NO178341B - Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives - Google Patents
Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives Download PDFInfo
- Publication number
- NO178341B NO178341B NO940675A NO940675A NO178341B NO 178341 B NO178341 B NO 178341B NO 940675 A NO940675 A NO 940675A NO 940675 A NO940675 A NO 940675A NO 178341 B NO178341 B NO 178341B
- Authority
- NO
- Norway
- Prior art keywords
- antibody
- pva
- cells
- tumor
- adriamycin
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000002360 preparation method Methods 0.000 title claims description 7
- 229940045799 anthracyclines and related substance Drugs 0.000 title claims description 4
- 229940009456 adriamycin Drugs 0.000 claims description 51
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical class O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 83
- 239000000562 conjugate Substances 0.000 description 83
- 210000004027 cell Anatomy 0.000 description 58
- 210000004881 tumor cell Anatomy 0.000 description 49
- 206010028980 Neoplasm Diseases 0.000 description 47
- 229940088598 enzyme Drugs 0.000 description 45
- 229940002612 prodrug Drugs 0.000 description 45
- 239000000651 prodrug Substances 0.000 description 45
- 102000004190 Enzymes Human genes 0.000 description 33
- 108090000790 Enzymes Proteins 0.000 description 33
- 239000000427 antigen Substances 0.000 description 28
- 108091007433 antigens Proteins 0.000 description 27
- 102000036639 antigens Human genes 0.000 description 27
- 231100000135 cytotoxicity Toxicity 0.000 description 22
- 230000001472 cytotoxic effect Effects 0.000 description 21
- 230000003013 cytotoxicity Effects 0.000 description 21
- 101001133631 Lysinibacillus sphaericus Penicillin acylase Proteins 0.000 description 20
- 239000003814 drug Substances 0.000 description 19
- 229940079593 drug Drugs 0.000 description 19
- 229940127121 immunoconjugate Drugs 0.000 description 19
- 230000027455 binding Effects 0.000 description 18
- 231100000433 cytotoxic Toxicity 0.000 description 17
- 238000000338 in vitro Methods 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 229940127089 cytotoxic agent Drugs 0.000 description 12
- 239000002254 cytotoxic agent Substances 0.000 description 12
- 231100000599 cytotoxic agent Toxicity 0.000 description 9
- 239000002246 antineoplastic agent Substances 0.000 description 8
- 201000011510 cancer Diseases 0.000 description 8
- 239000002596 immunotoxin Substances 0.000 description 8
- 229940104230 thymidine Drugs 0.000 description 8
- 206010025323 Lymphomas Diseases 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229940056367 penicillin v Drugs 0.000 description 6
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- PKGWLCZTTHWKIZ-UHFFFAOYSA-N 4-Hydroxypheoxyacetate Chemical compound OC(=O)COC1=CC=C(O)C=C1 PKGWLCZTTHWKIZ-UHFFFAOYSA-N 0.000 description 5
- 108700023418 Amidases Proteins 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 102000005922 amidase Human genes 0.000 description 5
- -1 ammonium ions Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 201000001441 melanoma Diseases 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 101710123388 Penicillin G acylase Proteins 0.000 description 4
- 229930195708 Penicillin V Natural products 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000000611 antibody drug conjugate Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000002716 delivery method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- AOPRXJXHLWYPQR-UHFFFAOYSA-N 2-phenoxyacetamide Chemical group NC(=O)COC1=CC=CC=C1 AOPRXJXHLWYPQR-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 241000223221 Fusarium oxysporum Species 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 229940049595 antibody-drug conjugate Drugs 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- VLAXZGHHBIJLAD-UHFFFAOYSA-N arsphenamine Chemical compound [Cl-].[Cl-].C1=C(O)C([NH3+])=CC([As]=[As]C=2C=C([NH3+])C(O)=CC=2)=C1 VLAXZGHHBIJLAD-UHFFFAOYSA-N 0.000 description 3
- 229940003446 arsphenamine Drugs 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 229940051026 immunotoxin Drugs 0.000 description 3
- 231100000608 immunotoxin Toxicity 0.000 description 3
- 230000002637 immunotoxin Effects 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 231100000065 noncytotoxic Toxicity 0.000 description 3
