NO180057B - Brönn-sonde for bestemmelse av formasjonsegenskaper - Google Patents

Brönn-sonde for bestemmelse av formasjonsegenskaper Download PDF

Info

Publication number
NO180057B
NO180057B NO893435A NO893435A NO180057B NO 180057 B NO180057 B NO 180057B NO 893435 A NO893435 A NO 893435A NO 893435 A NO893435 A NO 893435A NO 180057 B NO180057 B NO 180057B
Authority
NO
Norway
Prior art keywords
tool
fluid
formation
flow
pressure
Prior art date
Application number
NO893435A
Other languages
English (en)
Other versions
NO893435L (no
NO180057C (no
NO893435D0 (no
Inventor
Thomas Zimmerman
Julian Pop
Joseph Perkins
Original Assignee
Schlumberger Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22941019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO180057(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schlumberger Ltd filed Critical Schlumberger Ltd
Publication of NO893435D0 publication Critical patent/NO893435D0/no
Publication of NO893435L publication Critical patent/NO893435L/no
Publication of NO180057B publication Critical patent/NO180057B/no
Publication of NO180057C publication Critical patent/NO180057C/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/081Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/088Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Electric Cable Installation (AREA)
  • Measuring Fluid Pressure (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

Den foreliggende oppfinnelse angår brønnsonder, spesielt slike som er innrettet for bruk til å måle formasjonens permeabilitet og trykk, og å ta prøver av formasjonens fluida.
Tidligere har brønnsonder vært brukt til å ta prøver av formasjonens fluida. Disse fluida ble analysert ved å la dem flyte gjennom et resistivitets-testkammer. Syreholdigheten og temperaturen i fluidene ble også målt.
Brønn-samplingsverktøy ble hengt etter en trådlinje og senket ned i borehullet. Et par pakninger montert på verktøyet isolerte et intervall i borehullet når de ble utvidet til tettende kontakt ved borehullveggen. Fluidum ble fjernet fra det isolerte intervall mellom pakningene, gjennom en åpning i verktøyet, og resistiviteten ble målt. Resistivitets-målingen ble sendt til overflaten gjennom en trådlinje, og når resistiviteten ble konstant, hvilket indikerer at formasjonsfluidene ikke er forurenset av boreslamkomponenter, ble fluidum trukket inn i verktøyet, og de uttrukne fluida ble ført inn i et separat kammer hvor fluidenes redoks-potensial, syreholdighet og tempera-tur ble målt. Resultatene ble også sendt til overflaten gjennom trådlinje. Avhengig av test-resultatene, ble prøvene enten beholdt i et kammer eller pumpet tilbake i borehullet. Hvis prøven ble underkjent, ble pakningene tømt og verktøyet skiftet til en annen stilling i borehullet for videre sampling. Denne fremgangsmåten ble gjentatt til alle prøvekamrene i verktøyet var fylt med de ønskede prøver. Et slikt samplingsverktøy er illustrert i US patentnr. 4,535,843 med tittelen "Method and Apparatus for Obtaining Selected Samples of Formation Fluids". Siden prøveapparatet i 843-patentet bare var ment å ta ut formasjonsfluida for analyse, og ikke ble brukt for å måle formasjonens permeabilitet, var prøvens strømhastighet inne i apparatet uten betydning.
Tidligere ble fluidumprøver fra formasjonen tatt gjennom en sonde som strakte seg gjennom borehullveggen og var generelt omgitt av en tetningsdel laget av et materiale som var kompatibelt med brønnens fluida. Fluidumåpningen i sonden var typisk omgitt av en ringformet elastomer-tetningspute montert på en støtteplate som kunne beveges lateralt ved aktivatorer på verktøyet. På den motsatte side av verktøyet var en forankrings-del for verktøyet selektivt uttrekkbar for bruk i forbindelse med den bevegelige tetningspute for å plassere verktøyet på en slik måte at prøvepunktet var effektivt forseglet fra brønn-fluida.
Samplingsverktøyer som tidligere ble brukt inneholdt trykksensorer. Man var imidlertid fremdeles interessert i å være i stand til å detektere, under testoperasjonen, hvorvidt en prøve virkelig ble tatt, og hvis en prøve kom inn i verktøyet, hvor fort prøven ble sluppet inn i prøvekammeret.
Noen formasjons-testsonder benyttet en "vannpute-anordning" når det gjaldt å slippe formasjonsfluida inn i sonden. Som vist i US patent nr. 3,011,554, omfatter denne anordningen en stempeldel som er bevegelig anbrakt i et lukket prøvekammer, slik at det definerer et øvre og et nedre rom i kammeret, hvor inngangen til prøvekammeret er ovenfor stempelet, er det øvre rom opprinnelig ved atmosfærisk trykk og det nedre rom er fylt med et egnet, nær usammenpressbart fluidum så som vann. Et annet kammer eller væskereservoar som også opprinnelig er tomt og har et volum som er likt eller større enn det nedre rom, er i strømforbindelse med det nedre fylte vannrom gjennom en egnet strømbegrensning så som en liten åpning. Når formasjonsfluida kommer inn i den øvre del av prøvekammeret, blir stempelet progressivt beveget nedover fra sin opprinnelige høyre stilling for å forskyve vann fra den nedre del av prøvekammeret gjennom åpningen og inn i det opprinnelige tomme væskereservoar.
Man kan lett se i denne innretningen at strømkontrollen blir bestemt ved størrelsen på åpningen gjennom hvilken vannet fra det nedre rom blir forskjøvet inn i væskereservoaret nedstrøms fra åpningen. Denne anordningen gir ikke direkte kontroll av strøm-hastigheten for formasjonsfluidum inn i sonden. Avhengig av formasjonens permeabilitet og åpnings-størrelse og opprinnelig nedstrøms trykk fra åpningen, kan det oppstå en situasjon med et slikt verktøy at trykkfallet i prøvelinjen er stort nok til å forårsake gassdannelse når trykket faller under boblepunktet for formasjonsfluidet. Når slik gassdannelse forekommer, vil ikke sonden gi tolkbare resultater som kan bli brukt til å bestemme formasjonens permeabilitet, og ikke-representative fluidum-prøver blir trukket tilbake.
Andre fluidum-inntakssystemer har vært brukt, hvor det ikke har vært brukt vannpute. I U.S. patent nr 3,653.436, ble formasjonsfluida trukket inn i et opprinnelig tomt prøvekammer. Sonden inneholdt en trykksensor for å føle trykket i strømlinjen. Strømlinje-trykket stiger ubemerket med en meget lav takt, og det er ikke før et prøvekammer er nesten fullt at det forekommer en vesentlig økning i det målte trykk. I denne type av konfigura-sjon er ikke fluidum-samplingstakten kontrollert.
En modifikasjon av vannpute-typen av samplingssystem finnes i U.S. patentnr. 3,859,850. I dette patent blir selektivt opererbare ventiler åpnet for å plasserer fluidinntaks-anordningen i forbindelse med en prøvesamlingsanordning bestående av et opprinnelig tomt førstekammer som er tilfeldig koplet til en tom tilgjengelig del av et annet prøvekammer som selv er delt av en stempeldel som er bevegelig anbrakt i kammeret og normalt forspent mot inngangen til det annet kammer ved en ladning av kompremert gass begrenset til en lukket del av det annet kammer. Når prøve-fluida kommer inn i prøvesamplingsanordningen, blir det første prøvekammer først fylt før tilstrekkelig trykk bygges opp i det første kammeret til å begynne å bevege stempeldelen slik at formasjonsfluida kan begynne å fylle de andre kammeret. Ved å observere tiden som kreves for å fylle det første kammeret, kan man anslå strømningshastigheten for formasjonsfluidum som entrer kammeret.
Når det første kammeret er fylt og trykket av formasjons-fluidum er lik trykket av komprimert gass, vil bevegelse av stempelet inn i den gassfylte del av det andre kammeret ytterligere komprimere gassladningen slik at det påføres et propor-sjonalt økende tilbaketrykk på formasjonsfluidene. Disse kan bli målt for å oppnå et annet mål som kan brukes til å anslå hastig-heten med hvilken formasjonsfluida, hvis det er noen, kommer inn i det andre prøvekammeret.
Enda flere samplingsanordninger som isolerer prøvepunktet fra brønn-fluidene ved et fast punkt i formasjonen ved å in-kludere en sonde som er omgitt av en elastisk pakning forsampling av formasjonsfluida er beskrevet i US patent nr. 3,934,468, og UK patentsøknader nr. GB2172630A og GB2172631A.
Tatt i betraktning de betydelige kostnader som er involvert i boring av olje- og gassbrønner, er det ønskelig å bestemme fluidum-trykket og permeabiliteten i formasjonene for å kunne beregne brønnens evne til å produsere før man binder ytterligere ressurser til brønnen og på overflaten. De fleste gjennom-trengelige formasjoner er hydraulisk anisotropiske, og det er
i derfor ønskelig å måle vertikalt og horisontal permeabilitet for en gitt formasjon. Dette blir i det typiske tilfellet gjort ved å skape en trykk-gradient i en sone inne i en valgt formasjon, og å bestemme fluidum-trykket ved ett eller flere punkter i denne sonen. Det statiske trykk i en formasjon bestemmes på et gitt punkt i formasjonen ved bruk av en sonde med en fluidum-forbindelseskanal mellom et punkt i formasjonen og en egnet trykkmåleanordning i borehullet som går gjennom formasjonen. Formasjonens trykk i nærheten av punktet blir endret før, under og etter den statiske trykkmåling for å skape gradientsonen rundt punktet ved å føre fluidum inn i eller å trekke fluidum ut av formasjonen. I US patent nr. 2,747,401 blir det illustrert en dobbelt sondeanordning hvor fluidum blir enten trukket ut eller pumpet inn i formasjonen på et punkt, og en trykkgradient blir målt på et annet punkt. Den målte trykk-gradient var representa-tiv for den virkelige og relative permeabilitet i formasjonen. Apparatet ifølge 401-patentet kunne brukes til å måle variable størrelser å tillate beregning av permeabflitetene for formasjonen i flere forskjellige retninger, og således gjøre kjent graden av hydraulisk anisotropi i formasjonen.
En verktøytype kjent som RFT har vært brukt til å måle permeabilitet, skjønt dette verktøyet finner bedre anvendelse som en trykk-måleanordning og en prøvetaker. Problemet med denne type verktøy er, at for lave permeabiliteter blir trykkfallet forårsaket av strømmen ved den produserende sonde, stor, og gassdannelse resulterete når trykket falt under boblepunktet for formasjons-fluidet. I slike tilfeller var testen utolkbar. I motsatt fall, i situasjoner med høy permeabilitet, var trykkfallet ofte for lite og trykk-oppbygningen for effektiv måling med tilgjengelige trykksensorer. Det har vært en del modifikasjoner på de fundamentale permeabilitets-måleverktøyer. I en slik modifikasjon er trykkreduksjonen for den produserende sonde forutinnstilt på overflaten med en konstant verdi for strømmens varighet. Denne verdien kan bli valgt slik at man reduserer gassformasjonsproblemene og makismaliserer trykkampli-tuden. Problemet er at det ikke er noen anordning for strøm-taktsmålinger, og heller ikke prøvestørrelsen er nøyaktig kjent. En av disse målingene er nødvendig for å komme frem til en rimelig tolkning av horisontal permeabilitet når formasjonen er isotropisk eller bare lett anisotropisk (d.v.s. "a" er mellom 1 og 100 når a = forholdet mellom horisontal og vertikal permeabilitet).
