datamaskin tillot måling av temperatur og trykk inne i cellen én gang pr. minutt. Settpunktet for et termostatert bad, forbundet med avkjølingsmantelen, kunne settes automatisk av datamaskinen. A data acquisition system based on a personal computer allowed measurement of temperature and pressure inside the cell once per minute. The set point for a thermostated bath, connected to the cooling mantle, could be set automatically by the computer.

En stålbrønn gikk dypt ned i cellen, hvori det var plassert et platina motstandstermometer. På cellen var det montert en trykk-transduser, med svært lav temperaturhysterese og høy presisjon. A steel well went deep into the cell, in which was placed a platinum resistance thermometer. A pressure transducer was mounted on the cell, with very low temperature hysteresis and high precision.

Før det ble utført en kjøring, ble cellen skylt med avmineralisert vann, skylt med etanol og vakuumtørket, alt uten å demontere cellen. Before performing a run, the cell was rinsed with demineralized water, rinsed with ethanol, and vacuum dried, all without disassembling the cell.

For å utføre eksperimentet ble avmineralisert vann og dekan innført som væske i cellen. Vannet inneholdt 0,5 vektprosent alkylarylsulfonsyre eller et salt derav, om ønsket. Etan ble innført som gass i cellen. Kjøringen startet ved 20°C, og temperaturen i cellen ble senket via mantelen forbundet med termostatbadet ved å senke dets temperatur. Mengden av vann, dekan og etan var henholdsvis 25, 5,8 og 4,7 g. Trykket var 25 bar ved 20°C, og ingen etanhydrater ble dannet. To carry out the experiment, demineralized water and decane were introduced as liquid into the cell. The water contained 0.5% by weight of alkylarylsulfonic acid or a salt thereof, if desired. Ethane was introduced as a gas into the cell. The run started at 20°C and the temperature in the cell was lowered via the mantle connected to the thermostatic bath by lowering its temperature. The amount of water, decane and ethane was 25, 5.8 and 4.7 g respectively. The pressure was 25 bar at 20°C, and no ethane hydrates were formed.

Termometeret sendte et digitalt signal, trykkmåleren et analogt signal til datamaskinen. Datamaskinen kunne også sende en settpunktkommando til det termostaterte bad. Under hvert eksperi-ment ble cellens temperatur og trykk registrert, sammen med tiden, hvert minutt. Med en gitt sammensetning, omfattende vann, dekan og etan og om ønsket alkylarylsulfonsyren eller saltet derav, kunne det lages en temperatur-tid- og en trykk-tid-kurve. The thermometer sent a digital signal, the pressure gauge an analogue signal to the computer. The computer could also send a set point command to the thermostated bath. During each experiment, the cell's temperature and pressure were recorded, along with time, every minute. With a given composition, comprising water, decane and ethane and, if desired, the alkylarylsulphonic acid or its salt, a temperature-time and a pressure-time curve could be made.

Ved senkning av temperaturen, som ble etterfulgt av et trykktap, til under likevektstemperaturpunktet, hvorved hydrater og væske var i likevekt, ble det dannet etanhydrater. Den ganske plutselige hydratdannelsen ble avlest av temperatur- og trykk-tid-kurven. Det foregikk en relativt sterk stigning i temperaturen (ca. 0,5°C) og et trykktap (ca. 1-5 bar). On lowering the temperature, which was followed by a loss of pressure, to below the equilibrium temperature point, at which hydrates and liquid were in equilibrium, ethane hydrates were formed. The rather sudden hydrate formation was read from the temperature and pressure-time curve. There was a relatively strong increase in temperature (approx. 0.5°C) and a pressure loss (approx. 1-5 bar).