- 230000002020 noncytotoxic effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 2
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 108010073038 Penicillin Amidase Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 231100000742 Plant toxin Toxicity 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 102100031013 Transgelin Human genes 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000002494 anti-cea effect Effects 0.000 description 2
- 229940125644 antibody drug Drugs 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000003123 plant toxin Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- SLAMLWHELXOEJZ-UHFFFAOYSA-N 2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-N 0.000 description 1
- LSBDFXRDZJMBSC-UHFFFAOYSA-N 2-phenylacetamide Chemical group NC(=O)CC1=CC=CC=C1 LSBDFXRDZJMBSC-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- NGHVIOIJCVXTGV-ALEPSDHESA-N 6-aminopenicillanic acid Chemical compound [O-]C(=O)[C@H]1C(C)(C)S[C@@H]2[C@H]([NH3+])C(=O)N21 NGHVIOIJCVXTGV-ALEPSDHESA-N 0.000 description 1
- NGHVIOIJCVXTGV-UHFFFAOYSA-N 6beta-amino-penicillanic acid Natural products OC(=O)C1C(C)(C)SC2C(N)C(=O)N21 NGHVIOIJCVXTGV-UHFFFAOYSA-N 0.000 description 1
- 102000004092 Amidohydrolases Human genes 0.000 description 1
- 108090000531 Amidohydrolases Proteins 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000798109 Homo sapiens Melanotransferrin Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 101100109871 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) aro-8 gene Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000009227 antibody-mediated cytotoxicity Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 239000002619 cytotoxin Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004362 fungal culture Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 102000049905 human MELTF Human genes 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 239000000820 nonprescription drug Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Foreliggende oppfinnelse angår en analogifremgangsmåte for fremstilling av hittil ukjente, terapeutisk aktive anthracyclinforbindelser som er prolegemidler. Et tumorspesifikt antistoff-enzymkonjugat som bindes til tumorcellene administreres, og ytterligere administrering av prolegemidlet omdanner dette i tumorområdet i nærvær av det antistoff-bundne enzym til et aktivt cytotoksisk legemiddel. Antistoff-enzym-konjugatene og prolegemidlene fremstilt ifølge oppfinnelsen løser mange av de ulemper ved de antistoff-formidlende legemiddel f remføringssys terner som for tiden anvendes for behandling av cancer og andre tumorer. The present invention relates to an analogue method for the production of hitherto unknown, therapeutically active anthracycline compounds which are prodrugs. A tumor-specific antibody-enzyme conjugate that binds to the tumor cells is administered, and further administration of the prodrug converts this in the tumor area in the presence of the antibody-bound enzyme into an active cytotoxic drug. The antibody-enzyme conjugates and prodrugs produced according to the invention solve many of the disadvantages of the antibody-mediated drug delivery systems that are currently used for the treatment of cancer and other tumors.
Oppfinnelsen angår således en analogifremgangsmåte for fremstilling av et terapeutisk aktivt anthracyclinderivat av formelen The invention thus relates to an analogue method for the preparation of a therapeutically active anthracycline derivative of the formula
hvori in which
R er gruppen R is the group
eller or
R<1> er H, og R<3> er OH eller OCH3, eller R<1> is H, and R<3> is OH or OCH3, or
R<1> er OH, og R<3> er OCH3, og R<1> is OH, and R<3> is OCH3, and
R<2> er H eller OH, R<2> is H or OH,
hvilken fremgangsmåte er kjennetegnet ved at en forbindelse av formelen which method is characterized by the fact that a compound of the formula
hvori R<1> og R3 har den ovenfor angitte betydning, eller et syreaddisjonssalt derav, omsettes med en forbindelse av formelen eller in which R<1> and R3 have the meaning given above, or an acid addition salt thereof, is reacted with a compound of the formula or
hvori R<2> har den ovenfor angitte betydning, eller en acylerende ekvivalent derav. wherein R<2> has the above meaning, or an acylating equivalent thereof.