I RFT-verktøy med enkelt sonde, er den permeabiliteten som bestemmes den sfæriske eller sylindriske permeabilitet. I homogene formasjoner og formasjoner med lav anisotropi er dette tilstrekkelig. I heterogene eller høyt anisotropiske formasjoner, er ytterligere observasjonssonder nødvendig for korrekt karakterisering av formasjonen.
Innretningene med en sonde har begrenset anvendelighet i bestemmelse av permeabilitet på grunn av at undersøkelsesdybden er meget grunn (noen tommer) under væskeuttrekning. Informasjon som samles ved denne type verktøy gjelder således bare forholdene meget nær prøvepunktet. Slike forhold kan også bli sterkt endret ved boring og senere væskeinvasjons-prosess.
Bruk av flere sonder utvider dybden for undersøkelsen til en mengde i størrelsesorden som sondeadskillelsen.
For å oppnå meningsfull permeabilitets-informasjon dypere
i formasjonen for dermed å unngå virkningen av boreskade og formasjons-invasjon, må sondeadskillelsen være betydelig større enn i kjente konstruksjoner så som US patent nr. 2,747,401. KJente konstruksjoner gjør sondeadskillelse i området 6 til 12 fot (2 til 4 meter) ubrukbare på grunn av at fluidum-fjerningstakten og derfor størrelsen av den forplantede trykkpuls, er begrenset på grunn av at et lite veggområde i borehullet avdekkes med slike verktøy.
En annen fremgangsmåte for å måle permeabilitet er å bruke en vertikal pulstest. I en foret og sementert brønn, isolerer foringspakningen et perforert intervall av foringsrør for å frembringe tilstrekkelig borehulls-område som er åpent for strøm. Dette tillater en trykkpuls som er stor nok til å måles med en trykkmåler. Denne typen av måling kan bare brukes etter at brønnen er foret og sementert. Kanaler bak foringsrøret kan endre den effektive vertikale adskillelse og derfor de målte resultater.
Apparatet ifølge den foreliggende oppfinnelse er konstruert for å tillate samling av permeabilitetsdata over større dybder i formasjonen enn hva som har vært mulig med tidligere verktøy. Apparatet benytter en dobbelt pakning som en komponent i verk-tøyet. Ved å tillate større overflateområder fra hvilket en prøve av formasjons-fluidum kan bli tatt, kan man benytte høyere strømningstakt, og meningsfulle permeabilitetsdata for en radius på omkring 50 til 80 fot, (15 til 24 meter) kan oppnås. Dessuten, ved at man kan trekke ut formasjons-fluidum ved trykk som er over boblepunktet på grunn av det utvidede overflateområdet mellom pakningene, blir avstanden mellom prøvepunktet og trykk-sonden effektivt øket til et område på 8 til 15 fot (3 til 5 meter) eller mer, og tillater således dataoppsamling om formasjonens permeabilitet for punkter som er fjernede fra verktøyet enn hva som var mulig med tidligere konstruksjoner, og gir dermed øket dybde for undersøkelsen. I tillegg, med bruk av den dobbelte pakning, kan en vertikal pulstest med stor nøyaktighet bli utført ved bruk av en pakning og en enkelt sonde.
Apparatet ifølge den foreliggende oppfinnelse benytter også et strømkontroll-trekk til å regulere strømhastigheten for formasjons-fluida inn i sonden, og frembringer dermed et konstant trykk eller konstant strømhastighets trykkforskjell på formasjonens overflate for å forsterke permeabilitets-bestemmelsen med flere sonder. Med prøve-strømkontroll kan man sikre at prøvene blir tatt over formasjonsfluidets boblepunkt. Prøver kan også bli tatt i ukonsoliderte soner. Prøvestrøm-hastigheten kan også bli øket for å bestemme den strømhastighet ved hvilken sand vil bli ført med fra formasjonen med formasjonsfluidene.
Apparatet ifølge den foreliggende oppfinnelse kan også konstrueres fleksibelt for utførelse av forskjellige typer tester ved å konstruere det i en modulær metode. Hver modul kan også konstrueres til å ha en gjennomgående strømlinje såvel som elektriske og hydrauliske strømkontroll-linjer som kan passeres på linje når en modul kobles til den neste. Et verktøy kan således settes sammen til å utføre et antall funksjoner samtidig som det beholder en slank profil. Slike moduler kan inneholde prøvekammere, fluidum-analyseutstyr, trykkmåleutstyr, et hydraulisk trykksystem for å operere forskjellige styringssystemer inne i de øvrige modulene, en pakningsmodul for å isolere en del av brønnhullet fra formasjons-prøvepunktet, sondemoduler for å måle trykkvariasjoner mens det tas prøver av formasjonsfluidum, og en utpumpingsmodul for å returnere prøver som er forurenset med slam til brønnen.
Apparatet ifølge den foreliggende oppfinnelse angår en brønnsonde som er i stand til å gjøre trykkmålinger som er nyttige for beregning av formasjonens permeabilitet. Verktøyet omfatter en dobbelt pakning for å tillate at prøver av formasjonsfluidum blir tatt med store strømhastigheter uten å senke trykket under formasjonsfluidets boblepunkt. Brukt sammen med en trykksonde blir verktøyet brukt til å oppnå mer meningsfulle permeabilitetsmålinger, og ved større undersøkelsesdybder enn hva som er tillatt med kjente konstruksjoner. Apparatet ifølge oppfinnelsen tillater dessuten strømkontroll under oppbygging av en trykkpuls som forbedrer permeabilitets-bestemmelsen. Apparatet kan være konstruert i moduler, slik at man ved en enkel nedsenkning av verktøyet, kan utføre en trykkprofil for den interessante sone, en fluidum-analyse kan utføres for hver stasjon, flere uforurensede fluidumprøver kan blir trukket ut ved trykk over boblepunktet, lokale vertikale og horisontale permeabilitetsmålinger kan utføres ved hver stasjon, en pakningsmodul kan bli satt på et sted som er bestemt ved tidligere målinger, og en større trykk-oppbygningstest kan bli utført.
Oppfinnelsen skal i det følgende beskrives nærmere under henvisning til tegningene, hvor: Fig. 1 er en skjematisk representasjon av apparatet ifølge den foreliggende oppfinnelse, og illustrerer noen av de modulære komponenter som kan utgjøre en del av apparatet ; Fig. 2 er en skjematisk representasjon av ytterligere moduler som kan utgjøre en del av apparatet.
Apparatet A er fortrinnsvis av modulær konstruksjon, skjønt et enhetlig verktøy er innenfor oppfinnelsens omfang. Apparatet
A er et brønnverktøy som kan senkes ned i brønnhullet (ikke vist) ved en trådlinje (ikke vist) for å utføre tester av formasjonens egenskaper. Trådlinjens forbindelser til verktøy, såvel som kraftforsyning og kommunikasjons-elektronikk er ikke illustrert for enkelthets skyld. Krafttilførsel og kommunikasjonslinjer strekker seg gjennom hele sondens lengde, og er vist som hen-visningstall 8. Disse kraftforsynings- og kommunikasjons-komponenter er kjent blant fagfolk på området, og har vært i kommersiell bruk tidligere. Denne typen kontrollutstyr ville normalt være installert i den øverste del av verktøyet, nær trådlinje-forbindelsene til verktøyet, med elektriske linjer løpende gjennom verktøyet til de forskjellige komponenter.
Som vist på figur 1 har apparatet A ifølge den foreliggende oppfinnelse en hydraulisk modul C, en pakningsmodul P og en sondemodul E. Sondemodulen E er vist med en sondeenhet 10 som brukes for isotropiske permeabilitetstester. Når man bruker verktøyet for å bestemme anisotropisk permeabilitet og den vertikale reservoar-struktur, kan en flersonde-modul F bli tilkoblet sondemodulen E. Flersonde-modulen F har en horisontal sondeenhet 12 og en synke-sondeenhet 14.
Den hydrauliske kraftmodul C omfatter en pumpe 16, reservoar 18 og en motor 20 for å styre pumpens drift. En lav oljesvitsj 22 danner også en del av styringssystemet, og blir brukt for å regulere driften av pumpen 16. Det skal bemerkes at driften av pumpen kan styres ved pneumatiske eller hydrauliske midler uten å avvike fra oppfinnelsens ånd.
En hydraulisk fluidum-linje 24 er forbundet med utløpet fra pumpen 16, og løper gjennom den hydrauliske kraftmodul C og inn i nærliggende moduler for bruk som en hydraulisk kraftkilde. I utførelsen vist på figur 1, hvor den hydrauliske linjen 24 gjennom hydraulisk kraftseksjon C inn i pakningsmodulen P og sondemodulen E eller F, avhengig av hvilken som blir brukt. Sløyfen blir sluttet ved hjelp av den hydrauliske fluidumlinje 26, som på figur 1 strekker seg fra sondemodulen E tilbake til hydraulisk kraftmodul C hvor den ender i et reservoar 18.
Utpumpingsmodulen M kan blir brukt til å kvitte seg med uønskede prøver ved å pumpe strømlinjen 54 inn i borehullet, eller kan bli brukt til å pumpe fluida fra borehullet og inn i strømlinjen 54 for å fylle dobbeltpakningene 28 og 30. Pumpen 92 kan innrettes til å trekke fra strømlinjen 54, og tømmer uønskede prøver gjennom strømlinjen 95 som vist på figur 2, og kan innrettes til å pumpe fluidum fra borehullet (via strømlinjen 95) til strømlinjen 54. Utpumpningsmodulen M har de nødvendige styringsinnretninger til å regulere pumpen 92 og å innrette fluidumslinjen 54 med fluidumlinjen 95 for å gjennomføre ut-pumpningsprosedyren. Det skal bemerkes at prøver som er lagret i prøvekammermodulen S også kan pumpes ut av apparatet A ved bruk av pumpemodulen M.
Alternativt kan dobbeltpakningene 28 og 30 fylles og tømmes med hydraulisk fluidum fra pumpen 16 uten å avvike fra oppfinnelsens ånd. Som man lett kan se, kan selektiv aktivering av utpumpingsmodulen 5 for å aktivere pumpen 92, kombinert med selektiv operasjon av kontrollventilen 96 og fylle- og tømme-anordningen I, resultere i selektiv fylling og tømming av pakningene 28 og 30. Pakningene 28 og 30 er montert til den ytre periferi 32 av apparatet A. Pakningene 28 og 30 er fortrinnsvis konstruert av et elastisk materiale som er kompatibelt med brønnhullets fluida og temperaturer. Pakningene 28 og 3 0 har et hulrom i dem. Når pumpen 92 virker, og fyllingsanordningene I er korrekt innstilt, strømmer fluidum fra strømlinjen 54 gjennom fyllings/tømmings-anordningen I, og gjennom strømlinjen 38 til pakningene 28 og 30.