På samme tid kunne dannelsen av hydrater sees gjennom et safirvindu. Dannelsen av hydratkrystaller forbruker de frie etanmolekyler. Det økende fall i celletrykket som forekommer etter at kjernedannelsen har startet, er en god indikasjon på den hydratmengde som dannes som funksjon av tiden. At the same time, the formation of hydrates could be seen through a sapphire window. The formation of hydrate crystals consumes the free ethane molecules. The increasing drop in cell pressure that occurs after nucleation has started is a good indication of the amount of hydrate that is formed as a function of time.

Det ble dessuten observert at under hydratdannelsen ville krystallene agglomerere, i det tilfelle at alkylarylsulfonat ikke ble tilsatt. 1 fremgangsmåten ifølge oppfinnelsen ville imidlertid tilsetning av et alkylarylsulfonat forhindre dannelsen av hydrat-agglomerater. It was also observed that during the hydrate formation the crystals would agglomerate, in the event that alkylaryl sulphonate was not added. 1 the method according to the invention, however, addition of an alkylaryl sulphonate would prevent the formation of hydrate agglomerates.

Eksempel 1Example 1

2 5 g vann, 5,8 g dekan, 4,7 g etan og 0,5 vektprosent, basert på vannet, av dilineært C8-C10-alkylbenzensulfonat (natriumsalt), ble anvendt som beskrevet ovenfor i cellen. Eksperimentet startet ved 20°C, og etter senkning av temperaturen til 8,4°C foregikk krystallisasjonen, mens trykket i cellen samtidig sank fra 22 bar til 13 bar. Ingen agglomerering av hydratet ble observert. 25 g of water, 5.8 g of decane, 4.7 g of ethane and 0.5 weight percent, based on the water, of dilinear C8-C10 alkylbenzenesulfonate (sodium salt) were used as described above in the cell. The experiment started at 20°C, and after lowering the temperature to 8.4°C, crystallization took place, while the pressure in the cell simultaneously dropped from 22 bar to 13 bar. No agglomeration of the hydrate was observed.

Eksempel 2Example 2

2 5 g vann, 5,8 g dekan, 4,7 g etan og 0,5 vektprosent, basert på vannet, av sulfonert "SOMIL<®>SH" ble anvendt som beskrevet ovenfor i cellen. Eksperimentet startet ved 20°C og etter senkning av temperaturen til 8,4°C foregikk krystallisasjonen, mens trykket i cellen samtidig sank fra 22 bar til 16 bar. Ingen agglomerering av hydratet ble observert. 25 g of water, 5.8 g of decane, 4.7 g of ethane and 0.5 weight percent, based on the water, of sulfonated "SOMIL<®>SH" were used as described above in the cell. The experiment started at 20°C and after lowering the temperature to 8.4°C the crystallization took place, while the pressure in the cell simultaneously dropped from 22 bar to 16 bar. No agglomeration of the hydrate was observed.

Eksempel 3Example 3

25 g vann, 5,8 g dekan, 4,7 g etan og 0,5 vektprosent, basert på vannet, av C18-alkylbenzensulfonsyre ble anvendt som beskrevet ovenfor i cellen. Eksperimentet startet ved 20°C, og etter senkning av temperaturen til 8,4°C foregikk krystallisasjonen, mens trykket i cellen samtidig sank fra 22 bar til 16 bar. Ingen agglomerering av hydratet ble observert. 25 g of water, 5.8 g of decane, 4.7 g of ethane and 0.5 weight percent, based on the water, of C 18 alkylbenzenesulfonic acid were used as described above in the cell. The experiment started at 20°C, and after lowering the temperature to 8.4°C, crystallization took place, while the pressure in the cell simultaneously dropped from 22 bar to 16 bar. No agglomeration of the hydrate was observed.

Sammenlikningseksempel AComparison example A

25 g vann, 5,8 g dekan og 4,7 etan ble anvendt som beskrevet ovenfor i cellen. Også i dette tilfellet startet eksperimentet ved 20°C, og etter senkning av temperaturen til 9,4"C foregikk krystallisasjonen og ble etterfulgt av agglomerering av krystallene. 25 g of water, 5.8 g of decane and 4.7 g of ethane were used as described above in the cell. In this case too, the experiment started at 20°C, and after lowering the temperature to 9.4°C, crystallization took place and was followed by agglomeration of the crystals.