Anvendelse av iramunokonjugater til selektiv frem-føring av cytotoksiske midler til tumorceller ved behand- Use of iramunoconjugates for the selective delivery of cytotoxic agents to tumor cells in treatment
ling av cancer er kjent innen teknikken. Fremføring av cytotoksiske midler til tumorområdene er meget ønskelig, da systemisk administrering av disse midler ofte resulterer i tilintetgjørelse av normale celler i legemet, såvel som de tumorceller som søkes tilintetgjort. Ifølge de for tiden anvendte antitumor-legemiddelfremføringssystemer konjugeres et cytotoksisk middel med et tumorspesifikt antistoff under dannelse av et iramunokonjugat som bindes til tumorcellene og derved "avleverer" det cytotoksiske middel i tumorområdet. Iramunokonjugatene anvendt i disse målrettede systemer, omfatter antistoff-legemiddelkonjugater [se f.eks. R.W. Baldwin et al. "Monoclonal Antibodies For Cancer Treatment", Lancet, s. 603-05 (15. mars 1986)] og antistoff-toksinkonjugater [se f.eks. P.E. Thorpe "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review" ling of cancer is known in the art. Delivery of cytotoxic agents to the tumor areas is highly desirable, as systemic administration of these agents often results in the destruction of normal cells in the body, as well as the tumor cells that are sought to be destroyed. According to the currently used antitumor drug delivery systems, a cytotoxic agent is conjugated with a tumor-specific antibody, forming an iramunoconjugate that binds to the tumor cells and thereby "delivers" the cytotoxic agent in the tumor area. The immunoconjugates used in these targeted systems include antibody-drug conjugates [see e.g. R. W. Baldwin et al. "Monoclonal Antibodies For Cancer Treatment", Lancet, pp. 603-05 (March 15, 1986)] and antibody-toxin conjugates [see, e.g. P.E. Thorpe "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review"
i Monoclonal Antibodies '84: Biological and Clinical in Monoclonal Antibodies '84: Biological and Clinical
Applications, A. Pinchere et al. (red.), s. 475-506 (1985) ]. Applications, A. Pinchere et al. (ed.), pp. 475-506 (1985) ].
Både polyklonale antistoffer og monoklonale antistoffer er blitt anvendt i disse immunokonjugater [se f.eks. K. Ohkawa et al. "Selective In Vitro And In Vivo Growth Inhibition Against Human Yolk Sac Tumor Cell Lines By Purified Antibody Against Human a-Fetoprotein Conjugated With Mitomycin C Via Human Serum Albumin", Cancer Immunol. Immunother., 23, s. 81-86 (1986) og G.F. Rowland et al. "Drug Localisation And Growth Inhibition Studies Of Vindesine-Monoclonal Anti-CEA Conjugates in A Human Tumor Xenograft", Cancer Immunol. Immunother., 21, s. 183-87 Both polyclonal antibodies and monoclonal antibodies have been used in these immunoconjugates [see e.g. K. Ohkawa et al. "Selective In Vitro And In Vivo Growth Inhibition Against Human Yolk Sac Tumor Cell Lines By Purified Antibody Against Human a-Fetoprotein Conjugated With Mitomycin C Via Human Serum Albumin", Cancer Immunol. Immunother., 23, pp. 81-86 (1986) and G.F. Rowland et al. "Drug Localization And Growth Inhibition Studies Of Vindesine-Monoclonal Anti-CEA Conjugates In A Human Tumor Xenograft", Cancer Immunol. Immunother., 21, pp. 183-87
(1986) ]. De anvendte legemidler i disse immunokonjugater omfatter daunomycin (se f.eks. J. Gallego et al. "Preparation Of Four Daunomycin-Monoclonal Antibody 791T/36 Conjugates With Anti-Tumor Activity" , Int. J. Cancer, 33, s. 737-44 (1986) ]. The drugs used in these immunoconjugates include daunomycin (see, for example, J. Gallego et al. "Preparation Of Four Daunomycin-Monoclonal Antibody 791T/36 Conjugates With Anti-Tumor Activity", Int. J. Cancer, 33, p. 737 -44