Som også vist på figur 1, har sondemodulen E en sondeenhet 10 som er selektivt bevegelig i forhold til apparatet A. Bevegelse av sondeenheten 10 blir igangsatt ved at man betjener sondeaktivatoren 40. Sondeaktivatoren 40 innretter strømlinjene 24 og 26 med strømlinjene 42 og 44. Som man kan se på figur 1 er sonden 46 montert på en ramme 48. Rammen 48 er bevegelig i forhold til apparatet A og sonden 4 6 er bevegelig i forhold til rammen 48. Disse relative bevegelse blir iverksatt ved kontrollanordningen 40 ved å dirigere fluidum fra strømlinjene 24 og 26 selektivt inn i strømlinjene 42 og 44, og resultatet blir at rammen 48 først blir forskjøvet utover til kontakt med borehullets vegg. Utvidelsen av rammen 48 hjelper til å holde verktøyet støtt under bruk, og bringer sonden 4 6 nær borehullets vegg. Siden formålet er å oppnå en nøyaktig avlesning av trykkbølge-forplantningen inne i formasjonens fluida, er det ønskelig videre å sette inn sonde 46 inn i formasjonen og gjennom den oppbygde slamkake. Innretning av strømlinjen 24 med strøm-linjen 44 resulterer således i relativ forskyvning av sonden 4 6 inn i formasjonen på grunn av den relative bevegelse i forhold til rammen 48. Drift av sondene 12 og 14 foregår på lignende måte.
Permeabilitetsmålinger kan utføres med en flerprobe-modul
F som senker apparatet A ned i borehullet og fyller pakningene
2 8 og 30. Det skal bemerkes at slike målinger kan bli gjennom-ført ved bruk av sondemodulene E eller E og F uten paknings-modulen P, uten å avvike fra oppfinnelsens ånd. Sonden 46 blir så satt inn i formasjonen som beskrevet ovenfor. Det skal bemerkes at en lignende fremgangsmåte blir fulgt når man bruker flersonde-modulen F og sondemodulen E som inneholder den vertikale sonde 46, den horisontal sonde 12 og synkesonden 14.
Etter at man har fylt pakningene 28 og 3 0 og/eller stilt opp sonden 46 og/eller sondene 46, 12 og 14, kan testing av formasjonen begynne. En prøve-strømlinje 54 strekker seg fra den ytre periferi 32 ved et punkt mellom pakningene 28 og 30, gjennom i nærliggende moduler og inn i prøvemodulen S. Vertikal sonde 46
og synkesonde 14 tillater innføring av formasjons-fluida inn i prøve-strømlinjen 54 via en resistivitets-målecelle, en trykk-måleranordning og en fortest-mekanisme. Horisontal sonde 12 tillater innføring av formasjons-fluida inn i en trykkmåler-anordning og en fortest-mekanisme. Når man benytter modulene E eller E og S, er en isolasjonsventil 62 montert nedstrøms fra resistivitets-føleren 56. I den lukkede stilling begrenser isolasjonsventilen 62 det indre strømlinjevolum, og forbedrer nøyaktigheten av de dynamiske målinger utført ved trykkmåleren 58. Etter at de første trykktester er utført, kan isolasjonsventilen 62 åpnes og tillate strøm inn i andre moduler. Når man tar de første prøver, er det stor mulighet for at det første fluidum man får er forurenset med slamkake og filtrat. Det er ønskelig å fjerne slike forurensninger fra prøven som skal tas. Følgelig blir utpumpingsmodulen n først brukt til å rengjøre apparatet A prøver av formasjonsfluidum som er tatt gjennom
innløpet 64 eller vertikalsonden 46 eller synkesonden 14 til strømlinjen 54. Etter at forurensninger er vasket ut av apparatet A, kan formasjonsfluidum fortsette å strømme gjennom prøve-strømlinjen 54 som strekker seg gjennom tilstøtende moduler så som presisjons-trykkmodul B, fluidum-analysemodul L, utpumpingsmodul M (figur 2), strømkontroll-modul N og ethvert antall prøvekammer-moduler S som kan være tilkoblet. Ved at man har prøve-strømlinjen 54 løpende langs lengden av forskjellige moduler, kan man ha flere prøvekammermoduler S uten nødvendigvis å øke verktøyets totale diameter. Verktøyet kan ta så mange flere prøver før det må trekkes til overflaten, og kan benyttes i mindre hull.
Strømkontroll-modulen N omfatter en strømsensor 66, en strømkontrollenhet 58 og en selektivt justerbar restriksjons-innretning, typisk en ventil 70. En forut bestemt prøvestørrelse kan bli tatt ved en spesiell strømhastighet ved bruk av utstyret som beskrevet ovenfor i forbindelse med reservoarene 72 og 74. Når man har tatt en prøve kan prøvekammer-modulen S blir brukt til å lagre prøven som er tatt i strømkontroll-modulen N. For å oppnå dette åpner man en ventil 80 mens ventilene 62, 62A og 62B er holdt lukket, og dirigerer således prøven som nettopp er tatt inn i kammeret 84 i prøvekammermodulen S. Verktøyet kan så bli flyttet til et annet sted, og prosessen gjentatt. Ytterligere prøver som blir tatt kan lagres i hvilket som helst antall ytterligere prøvekammermoduler S som kan tilkobles ved en passende innretning av ventiler. For eksempel, som vist på figur 2, er det illustrert to prøvekammere S. Etter å ha fylt det øvre kammeret ved å betjene ventilen 80, kan den neste prøven bli lagret i den nedre prøvekammer-modul S ved å åpne ventilen 88 forbundet med kammeret 90. Det skal bemerkes at hver prøve-kammermodul har sin egen styringsenhet, vist på figur 2 som 9 2 og 94. Hvilket som helst antall prøvekammermoduler S eller ingen prøvekammermodul kan bli brukt i en spesiell utførelse av verktøyet, avhengig av typen av test som skal utføres. Alle slike utførelser ligger innenfor oppfinnelsens område.
Som vist på figur 2 når prøve-strømlinjen 54 også gjennom en presisjons-trykkmodul B og en fluidum-analysemodul D.
Måleren 98 skal fortrinnsvis monteres nær sondene 12 og 14
eller 46 for å redusere mengden av innvendige rør, som på grunn av fluidets kompressibilitet kan påvirke trykkmålingenes følsomhet. Presisjonsmåleren 98 er mer følsom enn strekk-måleren 58 for mer nøyaktige trykkmålinger over en tid.
Måleren 98 kan være en kvarts typer trykkmåler som har høyere statisk nøyaktighet eller oppløsning enn en strekkmåler-type trykktransduser. Egnede ventilanordninger og styringsmekanismer kan også benyttes til å forskyve operasjonen av måleren 98 og måleren 58 for å dra fordel av deres forskjell i følsomhet og evne til å tåle trykk-forskjeller.
Forskjellige utførelser av apparatet A kan benyttes, avhengig av målet som skal nås. For fundamental prøvetaking kan; den hydrauliske kraftmodul C bli brukt i kombinasjon med den elektriske kraftmodul L, sondemodul E og flere prøvekammermoduler S. For bestemmelse av reservoartrykk kan den hydrauliske kraftmodul C blir brukt sammen med den elektriske kraftmodul L, sondemodul E og presisjons-trykkmodul B. For uforurenset prøvetaking under reservoarforhold, kan den hydrauliske kraftmodul E også bli brukt sammen med elektrisk kraftmodul D, sondemodul E i forbindelse med fluidum-analysemodul L, utpumpingsmodul M og flere prøvekammer-moduler S. For å måle isotropisk permeabilitet kan den hydrauliske kraftmodul C bli brukt i kombinasjon med den elektrisk kraftmodul L, sondemodul E, presisjons-trykkmodul B, strømkontroll-modul N og flere prøve-kammermoduler S. For anisotropisk permeabilitetsmåling kan den hydrauliske kraftmodul C bli brukt sammen med sondemodul E, flersonde-modul F, elektrisk kraftmodul L, presisjonstrykkmodul B, strømkontrollmodul N og flere prøvekammermoduler S. En simulert DST-test kan bli kjørt ved å kombinere den elektriske kraftmodul L ved pakningsmodulen P og presisjons-trykkmodulen B og prøvekammermoduler S. Andre utførelser er også mulig uten å avvike fra oppfinnelsens ånd, og sammensetningen av slike utførelser avhenger også av de mål som skal nås med verktøyet. Verktøyet kan være av enhetlig konstruksjon såvel som modulær, men den modulære konstruksjon tillater imidlertid større fleksi-bilitet og lavere kostnader for brukere som ikke trenger alle funksjoner.
De individuelle moduler kan konstrueres slik at de raskt kan kobles til hverandre. I den foretrukne utførelse benyttes glatte forbindelser mellom modulene istedenfor han/hun-forbindelser for å unngå punkter hvor forurensninger, som er vanlig i enhver brønn, kan bli fanget.
Det skal bemerkes at strømkontrollmodulen også er innrettet til å styre trykket mens en prøve blir tatt.
Bruk av paknings-modulen P tillater at en prøve blir tatt gjennom innløpet 64 ved å trekke formasjons-fluidum fra en seksjon av brønnhullet mellom pakningene 28 og 30. Dette økede brønn-overflateområdet tillater bruk av større strømhastighet uten risiko for å trekke ned trykket til formasjonsfluidets boblepunkt, og således skape uønsket gass som påvirker resultatene av permeabilitets-testen.
Dessuten, som beskrevet ovenfor, tillater bruken av apparatet bruk av flere sonder med en avstand som er betydelig større enn noen få centimeter som vist i US patent nr. 2,747,401. For å bestemme formasjonens permeabilitet, upåvirket av boreskade og formasjons-invasjon, er det nødvendig med sonde-adskillelse i området 6 til 12 fot (2 til 4 meter). Kjente trådlinje-sonder gir vanskeligheter med sondeadskillelse på de nevnte størrelser på grunn av fluidum-fjerningshastigheten, og derfor er størrelsen av trykkpulsen begrenset på grunn av at et lite område av borehullveggen er avdekket.
Strømkontroll for prøven tillater også at forskjellige strømhastigheter blir brukt for å bestemme den strømhastighet hvilken sand blir fjernet fra formasjonen sammen med formasjons-fluida. Denne informasjon er nytting i forskjellige fremgangs-måter for assistert utvinning. Strømkontroll er også nyttig for å få meningsfulle prøver av formasjons-fluidum så raskt som mulig for å minimalisere muligheten for å binde trådlinjen og/eller verktøyet på grunn av at boreslam tyter inn i formasjonen i situasjoner med høy permeabilitet. I situasjoner med lav permeabilitet, er strømkontroll nyttig for å hindre at man trekker trykket i formasjonsfluidum-prøven under dens boblepunkt.
I sammendrag, den hydrauliske kraftmodul C leverer den fundamentale hydrauliske kraft til apparatet A. Tatt i betraktning de vanskelige forhold man møter nede i brønnen, kan en børstefri likestrømsmotor bli brukt til å drive pumpen 16. Den børstefrie motor kan bli innkapslet i et flytende medium og omfatter en detektor for bruk til å svitsje motorens felt.
Sondemodulen E og flersondemodulen F omfatter en resistivitets-måleanordning 56 som i vannbaserte boreslam, skjelner mellom filtrat og formasjonsfluidum når fluidum-analysemodulen L ikke er inkludert i apparatet A. Ventilen 62 minimaliserer etter strøm når det utføres permeabilitetsbe-stemmelser. Fluidum-analysemodulen D er konstruert til å skjelne mellom olje, gass og vann. På grunn av dens evne til å detektere gass, kan fluidum-analysemodulen D også bli brukt i forbindelse med utpumpingsmodulen M for å bestemme formasjonens boblepunkt.
Strømkontroll-modulen N omfatter videre en anordning for å detektere den stempel-stilling som er nyttig i soner med lav permeabilitet, hvor strømhastigheten kan være utilstrekkelig til å fylle hele modulen. Strømhastigheten kan være så lav at den kan være vanskelig å måle, og deteksjon av stempel-posisjonen gjør det mulig å ta prøve av en kjent volum-mengde.
Skjønt spesielle utførelser av oppfinnelsen er beskrevet
her, må man forstå at oppfinnelsen ikke er begrenset til disse, da modifikasjoner kan utføres. Det er derfor meningen at kravene skal dekke slike modifikasjoner som faller innenfor oppfinnelsens ånd og omfang.