Claims (8)

1. Fremgangsmåte ved forhindring eller retardasjon av dannelsen av hydrater eller ved reduksjon av tendensen hos hydratene til å agglomerere i en strøm av fluid omfattende vann og hydrokarbon under transport av fluidet gjennom en rørledning, karakterisert ved tilsetning til fluidet av en alkylarylsulfonsyre eller et alkalimetall- eller ammoniumsalt derav, i fravær av glykol som strømmer i fluidet.1. Method for preventing or retarding the formation of hydrates or for reducing the tendency of the hydrates to agglomerate in a flow of fluid comprising water and hydrocarbon during transport of the fluid through a pipeline, characterized by the addition to the fluid of an alkylaryl sulfonic acid or an alkali metal or ammonium salt thereof, in the absence of glycol flowing in the fluid. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at fluidet som anvendes omfatter ett eller flere hydrokarboner bestående av gruppen; metan, etan, propan, isopropan, butan og isobutan.2. Method according to claim 1, characterized in that the fluid used comprises one or more hydrocarbons consisting of the group; methane, ethane, propane, isopropane, butane and isobutane. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at fluidet som anvendes omfatter naturgass.3. Method according to claim 1 or 2, characterized in that the fluid used comprises natural gas. 4. Fremgangsmåte ifølge ett eller flere av kravene 1-3, karakterisert ved at det tilsettes til fluidet en C8 -C22 -alkylarylsulfonsyre eller et alkalimetall- eller ammoniumsalt derav.4. Method according to one or more of claims 1-3, characterized in that a C8 -C22 alkylarylsulfonic acid or an alkali metal or ammonium salt thereof. 5. Fremgangsmåte ifølge krav 4, karakterisert ved at det anvendes en forbindelse med den kjemiske struktur 5. Method according to claim 4, characterized in that a compound is used with the chemical structure hvori X er H, Na eller K, og R er en C8 -C22 -alkylgruppe.wherein X is H, Na or K, and R is a C8 -C22 alkyl group. 6. Fremgangsmåte ifølge krav 1, karakterisert ved at det anvendes en forbindelse med den kjemiske struktur 6. Method according to claim 1, characterized in that a compound is used with the chemical structure hvori X er et alkalimetall og R1 og R2 er de samme eller for-skjellige C2 -C20 -alkylgrupper, fortrinnsvis C6 -Cu-alkylgrupper.wherein X is an alkali metal and R1 and R2 are the same or different C2 -C20 alkyl groups, preferably C6 -Cu alkyl groups. 7. Fremgangsmåte ifølge ett eller flere av kravene 1-6, karakterisert ved at mengden av alkylarylsulfonat som anvendes ligger i området fra 0,1% til 3 vektprosent, beregnet på vekten av vannet som er tilstede i fluidet.7. Method according to one or more of claims 1-6, characterized in that the amount of alkylaryl sulphonate used is in the range from 0.1% to 3% by weight, calculated on the weight of the water present in the fluid. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at mengden av alkylarylsulfonat som anvendes ligger i området på fra 0,2 til 1%.8. Method according to claim 7, characterized in that the amount of alkylaryl sulphonate used is in the range of from 0.2 to 1%.
NO910619A 1990-02-16 1991-02-15 Method of preventing hydrate formation NO180783C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB909003617A GB9003617D0 (en) 1990-02-16 1990-02-16 A method for preventing hydrates

Publications (4)

Publication Number Publication Date
NO910619D0 NO910619D0 (en) 1991-02-15
NO910619L NO910619L (en) 1991-08-19
NO180783B true NO180783B (en) 1997-03-10
NO180783C NO180783C (en) 1997-06-18