(1984) og R. Arnon et al. "In Vitro And In Vivo Efficacy Of Conjugates Of Daunomycin With Anti-Tumor Antibodies", Immunological Rev., 62, s. 5-27 (1982)], methotrexat [N. Endo et al. "In Vitro Cytoxicity Of A Human Serum Albumin-Mediated Conjugate Of Methotrexate With Anti-MM46 Monoclonal Antibody", Cancer Research, 47, s. 1076-80 (1984) and R. Arnon et al. "In Vitro And In Vivo Efficacy Of Conjugates Of Daunomycin With Anti-Tumor Antibodies", Immunological Rev., 62, pp. 5-27 (1982)], methotrexate [N. Endo et al. "In Vitro Cytoxicity Of A Human Serum Albumin-Mediated Conjugate Of Methotrexate With Anti-MM46 Monoclonal Antibody", Cancer Research, 47, pp. 1076-80
(1987) ], mitomycin C [K. Ohkawa et al., supra], og vindesin [G.F. Rowland et al., supra]. De anvendte toksiner i antistoff-toksinkonjugatene omfatter bakterielle toksiner slik som difterintoksin og plantetoksiner slik som ricin [se f.eks. F.L. Moolten et al. "Antibodies Conjugated to Patent Cytotoxins As Specific Antitumor Agents", Immunol. Rev., 62, s. 47-73 (1982)]. (1987) ], mitomycin C [K. Ohkawa et al., supra], and vindesin [G.F. Rowland et al., supra]. The toxins used in the antibody-toxin conjugates include bacterial toxins such as diphtheria toxin and plant toxins such as ricin [see e.g. F. L. Moolten et al. "Antibodies Conjugated to Patent Cytotoxins As Specific Antitumor Agents", Immunol. Rev., 62, pp. 47-73 (1982)].
Til tross for omfanget av forskningen rettet mot anvendelse av immunokonjugater til terapeutiske formål, er adskillige begrensinger forbundet med disse fremførings-metoder, blitt tydelige [se f.eks. M.J. Embleton "Targeting Of Anti-Cancer Therapeutic Agents By Monoclonal Antibodies", Biochemical Society Transactions, 14, s. 393-395 (615th Meeting, Belfast 1986)]. For det første er den store mengde legemiddel som det er nødvendig å fremføre til tumorcellen for å fremkalle tilintetgjørelse av cellen, ofte uopp-nåelig på grunn av begrensninger som skyldes antallet av tumor-assosierte antigener på overflaten av cellene, og antallet av legemiddelmolekyler som kan bindes til et gitt antistoffmolekyl. Denne begrensning har ført til anvendelse av kraftigere cytotoksiske midler slik som plantetoksiner i disse konjugater, og til utvikling av polymer-bundne antistoff-legemiddelkonjugater med meget høye legemiddel-multiplisitetsforhold [se f.eks. P.E. Thorpe, supra, s. 475-506, og R.W. Baldwin et al. "Design And Therapeutic Evaluation of Monoclonal Antibody 791T/36 - Methotrexate Conjugates" i Monoclonal Antibodies and Cancer Therapy, s. 215-31 (Alan R. Liss, Inc. 1985)]. Selv med store legemiddelmengdeforhold eller ved anvendelse av kraftige toksiner, utviser mange immunokonjugater imidlertid stadig sub-optimal cytotoksisk aktivitet og er ikke i stand til å fremkalle fullstendig tilintetgjørelse ved doser hvor alle tilgjengelige antigene steder er mettet. Despite the extent of research directed towards the use of immunoconjugates for therapeutic purposes, several limitations associated with these delivery methods have become apparent [see e.g. M. J. Embleton "Targeting Of Anti-Cancer Therapeutic Agents By Monoclonal Antibodies", Biochemical Society Transactions, 14, pp. 393-395 (615th Meeting, Belfast 1986)]. First, the large amount of drug that needs to be delivered to the tumor cell to induce destruction of the cell is often unattainable due to limitations due to the number of tumor-associated antigens on the surface of the cells, and the number of drug molecules that can binds to a given antibody molecule. This limitation has led to the use of more powerful cytotoxic agents such as plant toxins in these conjugates, and to the development of polymer-bound antibody-drug conjugates with very high drug-multiplicity ratios [see e.g. P.E. Thorpe, supra, pp. 475-506, and R.W. Baldwin et al. "Design And Therapeutic Evaluation of Monoclonal Antibody 791T/36 - Methotrexate Conjugates" in Monoclonal Antibodies and Cancer Therapy, pp. 215-31 (Alan R. Liss, Inc. 1985)]. However, even with high drug loading ratios or using potent toxins, many immunoconjugates still exhibit sub-optimal cytotoxic activity and are unable to elicit complete killing at doses where all available antigenic sites are saturated.