Claims (19)

1. Et flerformåls brønnverktøy for innhenting av data ved-rørende formasjonsfluider, omfattende en pakningsanordning (P) innrettet for å bli plassert i et borehull i en ønsket dybde hvor prøver kan tas, for å avtette et segment av borehullet fra brønnfluider som befinner seg over og under pakningsanordningen; en strømnings-styreanordning (N) for selektivt å skape en transient trykkpuls i en sone tilstøtende segmentet av borehullet og verktøyets indre; og en trykk-føleanordning (E) for å detektere en trykkpuls frembrakt i sonen, karakterisert ved at strømnings-styreanordningen er i stand til å variere strømningshastigheten for fluider som går inn i verktøyet og har et innløp plassert for å tilveiebringe fluidums-forbindelse mellom formasjonsfluidene og verktøyets indre for selektivt å skape en transient trykkpuls i sonen.
2. Verktøy ifølge krav 1, karakterisert ved at pakningsanordningen omfatter et par (28, 30) forskjøvne, elastiske deler som hver ligger rundt verktøyets ytre overflate, hvilke elastiske deler har et hulrom i seg, og en anordning (I) for selektivt å fylle og tømme de elastiske delene.
3. Verktøy ifølge krav 2 , karakterisert ved at anordningen for fylling og tømming videre omfatter en pumpe (16), minst én strømningslinje (54) som forbinder pumpen (16) med hulrommene i de elastiske deler (28, 30), og en styreanordning (I) i strømningslinjen (54) for selektivt å regulere strømningen til hulrommene for fylling og tømming av de elastiske delene (28, 30) .
4. Verktøy ifølge krav 3, karakterisert ved at pumpen (16) og en del av strømningslinjen (54) er i en utpumpingsmodul (M) som utgjør en del av verktøyet, og at styreanordningen, de elastiske deler og en annen del av strømningslinjen er anbrakt i en pakningsmodul som utgjør en del av verktøyet.
5. Verktøy ifølge krav 1, karakterisert ved at strømnings-styreanordningen videre omfatter en pulsanordning for formasjonsfluidum, innrettet for selektivt å skape en transient trykkpuls i formasjonsfluidum-sonen.
6. Verktøy ifølge krav 1 eller 5, karakterisert ved at strømnings-styreanordningen omfatter en strømningslinje (54), et strømfølings-element (66) , en selektivt justerbar restriksjonsanordning montert i strømningslinjen (70), og en strømnings-styreanordning (68) for selektivt å justere restriksj onsanordningen.
7. Verktøy ifølge krav 6, karakterisert ved at strømningslinjen, strøm-følingselementet, den justerbare restriksjonsanordningen og strømnings-styreanordningen er i en modulær strømnings-kontrollmodul (M) i verktøyet, og at strømningslinjen (54) strekker seg gjennom hele lengden av strømnings-kontrollmodulen (M) .
8. Verktøy ifølge krav 7, karakterisert ved at pulsanordningen for formasjonsfluidum omfatter et første strømningslinje-forlengelsesrør som er i fluidumsforbindelse med strømnings-linjen i strømnings-styreseksjonen, idet strømningslinje-forlengelsesrøret strekker seg til verktøyets ytre overflate.
9. Verktøy ifølge krav 8, karakterisert ved at det videre omfatter minst ett prøvekammer (84) anbrakt i en modulær prøve-kammermodul (S) i verktøyet, og et andre strømningslinje-forlengelsesrør som strekker seg langsgående gjennom lengden av prøvekammermodulen (S) og er i selektiv fluidumsforbindelse med strømningslinjen og den første strømningslinje-forlengelsen.
10. Verktøy ifølge krav 9, karakterisert ved at det videre omfatter en fluidum-analyseanordning (modul D) for måling av fysiske egenskaper ved formasjonsfluidet, en presisjons-trykkmåleanordning (58) for nøyaktig måling av formasjonsfluidets trykk, et tredje strømningslinje-forlengelsesrør som i hovedsak er på linje med og er i fluidumsforbindelse med det andre strømningslinje-forlengelsesrør og strekker seg til fluidum-analyseanordningen og presisjons-trykkmåleanordningen, og en utpumpingsanordning (modul M) i fluidumsforbindelse med alle de nevnte strømningslinjer og verktøyets ytre overflate for selektivt å pumpe fluider i alle strømningslinjer inn i og ut av verktøyet.
11. Verktøy ifølge krav l, karakterisert ved at trykk-føleanordningen (modul E) er anbrakt på en del av verktøyet som er plassert utenfor borehull-segmentet som er isolert ved hjelp av pakningsanordningen, og at trykk-føleanordningen videre omfatter en sonde (10) med en gjennomgående strømningslinje som er i selektiv strømningsforbindelse med formasjonsfluidene i en posisjon som er verktikalt forskjøvet fra det nevnte borehull-segment.
12. Fremgangsmåte for å innhente data vedrørende posisjoner for fluider i undergrunnsformasjoner som gjennomskjæres av et borehull, ved hjelp av et flerformåls brønnverktøy, omfattende de følgende trinn: et segment av borehullet avtettes fra borehulls-fluider; et innløp tilveiebringes for fluidumsforbindelse mellom formasjonsfluidene i en sone tilstøtende segmentet og verktøy-ets indre; formasjonsfluidums-strømningen styres ved hjelp av en anordning (modul C) med et innløp plassert slik at fluidums-forbindelse tilveiebringes mellom formasjonsfluidene og verk-tøyets indre; fluidums-strømningshastigheten mellom formasjonsfluidet og verktøyet reguleres på en slik måte at reduksjon av trykk for formasjonsfluidum som strømmer inn i verktøyet, forhindres ; og et formasjonstrykk for formasjonsfluidet som strømmer inn i verktøyet detekteres, karakterisert ved at styring og justering av strømningen av formasjonsfluidum som går inn i verktøyet, tilveiebringer selektiv frembringelse av transiente trykk-pulser i formasjonsfluidum-sonen.
13. Fremgangsmåte ifølge krav 12, karakterisert ved at styringstrinnet videre omfatter pulsing av formasjonsfluidum ved hjelp av en anordning for selektiv frembringelse av en transient trykkpuls i formasjonsfluidum-sonen.
14. Fremgangsmåte ifølge krav 12 eller 13, karakterisert ved at strømnings-reguleringstrinnet videre omfatter etablering av en strømningslinje mellom formasjonen og verktøyet, innbefattende et strømnings-føleelement og en selektivt justerbar restriksjonsanordning montert i strøm-ningslinjen, og selektiv justering av restriksjonsanordningen for å regulere fluidums-strømningshastigheten.
15. Fremgangsmåte ifølge krav 13, karakterisert ved at pulsingstrinnet for formasjonsfluidum videre omfatter etablering av en første fluidumsforbindelse med strøm-ningslinjen, og forlengelse til verktøyets ytre overflate, og etablering av en andre fluidumsforbindelse som strekker seg langsgående gjennom lengden av en prøvekammermodul og er i selektiv fluidumsforbindelse med strømningslinjen og den første fluidumsforbindelse.
16. Fremgangsmåte ifølge krav 15, karakterisert ved at den videre omfatter måling av fysiske egenskaper for formasjonsfluidet ved hjelp av en fluidum-analyseanordning, måling av formasjonsfluidets trykk ved hjelp av en trykk-måleanordning, etablering av en tredje fluidumsforbindelse mellom den andre fluidumsforbindelse med fluidum-analyseanordningen og presisjons-trykkmåleanordningen, og selektiv pumping av fluidum i alle de nevnte strømnings-linjer inn i og ut av verktøyet.
17. Fremgangsmåte ifølge krav 12, karakterisert ved at reguleringstrinnet videre omfatter regulering av fluidums-strømningshastigheten mellom formasjonsfluidet og verktøyet på en slik måte at reduksjon av formasjonsfluidets trykk mens det strømmer inn i innløpet, ned under dets boblepunkt, forhindres.
18. Fremgangsmåte ifølge krav 17, karakterisert ved at reguleringstrinnet for fluidums-strømning videre omfatter etablering av en strømningslinje mellom formasjonen og verktøyet, innbefattende et strømnings-føleelement og en selektivt justerbar restriksjonsanordning montert i strøm-ningslinjen, og selektiv justering av restriksjonsanordningen for å regulere fluidums-strømningshastigheten.
19. Fremgangsmåte ifølge krav 14 eller 17, karakterisert ved at den videre omfatter de følgende trinn: måling av de fysiske egenskaper ved formasjonsfluidet, måling av formasjonsfluidets trykk, og selektiv pumping av fluidum ut av verktøyets indre.
NO893435A 1988-09-23 1989-08-28 Brönn-sonde for bestemmelse av formasjonsegenskaper NO180057C (no)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/248,867 US4860581A (en) 1988-09-23 1988-09-23 Down hole tool for determination of formation properties

Publications (4)

Publication Number Publication Date
NO893435D0 NO893435D0 (no) 1989-08-28
NO893435L NO893435L (no) 1990-03-26
NO180057B true NO180057B (no) 1996-10-28
NO180057C NO180057C (no) 1997-02-05

Family

ID=22941019

Family Applications (1)

Application Number Title Priority Date Filing Date
NO893435A NO180057C (no) 1988-09-23 1989-08-28 Brönn-sonde for bestemmelse av formasjonsegenskaper

Country Status (21)

Country Link
US (1) US4860581A (no)
EP (2) EP0697502B1 (no)
CN (1) CN1019836B (no)
AT (1) ATE146560T1 (no)
AU (1) AU626216B2 (no)
BR (1) BR8903832A (no)
DE (2) DE68929202T2 (no)
DK (1) DK173591B1 (no)
DZ (1) DZ1360A1 (no)
EG (1) EG18656A (no)
ES (1) ES2148392T3 (no)
MA (1) MA21632A1 (no)
MX (1) MX166366B (no)
MY (1) MY104680A (no)
NO (1) NO180057C (no)
NZ (1) NZ230726A (no)
OA (1) OA09094A (no)
PH (1) PH26204A (no)
RU (1) RU2074316C1 (no)
TR (1) TR28979A (no)
ZA (1) ZA897236B (no)