Family

ID=10671171

Family Applications (1)

Application Number Title Priority Date Filing Date
NO910619A NO180783C (en) 1990-02-16 1991-02-15 Method of preventing hydrate formation

Country Status (7)

Country Link
EP (1) EP0457375B1 (en)
CA (1) CA2036084A1 (en)
DE (1) DE69100197T2 (en)
DK (1) DK0457375T3 (en)
GB (1) GB9003617D0 (en)
NO (1) NO180783C (en)
NZ (1) NZ237020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044226B2 (en) 2002-05-07 2006-05-16 Agr Subsea As Method and a device for removing a hydrate plug

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445179A (en) * 1992-07-06 1995-08-29 Eniricerche S.P.A. Process for recovering and causing highly viscous petroleum products to flow
US5432292A (en) * 1992-11-20 1995-07-11 Colorado School Of Mines Method for controlling clathrate hydrates in fluid systems
US5420370A (en) * 1992-11-20 1995-05-30 Colorado School Of Mines Method for controlling clathrate hydrates in fluid systems
US5600044A (en) * 1994-09-15 1997-02-04 Exxon Production Research Company Method for inhibiting hydrate formation
USH1749H (en) * 1994-09-15 1998-09-01 Exxon Production Research Company Method for inhibiting hydrate formation
US5841010A (en) * 1994-09-15 1998-11-24 Exxon Production Research Company Surface active agents as gas hydrate inhibitors
US5491269A (en) * 1994-09-15 1996-02-13 Exxon Production Research Company Method for inhibiting hydrate formation
US6015929A (en) * 1994-09-15 2000-01-18 Exxon Research And Engineering Co. Gas hydrate anti-agglomerates
US5583273A (en) * 1994-09-15 1996-12-10 Exxon Production Research Company Method for inhibiting hydrate formation
US5936040A (en) * 1995-06-08 1999-08-10 Exxon Production Research Company Method for inhibiting hydrate formation using maleimide copolymers
US5744665A (en) * 1995-06-08 1998-04-28 Exxon Production Research Company Maleimide copolymers and method for inhibiting hydrate formation
US6194622B1 (en) 1998-06-10 2001-02-27 Exxonmobil Upstream Research Company Method for inhibiting hydrate formation
US6359047B1 (en) 2001-03-20 2002-03-19 Isp Investments Inc. Gas hydrate inhibitor
US7585816B2 (en) 2003-07-02 2009-09-08 Exxonmobil Upstream Research Company Method for inhibiting hydrate formation
FR2879189B1 (en) * 2004-12-13 2007-03-30 Inst Francais Du Petrole METHOD FOR TRANSPORTING SUSPENDED HYDRATES INTO PRODUCTION EFFLUENTS USING A NON-POLLUTANT ADDITIVE
US8436219B2 (en) 2006-03-15 2013-05-07 Exxonmobil Upstream Research Company Method of generating a non-plugging hydrate slurry
WO2007111789A2 (en) 2006-03-24 2007-10-04 Exxonmobil Upstream Research Company Composition and method for producing a pumpable hydrocarbon hydrate slurry at high water-cut
AU2008305441B2 (en) 2007-09-25 2014-02-13 Exxonmobil Upstream Research Company Method for managing hydrates in subsea production line
US9988568B2 (en) 2015-01-30 2018-06-05 Ecolab Usa Inc. Use of anti-agglomerants in high gas to oil ratio formations
EP3071785A1 (en) 2015-02-16 2016-09-28 Osman Zühtü GÖKSEL A system and a method for exploitation of gas from gas-hydrate formations
FR3092331A1 (en) 2019-02-06 2020-08-07 Arkema France COMPOSITION TO PREVENT AGGLOMERATION OF GAS HYDRATES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU697696A1 (en) * 1977-12-01 1979-11-15 Всесоюзный Научно-Исследовательский И Проектный Институт По Подготовке К Транспортировке И Переработки Природного Газа Composition for inhibiting paraffin-hydrate deposition
JPS5935960B2 (en) * 1982-02-25 1984-08-31 株式会社 柏化学工業 Cleaning agent for piping
FR2625548B1 (en) * 1987-12-30 1990-06-22 Inst Francais Du Petrole PROCESS FOR DELAYING FORMATION AND / OR REDUCING THE TENDENCY TO AGGLOMERATION OF HYDRATES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044226B2 (en) 2002-05-07 2006-05-16 Agr Subsea As Method and a device for removing a hydrate plug