For det annet er det åpenbart at den cytotoksiske aktivitet av et immunokonjugat ofte avhenger av den av antistoff-komponenten i konjugatet, formidlede opptagelse derav i tumorcellen [se f.eks. J.M. Lambert et al. "Purified Immunotoxins That Are Reactive With Human Lymphoid Cells", J. Biol. Chem., 260 (nr. 22, s. 12035-12041 (1985)]. Denne internalisering er avgjørende når det anvendes et antistoff-legemiddelkonjugat hvor legemidlet har et intra-cellulært virkningsområde, eller når antistoff-toksinkonjugater anvendes. Hoveddelen av tumor-assosierte antigener, og således antistoff-legemiddel- eller antistoff-toksinkonjugater bundet til disse antigener, er imidlertid ikke internalisert. De konjugater som er internalisert, transporteres ofte til cellens lysosom hvor legemidlet eller toksinet nedbrytes [se E.S. Vitetta et al., Science, 238, s. 1098-1104 (1987)]. Selv om et antistoff-legemiddel-eller antistoff-toksinkonjugat kan utvise fremragende tumorbindingsegenskaper, kan konjugatet ikke desto mindre utvise begrenset cytotoksisk anvendelighet som følge av manglende evne til å nå sitt virkningsområde innen cellen. Secondly, it is obvious that the cytotoxic activity of an immunoconjugate often depends on the uptake thereof in the tumor cell mediated by the antibody component of the conjugate [see e.g. J.M. Lambert et al. "Purified Immunotoxins That Are Reactive With Human Lymphoid Cells", J. Biol. Chem., 260 (no. 22, pp. 12035-12041 (1985)]. This internalization is crucial when an antibody-drug conjugate is used where the drug has an intracellular area of action, or when antibody-toxin conjugates are used. The main part of tumor- associated antigens, and thus antibody-drug or antibody-toxin conjugates bound to these antigens, are not internalized, however. The conjugates that are internalized are often transported to the cell's lysosome where the drug or toxin is degraded [see E.S. Vitetta et al., Science, 238 , pp. 1098-1104 (1987)].Although an antibody-drug or antibody-toxin conjugate may exhibit excellent tumor binding properties, the conjugate may nevertheless exhibit limited cytotoxic utility due to an inability to reach its site of action within the cell.
Det er dessuten velkjent at tumorcellepopulasjoner ofte er heterogene med hensyn til antigen-ekspresjon [se f.eks. A.P. Albino et al. "Heterogeneity In Surface Antigen and Glycoprotein Expression of Cell Lines Derived From Different Melanoma Metastases of The Same Patient", J. Exp. Med., 154, s. 1764-78 (1981)]. I tillegg er det blitt vist at antigen-positive tumorceller kan fremkalle antigen-negative avkom [se f.eks. M. Yeh et al. "Clonal Variation for Expression of a Human Melanoma Antigen Defined by a Monoclonal Antibody", J. Immunol., 126 (nr. 4), s. 1312-17 (1981)]. I enhver populasjon av tumorceller vil det således være et visst antall celler som ikke utviser det antigen for hvilket et bestemt immunokonjugat utviser spesifisitet. Immunokonjugatet vil derfor ikke kunne bindes til disse celler og formidle deres tilintetgjørelse. It is also well known that tumor cell populations are often heterogeneous with respect to antigen expression [see e.g. A. P. Albino et al. "Heterogeneity In Surface Antigen and Glycoprotein Expression of Cell Lines Derived From Different Melanoma Metastases of The Same Patient", J. Exp. Med., 154, pp. 1764-78 (1981)]. In addition, it has been shown that antigen-positive tumor cells can give rise to antigen-negative offspring [see e.g. M. Yeh et al. "Clonal Variation for Expression of a Human Melanoma Antigen Defined by a Monoclonal Antibody", J. Immunol., 126 (No. 4), pp. 1312-17 (1981)]. In any population of tumor cells, there will thus be a certain number of cells that do not exhibit the antigen for which a particular immunoconjugate exhibits specificity. The immunoconjugate will therefore not be able to bind to these cells and mediate their destruction.