Families Citing this family (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142471A (en) * 1990-04-05 1992-08-25 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Method for determining the pressure or stress of a geological formation from acoustic measurement
FR2661943B1 (fr) * 1990-05-10 1992-07-17 Commissariat Energie Atomique Bouteille de prelevement de fluide, utilisable en forages profonds.
US5230244A (en) * 1990-06-28 1993-07-27 Halliburton Logging Services, Inc. Formation flush pump system for use in a wireline formation test tool
US5056595A (en) * 1990-08-13 1991-10-15 Gas Research Institute Wireline formation test tool with jet perforator for positively establishing fluidic communication with subsurface formation to be tested
US5201220A (en) * 1990-08-28 1993-04-13 Schlumberger Technology Corp. Apparatus and method for detecting the presence of gas in a borehole flow stream
US5167149A (en) * 1990-08-28 1992-12-01 Schlumberger Technology Corporation Apparatus and method for detecting the presence of gas in a borehole flow stream
GB9026703D0 (en) * 1990-12-07 1991-01-23 Schlumberger Ltd Downhole measurement using very short fractures
GB9026846D0 (en) * 1990-12-11 1991-01-30 Schlumberger Ltd Downhole penetrometer
US5092167A (en) * 1991-01-09 1992-03-03 Halliburton Company Method for determining liquid recovery during a closed-chamber drill stem test
GB9114972D0 (en) * 1991-07-11 1991-08-28 Schlumberger Ltd Fracturing method and apparatus
US5156205A (en) * 1991-07-08 1992-10-20 Prasad Raj K Method of determining vertical permeability of a subsurface earth formation
US5269180A (en) * 1991-09-17 1993-12-14 Schlumberger Technology Corp. Borehole tool, procedures, and interpretation for making permeability measurements of subsurface formations
US5335542A (en) * 1991-09-17 1994-08-09 Schlumberger Technology Corporation Integrated permeability measurement and resistivity imaging tool
US5195588A (en) * 1992-01-02 1993-03-23 Schlumberger Technology Corporation Apparatus and method for testing and repairing in a cased borehole
GB9204902D0 (en) * 1992-03-06 1992-04-22 Schlumberger Ltd Formation evalution tool
US5353637A (en) * 1992-06-09 1994-10-11 Plumb Richard A Methods and apparatus for borehole measurement of formation stress
US5351532A (en) * 1992-10-08 1994-10-04 Paradigm Technologies Methods and apparatus for making chemical concentration measurements in a sub-surface exploration probe
US5329811A (en) * 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US5602334A (en) * 1994-06-17 1997-02-11 Halliburton Company Wireline formation testing for low permeability formations utilizing pressure transients
DE19510760A1 (de) * 1995-03-24 1996-09-26 Knapp Oliver Meßsonde für hydrogeologische Messungen
FR2733073B1 (fr) * 1995-04-12 1997-06-06 Inst Francais Du Petrole Methode pour modeliser un milieu geologique stratifie et fracture
US5663559A (en) * 1995-06-07 1997-09-02 Schlumberger Technology Corporation Microscopy imaging of earth formations
US5622223A (en) * 1995-09-01 1997-04-22 Haliburton Company Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements
US5743334A (en) * 1996-04-04 1998-04-28 Chevron U.S.A. Inc. Evaluating a hydraulic fracture treatment in a wellbore
US5969241A (en) * 1996-04-10 1999-10-19 Schlumberger Technology Corporation Method and apparatus for measuring formation pressure
GB9614761D0 (en) 1996-07-13 1996-09-04 Schlumberger Ltd Downhole tool and method
US5934374A (en) * 1996-08-01 1999-08-10 Halliburton Energy Services, Inc. Formation tester with improved sample collection system
US6061634A (en) * 1997-04-14 2000-05-09 Schlumberger Technology Corporation Method and apparatus for characterizing earth formation properties through joint pressure-resistivity inversion
US6092416A (en) * 1997-04-16 2000-07-25 Schlumberger Technology Corporation Downholed system and method for determining formation properties
NO305259B1 (no) 1997-04-23 1999-04-26 Shore Tec As FremgangsmÕte og apparat til bruk ved produksjonstest av en forventet permeabel formasjon
US6766854B2 (en) 1997-06-02 2004-07-27 Schlumberger Technology Corporation Well-bore sensor apparatus and method
US6691779B1 (en) 1997-06-02 2004-02-17 Schlumberger Technology Corporation Wellbore antennae system and method
US6234257B1 (en) 1997-06-02 2001-05-22 Schlumberger Technology Corporation Deployable sensor apparatus and method
US6693553B1 (en) 1997-06-02 2004-02-17 Schlumberger Technology Corporation Reservoir management system and method
US6070662A (en) * 1998-08-18 2000-06-06 Schlumberger Technology Corporation Formation pressure measurement with remote sensors in cased boreholes
US5789669A (en) 1997-08-13 1998-08-04 Flaum; Charles Method and apparatus for determining formation pressure
EP0908600A3 (en) * 1997-10-09 2000-12-20 Halliburton Energy Services, Inc. Formation testing apparatus
US6758090B2 (en) * 1998-06-15 2004-07-06 Schlumberger Technology Corporation Method and apparatus for the detection of bubble point pressure
US6490916B1 (en) 1998-06-15 2002-12-10 Schlumberger Technology Corporation Method and system of fluid analysis and control in a hydrocarbon well
US6128949A (en) * 1998-06-15 2000-10-10 Schlumberger Technology Corporation Phase change analysis in logging method
US6178815B1 (en) * 1998-07-30 2001-01-30 Schlumberger Technology Corporation Method to improve the quality of a formation fluid sample
US6230557B1 (en) 1998-08-04 2001-05-15 Schlumberger Technology Corporation Formation pressure measurement while drilling utilizing a non-rotating sleeve
US6346813B1 (en) * 1998-08-13 2002-02-12 Schlumberger Technology Corporation Magnetic resonance method for characterizing fluid samples withdrawn from subsurface formations
US6891369B2 (en) * 1998-08-13 2005-05-10 Schlumberger Technology Corporation Nuclear magnetic resonance method and logging apparatus for fluid analysis
US6164126A (en) * 1998-10-15 2000-12-26 Schlumberger Technology Corporation Earth formation pressure measurement with penetrating probe
GB2344365B (en) 1998-12-03 2001-01-03 Schlumberger Ltd Downhole sampling tool and method
US6301959B1 (en) 1999-01-26 2001-10-16 Halliburton Energy Services, Inc. Focused formation fluid sampling probe
US6250138B1 (en) * 1999-02-01 2001-06-26 Wood Group Logging Services Holdings, Inc. Determining fluid bubble point pressure using an adjustable choke
US6274865B1 (en) 1999-02-23 2001-08-14 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
US6350986B1 (en) 1999-02-23 2002-02-26 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
US6688390B2 (en) * 1999-03-25 2004-02-10 Schlumberger Technology Corporation Formation fluid sampling apparatus and method
US6330913B1 (en) 1999-04-22 2001-12-18 Schlumberger Technology Corporation Method and apparatus for testing a well
US6347666B1 (en) 1999-04-22 2002-02-19 Schlumberger Technology Corporation Method and apparatus for continuously testing a well
US6382315B1 (en) 1999-04-22 2002-05-07 Schlumberger Technology Corporation Method and apparatus for continuously testing a well
US6357525B1 (en) 1999-04-22 2002-03-19 Schlumberger Technology Corporation Method and apparatus for testing a well
GB2355033B (en) * 1999-10-09 2003-11-19 Schlumberger Ltd Methods and apparatus for making measurements on fluids produced from underground formations
US6678616B1 (en) 1999-11-05 2004-01-13 Schlumberger Technology Corporation Method and tool for producing a formation velocity image data set
US6467387B1 (en) 2000-08-25 2002-10-22 Schlumberger Technology Corporation Apparatus and method for propelling a data sensing apparatus into a subsurface formation
EP1327054B1 (en) * 2000-09-22 2006-11-02 GUDMUNDSSON, Jon Steinar Method for determining pressure profiles in wellbores, flowlines and pipelines, and use of such method
US6476384B1 (en) 2000-10-10 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for downhole fluids analysis
US6474152B1 (en) 2000-11-02 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for optically measuring fluid compressibility downhole
US6668924B2 (en) * 2000-11-14 2003-12-30 Schlumberger Technology Corporation Reduced contamination sampling
US6659177B2 (en) 2000-11-14 2003-12-09 Schlumberger Technology Corporation Reduced contamination sampling
US6467544B1 (en) * 2000-11-14 2002-10-22 Schlumberger Technology Corporation Sample chamber with dead volume flushing
EG22935A (en) * 2001-01-18 2003-11-29 Shell Int Research Retrieving a sample of formation fluid in a case hole
US6501072B2 (en) 2001-01-29 2002-12-31 Schlumberger Technology Corporation Methods and apparatus for determining precipitation onset pressure of asphaltenes
CN1256578C (zh) * 2001-06-07 2006-05-17 西安石油大学 全储层取样测试器
GB2381862A (en) 2001-11-10 2003-05-14 Schlumberger Holdings Fluid density measurement
US7028773B2 (en) * 2001-11-28 2006-04-18 Schlumberger Technology Coporation Assessing downhole WBM-contaminated connate water
US6729400B2 (en) 2001-11-28 2004-05-04 Schlumberger Technology Corporation Method for validating a downhole connate water sample
US6789937B2 (en) * 2001-11-30 2004-09-14 Schlumberger Technology Corporation Method of predicting formation temperature
US6658930B2 (en) * 2002-02-04 2003-12-09 Halliburton Energy Services, Inc. Metal pad for downhole formation testing
US6843118B2 (en) * 2002-03-08 2005-01-18 Halliburton Energy Services, Inc. Formation tester pretest using pulsed flow rate control
US6837314B2 (en) * 2002-03-18 2005-01-04 Baker Hughes Incoporated Sub apparatus with exchangeable modules and associated method
BRPI0310097B1 (pt) * 2002-05-17 2017-05-02 Halliburton Energy Services Inc ferramenta e método para testar formação
EP1514009A4 (en) * 2002-05-17 2006-06-21 Halliburton Energy Serv Inc MWD LAYER TEST APPARATUS
US6719049B2 (en) 2002-05-23 2004-04-13 Schlumberger Technology Corporation Fluid sampling methods and apparatus for use in boreholes
US6765380B2 (en) 2002-05-23 2004-07-20 Schlumberger Technology Corporation Determining wettability of an oil reservoir using borehole NMR measurements
US7075063B2 (en) * 2002-06-26 2006-07-11 Schlumberger Technology Corporation Determining phase transition pressure of downhole retrograde condensate
US7002142B2 (en) * 2002-06-26 2006-02-21 Schlumberger Technology Corporation Determining dew precipitation and onset pressure in oilfield retrograde condensate
US8210260B2 (en) 2002-06-28 2012-07-03 Schlumberger Technology Corporation Single pump focused sampling
US6964301B2 (en) * 2002-06-28 2005-11-15 Schlumberger Technology Corporation Method and apparatus for subsurface fluid sampling
US7178591B2 (en) * 2004-08-31 2007-02-20 Schlumberger Technology Corporation Apparatus and method for formation evaluation
US8899323B2 (en) 2002-06-28 2014-12-02 Schlumberger Technology Corporation Modular pumpouts and flowline architecture
US8555968B2 (en) * 2002-06-28 2013-10-15 Schlumberger Technology Corporation Formation evaluation system and method
US7155967B2 (en) 2002-07-09 2007-01-02 Schlumberger Technology Corporation Formation testing apparatus and method
US6827149B2 (en) 2002-07-26 2004-12-07 Schlumberger Technology Corporation Method and apparatus for conveying a tool in a borehole
US6745835B2 (en) 2002-08-01 2004-06-08 Schlumberger Technology Corporation Method and apparatus for pressure controlled downhole sampling
US7062959B2 (en) * 2002-08-15 2006-06-20 Schlumberger Technology Corporation Method and apparatus for determining downhole pressures during a drilling operation
EP1540299B1 (en) * 2002-08-27 2013-02-20 Halliburton Energy Services, Inc. Single phase sampling apparatus and method
US6832515B2 (en) 2002-09-09 2004-12-21 Schlumberger Technology Corporation Method for measuring formation properties with a time-limited formation test
DE60305816T2 (de) 2002-09-09 2007-01-04 Schlumberger Technology B.V. Verfahren zur Messung von Formationseigenschaften mit zeitbegrenztem Formationstest
US7805247B2 (en) * 2002-09-09 2010-09-28 Schlumberger Technology Corporation System and methods for well data compression
US7152466B2 (en) 2002-11-01 2006-12-26 Schlumberger Technology Corporation Methods and apparatus for rapidly measuring pressure in earth formations
US7036362B2 (en) * 2003-01-20 2006-05-02 Schlumberger Technology Corporation Downhole determination of formation fluid properties
US6841996B2 (en) * 2003-01-22 2005-01-11 Schlumberger Technology Corporation Nuclear magnetic resonance apparatus and methods for analyzing fluids extracted from earth formation
US7331223B2 (en) * 2003-01-27 2008-02-19 Schlumberger Technology Corporation Method and apparatus for fast pore pressure measurement during drilling operations
US6986282B2 (en) * 2003-02-18 2006-01-17 Schlumberger Technology Corporation Method and apparatus for determining downhole pressures during a drilling operation
US7128144B2 (en) 2003-03-07 2006-10-31 Halliburton Energy Services, Inc. Formation testing and sampling apparatus and methods
US9376910B2 (en) 2003-03-07 2016-06-28 Halliburton Energy Services, Inc. Downhole formation testing and sampling apparatus having a deployment packer
US6905241B2 (en) * 2003-03-13 2005-06-14 Schlumberger Technology Corporation Determination of virgin formation temperature
US6956204B2 (en) * 2003-03-27 2005-10-18 Schlumberger Technology Corporation Determining fluid properties from fluid analyzer
WO2004099552A2 (en) * 2003-05-02 2004-11-18 Halliburton Energy Services, Inc. Determining gradients using a multi-probed formation tester
US7463027B2 (en) 2003-05-02 2008-12-09 Halliburton Energy Services, Inc. Systems and methods for deep-looking NMR logging
US6992768B2 (en) * 2003-05-22 2006-01-31 Schlumberger Technology Corporation Optical fluid analysis signal refinement
US7013723B2 (en) * 2003-06-13 2006-03-21 Schlumberger Technology Corporation Apparatus and methods for canceling the effects of fluid storage in downhole tools