Also Published As

Publication number Publication date
EP0457375A1 (en) 1991-11-21
EP0457375B1 (en) 1993-07-28
NO910619L (en) 1991-08-19
DE69100197T2 (en) 1993-12-02
CA2036084A1 (en) 1991-08-17
DE69100197D1 (en) 1993-09-02
NO910619D0 (en) 1991-02-15
NO180783C (en) 1997-06-18
GB9003617D0 (en) 1990-04-11
DK0457375T3 (en) 1993-12-27
NZ237020A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
NO180783B (en) Method of preventing hydrate formation
US5460728A (en) Method for inhibiting the plugging of conduits by gas hydrates
US5648575A (en) Method for inhibiting the plugging of conduits by gas hydrates
US5879561A (en) Method for inhibiting the plugging of conduits by gas hydrates
US10597578B2 (en) Multifunctional foaming composition with wettability modifying, corrosion inhibitory and mineral scale inhibitory/dispersants properties for high temperature and ultra high salinity
US6214091B1 (en) Method and compound for inhibiting the plugging of conduits by gas hydrates
US8961656B2 (en) Gas hydrate inhibitor and method of inhibiting gas hydrate formation
NO322749B1 (en) Procedure for thermohydraulic control of gas hydrates
Lukas et al. Toward understanding bacterial ice nucleation
NO309186B1 (en) Method of regulating clathrate hydrates in a fluid capable of forming clathrate hydrates
NO323176B1 (en) Additive to inhibit gas hydrate formation, method of inhibiting gas hydrate formation and use of the additive
NO146820B (en) PROCEDURE FOR AA DISSOLVED BARIUM SULFATE PROVISIONS IN A BROWN THAT NEEDS THROUGH AN UNDERGRADUAL FORM, AND A VERY SOLUTION FOR USE THEREOF
Kaleda et al. Saturn-shaped ice burst pattern and fast basal binding of an ice-binding protein from an Antarctic bacterial consortium
BR112013018336B1 (en) families of crust inhibitors with different absorption profiles and their applications in the oil field
Srinivasan et al. Asymmetric growth of α-resorcinol crystals: Comparison of growth from the vapor phase and from aqueous solution
Kumari et al. Computational study of differences between antifreeze activity of type-III antifreeze protein from ocean pout and its mutant
US20050161631A1 (en) Antifreeze proteins for inhibition of clathrate hydrate formation and reformation
US10202538B2 (en) Method for inhibiting structure II gas hydrate formation
CN108164441A (en) A kind of bisamide type sulfosalt surfactant and preparation method thereof
Myran et al. Genetically-engineered mutant antifreeze proteins provide insight into hydrate inhibition
CA2913136C (en) A low temperature stabilized foam-forming composition for enhanced oil recovery
Carstensen et al. Investigating the performance of clathrate hydrate inhibitors using in situ Raman spectroscopy and differential scanning calorimetry
Talaghat et al. Performance improvement of various kinetic hydrate inhibitors using 2-butoxyethanol for simple gas hydrate formation in a flow mini-loop apparatus
KR102704300B1 (en) Gas hydrate inhibitor using cellulose and use thereof
Chap 1.1 Part I Biochemistry and Molecular Biology of Antifreeze Proteins