Som følge av disse ulemper har de for tiden anvendte antitumor-legemiddel- eller toksinfremføringssystemer en begrenset suksess, særlig ved anvendelse til in vivo-behandling. As a result of these disadvantages, the currently used antitumor drug or toxin delivery systems have limited success, particularly when applied to in vivo treatment.
Foruten de ovenfor beskrevne immunokonjugater er antistoff-enzymkonjugater blitt undersøkt in vitro i kombinasjon med et annet ikke-målrettet enzym til omdannelse av jodid eller arsfenamin til de toksiske former derav, med henblikk på å forsterke antistoff-formidlet cytotoksisitet [se f.eks. C.W. Parker et al. "Enzymatic Activation and Trapping of Luminol-Substituted Peptides and Proteins. A Possible Means of Amplifying the Cytotoxicity of Anti-Tumor Antibodies", Proe. Nati. Acad. Sei. USA, 72 (nr. 1), s. 338-42 (1975), og G.W. Philpott et al. "Affinity Cytotoxicity of Tumor Cells With Antibody-Glucose Oxidase Conjugates, Peroxidase, and Arsphenamine", Cancer Research, 34, s. 2159-64 (1974)]. In addition to the immunoconjugates described above, antibody-enzyme conjugates have been investigated in vitro in combination with another non-targeted enzyme to convert iodide or arsphenamine to their toxic forms, in order to enhance antibody-mediated cytotoxicity [see e.g. C. W. Parker et al. "Enzymatic Activation and Trapping of Luminol-Substituted Peptides and Proteins. A Possible Means of Amplifying the Cytotoxicity of Anti-Tumor Antibodies", Proe. Nati. Acad. Pollock. USA, 72 (No. 1), pp. 338-42 (1975), and G.W. Philpott et al. "Affinity Cytotoxicity of Tumor Cells With Antibody-Glucose Oxidase Conjugates, Peroxidase, and Arsphenamine", Cancer Research, 34, pp. 2159-64 (1974)].
Ifølge disse in vitro-undersøkelser bindes enzymet gluco-oxydase til et antistoff og anvendes i kombinasjon med et ikke-målrettet peroxydaseenzym for å omdanne jodid eller arsfenamin til hhv. cytotoksisk jod eller arsenikk. Denne metode krever derfor ikke bare at gluco-oxydase mål-rettes mot tumorceller med antistoff, men også nærvær i tumorområdet av to andre ikke-målrettede midler. Sannsyn-ligheten for at samtlige tre midler in vivo vil finnes i tumorområdet på samme tid, er liten, og det er derfor usann-synlig at denne metode blir av terapeutisk betydning. According to these in vitro studies, the enzyme gluco-oxidase is bound to an antibody and used in combination with a non-targeted peroxidase enzyme to convert iodide or arsphenamine to, respectively, cytotoxic iodine or arsenic. This method therefore not only requires gluco-oxidase to be targeted against tumor cells with antibody, but also the presence in the tumor area of two other non-targeted agents. The probability that all three agents in vivo will be found in the tumor area at the same time is small, and it is therefore unlikely that this method will be of therapeutic importance.
I kanadisk patentskrift 1.216.791 beskrives kon-jugering til et antistoff av et enzym som kan frigjøre ammoniumioner fra substratet. Ammoniumioner avgis for å styrke den cytotoksiske virkning av immunotoksiner målrettet mot tumorområdet. In Canadian patent document 1,216,791, conjugation to an antibody of an enzyme which can release ammonium ions from the substrate is described. Ammonium ions are released to enhance the cytotoxic effect of immunotoxins targeted at the tumor area.