WO2004113678A1 (en) * 2003-06-20 2004-12-29 Baker Hughes Incorporated Improved downhole pv tests for bubble point pressure
US7111682B2 (en) * 2003-07-21 2006-09-26 Mark Kevin Blaisdell Method and apparatus for gas displacement well systems
US6938469B2 (en) * 2003-08-06 2005-09-06 Schlumberger Technology Corporation Method for determining properties of formation fluids
US7178392B2 (en) * 2003-08-20 2007-02-20 Schlumberger Technology Corporation Determining the pressure of formation fluid in earth formations surrounding a borehole
MXPA06003671A (es) 2003-10-03 2006-06-20 Halliburton Energy Serv Inc Sistema y metodos para diagrafias basadas en t1.
US7195063B2 (en) * 2003-10-15 2007-03-27 Schlumberger Technology Corporation Downhole sampling apparatus and method for using same
US7114562B2 (en) * 2003-11-24 2006-10-03 Schlumberger Technology Corporation Apparatus and method for acquiring information while drilling
US7124819B2 (en) * 2003-12-01 2006-10-24 Schlumberger Technology Corporation Downhole fluid pumping apparatus and method
US7134500B2 (en) * 2003-12-19 2006-11-14 Schlumberger Technology Corporation Formation fluid characterization using flowline viscosity and density data an oil-based mud environment
US6966234B2 (en) * 2004-01-14 2005-11-22 Schlumberger Technology Corporation Real-time monitoring and control of reservoir fluid sample capture
US7121338B2 (en) 2004-01-27 2006-10-17 Halliburton Energy Services, Inc Probe isolation seal pad
US7031841B2 (en) * 2004-01-30 2006-04-18 Schlumberger Technology Corporation Method for determining pressure of earth formations
MY140024A (en) * 2004-03-01 2009-11-30 Halliburton Energy Serv Inc Methods for measuring a formation supercharge pressure
CA2558627C (en) * 2004-05-21 2009-11-03 Halliburton Energy Services, Inc. Methods and apparatus for using formation property data
AU2005245981B2 (en) * 2004-05-21 2011-05-19 Halliburton Energy Services, Inc. Methods and apparatus for measuring formation properties
US7216533B2 (en) * 2004-05-21 2007-05-15 Halliburton Energy Services, Inc. Methods for using a formation tester
US7603897B2 (en) * 2004-05-21 2009-10-20 Halliburton Energy Services, Inc. Downhole probe assembly
US7260985B2 (en) * 2004-05-21 2007-08-28 Halliburton Energy Services, Inc Formation tester tool assembly and methods of use
US7347262B2 (en) * 2004-06-18 2008-03-25 Schlumberger Technology Corporation Downhole sampling tool and method for using same
US7191831B2 (en) * 2004-06-29 2007-03-20 Schlumberger Technology Corporation Downhole formation testing tool
US7380599B2 (en) * 2004-06-30 2008-06-03 Schlumberger Technology Corporation Apparatus and method for characterizing a reservoir
US7458419B2 (en) * 2004-10-07 2008-12-02 Schlumberger Technology Corporation Apparatus and method for formation evaluation
US7114385B2 (en) * 2004-10-07 2006-10-03 Schlumberger Technology Corporation Apparatus and method for drawing fluid into a downhole tool
US7258167B2 (en) * 2004-10-13 2007-08-21 Baker Hughes Incorporated Method and apparatus for storing energy and multiplying force to pressurize a downhole fluid sample
GB2419424B (en) * 2004-10-22 2007-03-28 Schlumberger Holdings Method and system for estimating the amount of supercharging in a formation
US7302966B2 (en) * 2004-11-08 2007-12-04 Schlumberger Technology Corporation Flow control valve and method
US7565835B2 (en) * 2004-11-17 2009-07-28 Schlumberger Technology Corporation Method and apparatus for balanced pressure sampling
US7293715B2 (en) * 2004-12-16 2007-11-13 Schlumberger Technology Corporation Marking system and method
US20060168955A1 (en) * 2005-02-03 2006-08-03 Schlumberger Technology Corporation Apparatus for hydraulically energizing down hole mechanical systems
US7278480B2 (en) * 2005-03-31 2007-10-09 Schlumberger Technology Corporation Apparatus and method for sensing downhole parameters
US7458252B2 (en) * 2005-04-29 2008-12-02 Schlumberger Technology Corporation Fluid analysis method and apparatus
US7461547B2 (en) * 2005-04-29 2008-12-09 Schlumberger Technology Corporation Methods and apparatus of downhole fluid analysis
US7546885B2 (en) * 2005-05-19 2009-06-16 Schlumberger Technology Corporation Apparatus and method for obtaining downhole samples
US7543659B2 (en) * 2005-06-15 2009-06-09 Schlumberger Technology Corporation Modular connector and method
US7913774B2 (en) 2005-06-15 2011-03-29 Schlumberger Technology Corporation Modular connector and method
US7183778B2 (en) * 2005-07-19 2007-02-27 Schlumberger Technology Corporation Apparatus and method to measure fluid resistivity
US7279678B2 (en) * 2005-08-15 2007-10-09 Schlumber Technology Corporation Method and apparatus for composition analysis in a logging environment
US7495446B2 (en) * 2005-08-23 2009-02-24 Schlumberger Technology Corporation Formation evaluation system and method
US7478555B2 (en) * 2005-08-25 2009-01-20 Schlumberger Technology Corporation Technique and apparatus for use in well testing
US8620636B2 (en) * 2005-08-25 2013-12-31 Schlumberger Technology Corporation Interpreting well test measurements
US7392697B2 (en) * 2005-09-19 2008-07-01 Schlumberger Technology Corporation Apparatus for downhole fluids analysis utilizing micro electro mechanical system (MEMS) or other sensors
US7673679B2 (en) * 2005-09-19 2010-03-09 Schlumberger Technology Corporation Protective barriers for small devices
GB2431673B (en) 2005-10-26 2008-03-12 Schlumberger Holdings Downhole sampling apparatus and method for using same
US7609380B2 (en) * 2005-11-14 2009-10-27 Schlumberger Technology Corporation Real-time calibration for downhole spectrometer
US20070108378A1 (en) * 2005-11-14 2007-05-17 Toru Terabayashi High pressure optical cell for a downhole optical fluid analyzer
US7428925B2 (en) * 2005-11-21 2008-09-30 Schlumberger Technology Corporation Wellbore formation evaluation system and method
US7458258B2 (en) * 2005-12-16 2008-12-02 Schlumberger Technology Corporation Methods and apparatus for oil composition determination
US20070151727A1 (en) 2005-12-16 2007-07-05 Schlumberger Technology Corporation Downhole Fluid Communication Apparatus and Method
US20080087470A1 (en) * 2005-12-19 2008-04-17 Schlumberger Technology Corporation Formation Evaluation While Drilling
US7367394B2 (en) 2005-12-19 2008-05-06 Schlumberger Technology Corporation Formation evaluation while drilling
US7379180B2 (en) * 2006-01-26 2008-05-27 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7336356B2 (en) * 2006-01-26 2008-02-26 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7511813B2 (en) * 2006-01-26 2009-03-31 Schlumberger Technology Corporation Downhole spectral analysis tool
US7445043B2 (en) * 2006-02-16 2008-11-04 Schlumberger Technology Corporation System and method for detecting pressure disturbances in a formation while performing an operation
RU2454662C2 (ru) * 2006-04-10 2012-06-27 Бейкер Хьюз Инкорпорейтед Система и способ для оценки загрязнения образцов пластового флюида фильтратом с использованием коэффициента преломления
US7996153B2 (en) * 2006-07-12 2011-08-09 Baker Hughes Incorporated Method and apparatus for formation testing
WO2008008424A2 (en) * 2006-07-12 2008-01-17 Baker Hughes Incorporated Method and apparatus for formation testing
DE602007012355D1 (de) * 2006-07-21 2011-03-17 Halliburton Energy Serv Inc Volumenausschliesser mit variabler verpackung und probenahmeverfahren dafür
US7886825B2 (en) * 2006-09-18 2011-02-15 Schlumberger Technology Corporation Formation fluid sampling tools and methods utilizing chemical heating
US20080066535A1 (en) * 2006-09-18 2008-03-20 Schlumberger Technology Corporation Adjustable Testing Tool and Method of Use
US8016038B2 (en) * 2006-09-18 2011-09-13 Schlumberger Technology Corporation Method and apparatus to facilitate formation sampling
US7748265B2 (en) * 2006-09-18 2010-07-06 Schlumberger Technology Corporation Obtaining and evaluating downhole samples with a coring tool
US7878243B2 (en) * 2006-09-18 2011-02-01 Schlumberger Technology Corporation Method and apparatus for sampling high viscosity formation fluids
US7757760B2 (en) * 2006-09-22 2010-07-20 Schlumberger Technology Corporation System and method for real-time management of formation fluid sampling with a guarded probe
US7857049B2 (en) * 2006-09-22 2010-12-28 Schlumberger Technology Corporation System and method for operational management of a guarded probe for formation fluid sampling
US7482811B2 (en) * 2006-11-10 2009-01-27 Schlumberger Technology Corporation Magneto-optical method and apparatus for determining properties of reservoir fluids
US20080111064A1 (en) * 2006-11-10 2008-05-15 Schlumberger Technology Corporation Downhole measurement of substances in earth formations
US7464755B2 (en) * 2006-12-12 2008-12-16 Schlumberger Technology Corporation Methods and systems for sampling heavy oil reservoirs
US7827859B2 (en) * 2006-12-12 2010-11-09 Schlumberger Technology Corporation Apparatus and methods for obtaining measurements below bottom sealing elements of a straddle tool
US7654321B2 (en) * 2006-12-27 2010-02-02 Schlumberger Technology Corporation Formation fluid sampling apparatus and methods
US7594541B2 (en) 2006-12-27 2009-09-29 Schlumberger Technology Corporation Pump control for formation testing
US7782060B2 (en) * 2006-12-28 2010-08-24 Schlumberger Technology Corporation Integrated electrode resistivity and EM telemetry tool
US20090159278A1 (en) * 2006-12-29 2009-06-25 Pierre-Yves Corre Single Packer System for Use in Heavy Oil Environments
US8162052B2 (en) 2008-01-23 2012-04-24 Schlumberger Technology Corporation Formation tester with low flowline volume and method of use thereof
US8496054B2 (en) 2007-01-17 2013-07-30 Schlumberger Technology Corporation Methods and apparatus to sample heavy oil in a subterranean formation
US7586087B2 (en) * 2007-01-24 2009-09-08 Schlumberger Technology Corporation Methods and apparatus to characterize stock-tank oil during fluid composition analysis
US7688071B2 (en) * 2007-01-31 2010-03-30 Schlumberger Technology Corporation NMR measurement of wax appearance in fluids
AU2009201961B2 (en) * 2007-02-12 2011-04-14 Valkyrie Commissioning Services, Inc Apparatus and methods for subsea control system testing
US20080230221A1 (en) * 2007-03-21 2008-09-25 Schlumberger Technology Corporation Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors
US7717172B2 (en) * 2007-05-30 2010-05-18 Schlumberger Technology Corporation Methods and apparatus to sample heavy oil from a subteranean formation
US7637321B2 (en) * 2007-06-14 2009-12-29 Schlumberger Technology Corporation Apparatus and method for unsticking a downhole tool
US7690423B2 (en) * 2007-06-21 2010-04-06 Schlumberger Technology Corporation Downhole tool having an extendable component with a pivoting element
US7726396B2 (en) * 2007-07-27 2010-06-01 Schlumberger Technology Corporation Field joint for a downhole tool
US7644610B2 (en) * 2007-08-24 2010-01-12 Baker Hughes Incorporated Automated formation fluid clean-up to sampling switchover
US7788972B2 (en) * 2007-09-20 2010-09-07 Schlumberger Technology Corporation Method of downhole characterization of formation fluids, measurement controller for downhole characterization of formation fluids, and apparatus for downhole characterization of formation fluids
US7707878B2 (en) * 2007-09-20 2010-05-04 Schlumberger Technology Corporation Circulation pump for circulating downhole fluids, and characterization apparatus of downhole fluids
US8348642B2 (en) 2007-10-31 2013-01-08 Schlumberger Technology Corporation Active mud valve system
US8550184B2 (en) * 2007-11-02 2013-10-08 Schlumberger Technology Corporation Formation coring apparatus and methods
US8061446B2 (en) * 2007-11-02 2011-11-22 Schlumberger Technology Corporation Coring tool and method
GB2467248B (en) * 2007-11-19 2012-06-27 Shell Int Research In-situ fluid compatibility testing using a wireline formation tester
US9322266B2 (en) 2007-11-20 2016-04-26 Schlumberger Technology Corporation Formation sampling
US7789170B2 (en) * 2007-11-28 2010-09-07 Schlumberger Technology Corporation Sidewall coring tool and method for marking a sidewall core
US20090143991A1 (en) * 2007-11-30 2009-06-04 Schlumberger Technology Corporation Measurements in a fluid-containing earth borehole having a mudcake
US7765862B2 (en) * 2007-11-30 2010-08-03 Schlumberger Technology Corporation Determination of formation pressure during a drilling operation
US8028562B2 (en) * 2007-12-17 2011-10-04 Schlumberger Technology Corporation High pressure and high temperature chromatography
US9477002B2 (en) * 2007-12-21 2016-10-25 Schlumberger Technology Corporation Microhydraulic fracturing with downhole acoustic measurement
US7849736B2 (en) * 2007-12-21 2010-12-14 Schlumberger Technology Corporation Method for calculating the ratio of relative permeabilities of formation fluids and wettability of a formation downhole, and a formation testing tool to implement the same
US20090160047A1 (en) * 2007-12-21 2009-06-25 Schlumberger Technology Corporation Downhole tool
US8297351B2 (en) 2007-12-27 2012-10-30 Schlumberger Technology Corporation Downhole sensing system using carbon nanotube FET
US7937223B2 (en) * 2007-12-28 2011-05-03 Schlumberger Technology Corporation Downhole fluid analysis
US8136395B2 (en) * 2007-12-31 2012-03-20 Schlumberger Technology Corporation Systems and methods for well data analysis
CA2713995C (en) * 2008-01-28 2013-10-01 Schlumberger Canada Limited Method for evaluating subterranean formation fluid
CN101550828B (zh) * 2008-03-31 2014-05-21 普拉德研究及开发股份有限公司 执行储层流体的聚焦取样的设备和方法
US20090255672A1 (en) * 2008-04-15 2009-10-15 Baker Hughes Incorporated Apparatus and method for obtaining formation samples
US7921714B2 (en) * 2008-05-02 2011-04-12 Schlumberger Technology Corporation Annular region evaluation in sequestration wells
US8434356B2 (en) 2009-08-18 2013-05-07 Schlumberger Technology Corporation Fluid density from downhole optical measurements