Sluttelig omhandler Europapatentsøknad nr. 84302218.7 en fremgangsmåte for behandling av en sykelig cellepopula-sjon slik som en tumor, ved hvilken fremgangsmåte et antistoff anvendes til å rette et ikke-metabolisert antigen mot tumorcellene. Antigenet akkumuleres innen i det minste en prosentdel av tumorcellene som deretter lyseres under fri-gjørelse av antigenet i en ubikvitær fibronektin-oppfang-elsesmatrise dannet i tumorområdet. På dette tidspunkt administreres ved metoden ifølge denne oppfinnelse en jod-holdig ligand som er spesifikk for, og som vil bindes til det til matrisen bundne antigen. Det cytotoksiske jod reagerer deretter til tilintetgjørelse av tumorcellene på dette sted. Det er beskrevet mange utførelsesformer i denne søknad, og en av disse foreslår anvendelse av et antistoff-enzymkonjugat til å målrette enzymet mot tumorområdet, og tilsetning av et ikke-letalt substrat som enzymet kan omdanne til et cytotoksisk materiale [se angitte Europapatentsøknad side 34-35]. I søknaden er det imidlertid ikke noe sted beskrevet hvordan denne utførelsesform skal utøves. Tilsvarende foreslår Hellstrom et al. "Antibodies For Drug Delivery" i Controlled Drug Delivery (2. utg.), Robinson og Lee (red.), s. 639 (1987), at "[d]rugs which would be non-toxic until 'activated' by an agent (e.g. an enzyme) localized to tumor may be considered as another approach Finally, European patent application no. 84302218.7 deals with a method for treating a diseased cell population such as a tumor, in which method an antibody is used to direct a non-metabolized antigen against the tumor cells. The antigen accumulates within at least a percentage of the tumor cells which are then lysed releasing the antigen in a ubiquitous fibronectin capture matrix formed in the tumor area. At this point, the method according to this invention administers an iodine-containing ligand which is specific for, and which will bind to, the antigen bound to the matrix. The cytotoxic iodine then reacts to destroy the tumor cells at this site. Many embodiments are described in this application, and one of these proposes the use of an antibody-enzyme conjugate to target the enzyme to the tumor area, and the addition of a non-lethal substrate that the enzyme can convert into a cytotoxic material [see indicated European patent application page 34- 35]. However, nowhere in the application is it described how this embodiment is to be implemented. Similarly, Hellstrom et al. "Antibodies For Drug Delivery" in Controlled Drug Delivery (2nd ed.), Robinson and Lee (eds.), p. 639 (1987), that "[d]rugs which would be non-toxic until 'activated' by an agent (e.g. an enzyme) localized to tumor may be considered as another approach
Hittil har imidlertid ingen beskrevet eller angitt hvordan foreliggende metode kan utføres, eller har forsøkt å utøve denne legemiddel-målretningsmetode. So far, however, no one has described or indicated how the present method can be carried out, or has attempted to carry out this drug-targeting method.
De ovenfor angitte problemer avhjelpes ved fremføring av cytotoksiske midler til tumorceller ved kombinert anvendelse av antistoff-enzymkonjugater og de fremstilte prolegemidler. Et enzym som kan omdanne et i liten grad cytotoksisk eller et ikke-cytotoksisk prolegemiddel til et aktivt cytotoksisk legemiddel konjugeres med et tumorspesifikt antistoff. Dette antistoff-enzymkonjugat administreres til en tumorbærende pattedyrvert og bindes som følge av antistoff-spesifisiteten til overflaten av disse tumorceller som utviser tumorantigenet mot hvilket antistoffets spesifisitet er rettet. Prolegemidler fremstilt ifølge oppfinnelsen administreres deretter til verten og omdannes i tumorområdet ved innvirkning av det antistoff-bundne enzym til et mer aktivt cytotoksisk legemiddel. The above-mentioned problems are remedied by delivery of cytotoxic agents to tumor cells by combined use of antibody-enzyme conjugates and the produced prodrugs. An enzyme that can convert a mildly cytotoxic or a non-cytotoxic prodrug into an active cytotoxic drug is conjugated with a tumor-specific antibody. This antibody-enzyme conjugate is administered to a tumor-bearing mammalian host and, as a result of the antibody specificity, binds to the surface of these tumor cells which exhibit the tumor antigen against which the antibody's specificity is directed. Prodrugs produced according to the invention are then administered to the host and converted in the tumor area by the action of the antibody-bound enzyme into a more active cytotoxic drug.