US7913556B2 (en) * 2008-06-11 2011-03-29 Schlumberger Technology Corporation Methods and apparatus to determine the compressibility of a fluid
US8434357B2 (en) * 2009-08-18 2013-05-07 Schlumberger Technology Corporation Clean fluid sample for downhole measurements
US8109157B2 (en) * 2008-06-30 2012-02-07 Schlumberger Technology Corporation Methods and apparatus of downhole fluids analysis
US7874355B2 (en) * 2008-07-02 2011-01-25 Schlumberger Technology Corporation Methods and apparatus for removing deposits on components in a downhole tool
US8794318B2 (en) * 2008-07-14 2014-08-05 Schlumberger Technology Corporation Formation evaluation instrument and method
WO2010008684A2 (en) * 2008-07-15 2010-01-21 Schlumberger Canada Limited Apparatus and methods for characterizing a reservoir
US7750302B2 (en) * 2008-09-09 2010-07-06 Schlumberger Technology Corporation Method and apparatus for detecting naphthenic acids
US9045969B2 (en) 2008-09-10 2015-06-02 Schlumberger Technology Corporation Measuring properties of low permeability formations
US8575273B2 (en) 2008-11-26 2013-11-05 Schlumberger Technology Corporation Coupling agents and compositions produced using them
US8188414B2 (en) * 2008-12-23 2012-05-29 Opel, Inc. Grid support system for a tracker-mounted solar panel array for rooftop applications
US8499831B2 (en) * 2009-01-23 2013-08-06 Schlumberger Technology Corporation Mud cake probe extension apparatus and method
US7997341B2 (en) * 2009-02-02 2011-08-16 Schlumberger Technology Corporation Downhole fluid filter
US8109155B2 (en) * 2009-02-23 2012-02-07 Schlumberger Technology Corporation Methods and apparatus to measure fluid flow rates
CA2758373A1 (en) * 2009-04-10 2010-10-14 Schlumberger Canada Limited Downhole sensor systems and methods thereof
US8622128B2 (en) * 2009-04-10 2014-01-07 Schlumberger Technology Corporation In-situ evaluation of reservoir sanding and fines migration and related completion, lift and surface facilities design
CA2704069C (en) * 2009-05-19 2015-09-29 Preston Woodhouse Portable dock system
AU2009346365B2 (en) 2009-05-20 2016-02-11 Halliburton Energy Services, Inc. Formation tester pad
US8322433B2 (en) * 2009-06-01 2012-12-04 Schlumberger Technology Corporation Wired slip joint
US8322416B2 (en) 2009-06-18 2012-12-04 Schlumberger Technology Corporation Focused sampling of formation fluids
US8584748B2 (en) * 2009-07-14 2013-11-19 Schlumberger Technology Corporation Elongated probe for downhole tool
US8322196B2 (en) * 2009-08-02 2012-12-04 Schlumberger Technology Corporation Vibrating wire viscometers
US8307698B2 (en) 2009-08-07 2012-11-13 Schlumberger Technology Corporation Vibrating wire viscometers
US8607868B2 (en) * 2009-08-14 2013-12-17 Schlumberger Technology Corporation Composite micro-coil for downhole chemical delivery
CN101644154B (zh) * 2009-08-25 2013-02-13 中国海洋石油总公司 一种地层评价仪
US9238961B2 (en) 2009-10-05 2016-01-19 Schlumberger Technology Corporation Oilfield operation using a drill string
US8985218B2 (en) 2009-10-05 2015-03-24 Schlumberger Technology Corporation Formation testing
MX2012004168A (es) 2009-10-06 2012-05-08 Schlumberger Technology Bv Planificacion y monitoreo de pruebas de formaciones.
US8146655B2 (en) 2009-10-13 2012-04-03 Schlumberger Technology Corporation Methods and apparatus for downhole characterization of emulsion stability
US8166812B2 (en) * 2009-10-14 2012-05-01 Schlumberger Technology Corporation Vibrating wire viscometers
US8613317B2 (en) * 2009-11-03 2013-12-24 Schlumberger Technology Corporation Downhole piston pump and method of operation
US8448703B2 (en) * 2009-11-16 2013-05-28 Schlumberger Technology Corporation Downhole formation tester apparatus and methods
US8245781B2 (en) * 2009-12-11 2012-08-21 Schlumberger Technology Corporation Formation fluid sampling
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
US20110156357A1 (en) * 2009-12-28 2011-06-30 Nissin Kogyo Co., Ltd. Dynamic seal member
US8614273B2 (en) * 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member
US8952319B2 (en) * 2010-03-04 2015-02-10 University Of Utah Research Foundation Downhole deployable tools for measuring tracer concentrations
EP2574208A1 (en) 2010-03-12 2013-04-03 Services Pétroliers Schlumberger Micro-fabricated chromatograph column with sputtered stationary phase
US8398301B2 (en) 2010-04-20 2013-03-19 Schlumberger Technology Corporation Apparatus for determining downhole fluid temperatures
US8763696B2 (en) 2010-04-27 2014-07-01 Sylvain Bedouet Formation testing
CA2800469C (en) * 2010-06-01 2017-07-18 Jing Li Fluid resistivity sensor
US8464796B2 (en) 2010-08-03 2013-06-18 Schlumberger Technology Corporation Fluid resistivity measurement tool
US8397817B2 (en) 2010-08-18 2013-03-19 Schlumberger Technology Corporation Methods for downhole sampling of tight formations
US8408296B2 (en) 2010-08-18 2013-04-02 Schlumberger Technology Corporation Methods for borehole measurements of fracturing pressures
CN102003177B (zh) * 2010-09-13 2013-01-02 许进鹏 用于井下单个钻孔的水文地质参数观测仪器
US9429014B2 (en) 2010-09-29 2016-08-30 Schlumberger Technology Corporation Formation fluid sample container apparatus
US9222352B2 (en) 2010-11-18 2015-12-29 Schlumberger Technology Corporation Control of a component of a downhole tool
US9052289B2 (en) 2010-12-13 2015-06-09 Schlumberger Technology Corporation Hydrogen sulfide (H2S) detection using functionalized nanoparticles
US8714254B2 (en) 2010-12-13 2014-05-06 Schlumberger Technology Corporation Method for mixing fluids downhole
US9097088B2 (en) 2010-12-15 2015-08-04 Schlumberger Technology Corporation Downhole tool thermal device
US8773125B2 (en) 2010-12-29 2014-07-08 Schlumberger Technology Corporation Microcoil NMR for downhole microfluidics platform
US8997861B2 (en) 2011-03-09 2015-04-07 Baker Hughes Incorporated Methods and devices for filling tanks with no backflow from the borehole exit
US9581019B2 (en) 2011-03-23 2017-02-28 Schlumberger Technology Corporation Measurement pretest drawdown methods and apparatus
US8708049B2 (en) 2011-04-29 2014-04-29 Schlumberger Technology Corporation Downhole mixing device for mixing a first fluid with a second fluid
BR112013032287A2 (pt) 2011-06-15 2016-12-20 Halliburton Energy Services Inc método para medir os parâmetros de uma formação ao longo de múltiplos eixos e ferramenta de teste de formação
US9051798B2 (en) * 2011-06-17 2015-06-09 David L. Abney, Inc. Subterranean tool with sealed electronic passage across multiple sections
US9134451B2 (en) 2011-08-26 2015-09-15 Schlumberger Technology Corporation Interval density pressure management methods
US9394783B2 (en) 2011-08-26 2016-07-19 Schlumberger Technology Corporation Methods for evaluating inflow and outflow in a subterranean wellbore
US8905130B2 (en) 2011-09-20 2014-12-09 Schlumberger Technology Corporation Fluid sample cleanup
US9062544B2 (en) 2011-11-16 2015-06-23 Schlumberger Technology Corporation Formation fracturing
US9403962B2 (en) 2011-12-22 2016-08-02 Schlumberger Technology Corporation Elastomer compositions with silane functionalized silica as reinforcing fillers
BR112014017038A8 (pt) 2012-01-12 2017-07-04 Prad Res & Development Ltd método, e aparato
US10370965B2 (en) * 2012-02-13 2019-08-06 Schlumberger Technology Corporation Method for determining a permeability or mobility of a radial flow response of a reservoir
AU2012375334A1 (en) 2012-03-29 2014-10-02 Halliburton Energy Services, Inc. Method and apparatus for formation testing and sampling when performing subterranean operations
US20140069640A1 (en) 2012-09-11 2014-03-13 Yoshitake Yajima Minimization of contaminants in a sample chamber
US9359892B2 (en) 2012-12-07 2016-06-07 Schlumberger Technology Corporation Spring assisted active mud check valve with spring
US9322267B2 (en) 2012-12-18 2016-04-26 Schlumberger Technology Corporation Downhole sampling of compressible fluids
US9291027B2 (en) 2013-01-25 2016-03-22 Schlumberger Technology Corporation Packer and packer outer layer
EP2824455B1 (en) 2013-07-10 2023-03-08 Geoservices Equipements SAS System and method for logging isotope fractionation effects during mud gas logging
US20150090446A1 (en) * 2013-09-27 2015-04-02 Schlumberger Technology Corporation Downhole Sampling Probe with Penetrating Inlet and Method of Using Same
JP6615444B2 (ja) 2013-10-17 2019-12-04 日信工業株式会社 ゴム組成物の製造方法及びゴム組成物
US9422811B2 (en) 2013-12-20 2016-08-23 Schlumberger Technology Corporation Packer tool including multiple port configurations
US9347299B2 (en) 2013-12-20 2016-05-24 Schlumberger Technology Corporation Packer tool including multiple ports
CN103806910A (zh) * 2014-03-04 2014-05-21 中国海洋石油总公司 一种随钻地层取样系统
WO2015167583A1 (en) * 2014-05-02 2015-11-05 Halliburton Energy Services, Inc. Model for one-dimensional temperature distribution calculations for a fluid in a wellbore
CN104234709A (zh) * 2014-08-30 2014-12-24 西安精实信石油科技开发有限责任公司 一种套管井获取地层真实流体样品的装置
WO2017015340A1 (en) 2015-07-20 2017-01-26 Pietro Fiorentini Spa Systems and methods for monitoring changes in a formation while dynamically flowing fluids
US10281397B2 (en) 2015-11-10 2019-05-07 Schlumberger Technology Corporation Optical sensors using surface plasmon resonance to determine at least one property relating to phase change of a hydrocarbon-based analyte
NL2017006B1 (en) * 2016-06-20 2018-01-04 Fugro N V a method, a system, and a computer program product for determining soil properties
US10254216B2 (en) 2016-06-30 2019-04-09 Schlumberger Technology Corporation Systems, methods and apparatus for analysis of reservoir fluids using surface plasmon resonance
US10287879B2 (en) 2016-06-30 2019-05-14 Schlumberger Technology Corporation Systems and methods for downhole fluid analysis
US10359412B2 (en) 2016-09-01 2019-07-23 Schlumberger Technology Corporation Systems and methods for detection of mercury in hydrocarbon-containing fluids using optical analysis of slug flow
US10738604B2 (en) 2016-09-02 2020-08-11 Schlumberger Technology Corporation Method for contamination monitoring
US10711608B2 (en) * 2016-12-19 2020-07-14 Schlumberger Technology Corporation Formation pressure testing
CN106812519B (zh) * 2016-12-28 2020-01-07 中国石油天然气股份有限公司 井下工具用的试验装置以及井下工具用的测试系统
CN108691539B (zh) * 2017-04-12 2021-08-03 中国石油天然气股份有限公司 一种取样器
US10443379B2 (en) * 2017-06-15 2019-10-15 Pursuit Techmologies Ltd. Apparatus and method for testing an oil and/or gas well with a multiple-stage completion
US10941646B2 (en) 2017-07-28 2021-03-09 Schlumberger Technology Corporation Flow regime identification in formations using pressure derivative analysis with optimized window length
US11441422B2 (en) 2017-10-06 2022-09-13 Schlumberger Technology Corporation Methods and systems for reservoir characterization and optimization of downhole fluid sampling
US10920587B2 (en) 2018-05-31 2021-02-16 Fiorentini USA Inc Formation evaluation pumping system and method
CN111443024B (zh) * 2020-04-01 2021-04-13 清华大学 一种井下测量岩石原位渗透率系统及方法
CN112177593B (zh) * 2020-10-12 2022-05-27 天津大学 基于微波谐振传感器的高含水油水乳状液持水率测量方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2229635A (en) * 1938-10-04 1941-01-28 Boynton Alexander Well testing tool
US2747401A (en) * 1952-05-13 1956-05-29 Schlumberger Well Surv Corp Methods and apparatus for determining hydraulic characteristics of formations traversed by a borehole
US3011554A (en) 1956-01-23 1961-12-05 Schlumberger Well Surv Corp Apparatus for investigating earth formations
US3254531A (en) * 1962-05-03 1966-06-07 Halliburton Co Formation fluid sampling method
US3653436A (en) 1970-03-18 1972-04-04 Schlumberger Technology Corp Formation-sampling apparatus
US3677081A (en) * 1971-06-16 1972-07-18 Amoco Prod Co Sidewall well-formation fluid sampler
US3859850A (en) * 1973-03-20 1975-01-14 Schlumberger Technology Corp Methods and apparatus for testing earth formations
US3876003A (en) * 1973-10-29 1975-04-08 Schlumberger Technology Corp Drill stem testing methods and apparatus utilizing inflatable packer elements
US3934468A (en) * 1975-01-22 1976-01-27 Schlumberger Technology Corporation Formation-testing apparatus
US3952588A (en) * 1975-01-22 1976-04-27 Schlumberger Technology Corporation Apparatus for testing earth formations
US4210018A (en) * 1978-05-22 1980-07-01 Gearhart-Owen Industries, Inc. Formation testers
US4192181A (en) * 1978-11-13 1980-03-11 Westbay Instruments Ltd. Casing assembly probes
SU1038473A2 (ru) * 1979-06-25 1983-08-30 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Устройство на кабеле дл исследовани пластов в необсаженных скважинах
FR2476205A1 (fr) * 1980-01-11 1981-08-21 Inst Neftepromyslovoi Geofiz Procede d'etude hydrodynamique par prelevement d'echantillons de fluide de forages non tubes, et dispositif pour sa mise en oeuvre
US4347747A (en) * 1981-01-12 1982-09-07 Shell Oil Company Single phase flow measurement
US4423625A (en) * 1981-11-27 1984-01-03 Standard Oil Company Pressure transient method of rapidly determining permeability, thickness and skin effect in producing wells
US4535843A (en) * 1982-05-21 1985-08-20 Standard Oil Company (Indiana) Method and apparatus for obtaining selected samples of formation fluids
US4475591A (en) * 1982-08-06 1984-10-09 Exxon Production Research Co. Method for monitoring subterranean fluid communication and migration
SU1142626A1 (ru) * 1983-04-07 1985-02-28 Государственный Геофизический Трест "Татнефтегеофизика" Испытатель пластов
US4513612A (en) * 1983-06-27 1985-04-30 Halliburton Company Multiple flow rate formation testing device and method
FR2569762B1 (fr) * 1984-08-29 1986-09-19 Flopetrol Sa Etu Fabrications Procede d'essai de puits d'hydrocarbures
US4573532A (en) * 1984-09-14 1986-03-04 Amoco Corporation Jacquard fluid controller for a fluid sampler and tester
GB2172631A (en) * 1985-03-20 1986-09-24 Tesel Plc Improvements in downhole tools
GB2172630A (en) * 1985-03-20 1986-09-24 Tesel Plc Improvements in downhole tools
US4690216A (en) * 1986-07-29 1987-09-01 Shell Offshore Inc. Formation fluid sampler

Also Published As

Publication number Publication date
OA09094A (en) 1991-10-31
NO893435L (no) 1990-03-26
DE68929202T2 (de) 2001-01-04
MA21632A1 (fr) 1990-04-01
ZA897236B (en) 1990-06-27
CN1041419A (zh) 1990-04-18
BR8903832A (pt) 1990-03-27
NO180057C (no) 1997-02-05
US4860581A (en) 1989-08-29
TR28979A (tr) 1997-07-21
EG18656A (en) 1993-10-30
RU2074316C1 (ru) 1997-02-27
AU626216B2 (en) 1992-07-23
DE68927569T2 (de) 1997-06-26
MX166366B (es) 1993-01-05
EP0362010A3 (en) 1991-08-14
DK173591B1 (da) 2001-04-09
DK429389A (da) 1990-03-24
EP0697502A1 (en) 1996-02-21
NZ230726A (en) 1992-07-28
DZ1360A1 (fr) 2004-09-13
PH26204A (en) 1992-03-18
DE68929202D1 (de) 2000-06-08
ES2148392T3 (es) 2000-10-16
ATE146560T1 (de) 1997-01-15
DE68927569D1 (de) 1997-01-30
EP0362010B1 (en) 1996-12-18
EP0362010A2 (en) 1990-04-04
NO893435D0 (no) 1989-08-28
DK429389D0 (da) 1989-08-31
AU4166889A (en) 1990-03-29
EP0697502B1 (en) 2000-05-03
CN1019836B (zh) 1992-12-30
MY104680A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
NO180057B (no) Brönn-sonde for bestemmelse av formasjonsegenskaper
US4936139A (en) Down hole method for determination of formation properties
US5934374A (en) Formation tester with improved sample collection system
US5337821A (en) Method and apparatus for the determination of formation fluid flow rates and reservoir deliverability
US5269180A (en) Borehole tool, procedures, and interpretation for making permeability measurements of subsurface formations
CN1826455B (zh) 改进的泡点压力井下pv测试
US8522870B2 (en) Formation testing and sampling apparatus and methods
US9376910B2 (en) Downhole formation testing and sampling apparatus having a deployment packer
US9085965B2 (en) Apparatus and method for improved fluid sampling
NO326755B1 (no) Anordning og fremgangsmate for formasjonsproving ved bruk av verktoy med aksielt- og spiralanordnede apninger
NO315956B1 (no) Fremgangsmåte for bestemmelse av fluiders egenskaper
AU2017202059A1 (en) Downhole formation testing and sampling apparatus having a deployment linkage assembly
NO312689B1 (no) Fremgangsmåte og anordning for brönntesting
BRPI1005568A2 (pt) controle de fluido em ferramentas de amostragem de fluido de reservatàrio
NO343816B1 (no) Fremgangsmåte for prøvetaking av et formasjonsfluid
WO2008036395A1 (en) Focused probe apparatus and method therefor
US20040139798A1 (en) Downhole Determination of Formation Fluid Properties
EA028748B1 (ru) Устройство для исследования свойств оседания бурового раствора
Partouche et al. Applications of wireline formation testing: a technology update
NO327286B1 (no) Fremgangsmate og apparat for testing av en formasjonsfluidprove innhentet fra en geologisk formasjon gjennomboret av en bronn
Michaels et al. Advances in wireline formation testing
RU2061862C1 (ru) Способ исследования нефте- и водонасыщенных пластов
NO317270B1 (no) Fremgangsmate og anordning for testing av en formasjonsfluidprove innhentet fra en geologisk formasjon gjennomboret av en bronn
Liu et al. The formation evaluation tool and its application in offshore China
HU184151B (en) Method and fluid separating device for preparing and forming open gas well into observing one in porous and/or fissured gas reservoir

Legal Events

Date Code Title Description
MK1K Patent expired