Oppfinnelsen belyses nærmere i det etterfølgende i forbindelse med tegningene hvori The invention is explained in more detail below in connection with the drawings in which
figur 1 avbilder den strategi til aktivering av prolegemidler ved tumorceller som binder antistoff-enzymkonjugater. Figur 2 avbilder den kjemiske struktur av et adriamycin-prolegemiddel ("APO") og dets fremstilling fra adriamycin. Figure 1 depicts the strategy for activation of prodrugs by tumor cells that bind antibody-enzyme conjugates. Figure 2 depicts the chemical structure of an adriamycin prodrug ("APO") and its preparation from adriamycin.
Figur 3 er en sammenlignende grafisk fremstilling av den prosentvise adriamycin-frigjørelse mot tiden ved omsetning av APO med A: fritt penicillin V amidaseenzym eller o og D : L6-PVA-konjugatet-ved 'i alt hhv. 10 og 100 ;ug protein/ml. Reaksjonens forløp ble registrert med HPLC. Figure 3 is a comparative graphical presentation of the percentage of adriamycin release versus time when reacting APO with A: free penicillin V amidase enzyme or o and D: the L6-PVA conjugate - in total or 10 and 100 µg protein/ml. The progress of the reaction was recorded with HPLC.
Figur 4 avbilder en sammenligning mellom bindingen av det monoklonale antistoff L6 og L6-PVA- og 1F5-PVA-konjugatene til H2981 tumorceller. Figure 4 depicts a comparison between the binding of the monoclonal antibody L6 and the L6-PVA and 1F5-PVA conjugates to H2981 tumor cells.
Figur 5 er en sammenlignende grafisk fremstilling av den prosentvise inhibering av <3>H-thymidin-inkorporering i DNA av H2981 tumorceller behandlet med o : adriamycin (ADM), • : APO, A : L6-PVA+APO eller ▲: 1F 5 -P VA+APO. Kurven avbilder den iakttatte økning i cytotoksisk aktivitet når tumorcellene ble penetrert med L6-PVA-konjugatet, etterfulgt av APO-behandling, sammenlignet med aktiviteten som ble iakttatt ved behandling med APO alene. Figure 5 is a comparative graphic representation of the percentage inhibition of <3>H-thymidine incorporation into DNA of H2981 tumor cells treated with o : adriamycin (ADM), • : APO, A : L6-PVA+APO or ▲: 1F 5 -P VA+APO. The curve depicts the observed increase in cytotoxic activity when the tumor cells were penetrated with the L6-PVA conjugate, followed by APO treatment, compared to the activity observed when treated with APO alone.
Figur 6 avbilder en sammenligning mellom bindingen av de monoklonale antistoffer L6 og 1F5 og L6-PVA- og 1F5-PVA-konjugatene til Daudi lymfomaceller. Figure 6 depicts a comparison between the binding of the monoclonal antibodies L6 and 1F5 and the L6-PVA and 1F5-PVA conjugates to Daudi lymphoma cells.
Figur 7 er en sammenlignende grafisk fremstilling av den prosentvise inhibering av <3>H-thymidin-inkorporering i DNA av Daudi lymfomaceller behandlet med • : ADM, o : APO. ■ : L6-PVA+AP0 eller □ : 1F5-PVA+AP0. Kurven avbilder den iakttatte økning i cytotoksisk aktivitet når tumorcellene ble penetrert med lF5-PVA-konjugatet, etterfulgt av APO-behandling, sammenlignet med den cytotoksiske virkning som ble iakttatt etter behandling av cellene med APO alene. Figure 7 is a comparative graphical representation of the percentage inhibition of <3>H-thymidine incorporation into DNA of Daudi lymphoma cells treated with • : ADM, o : APO. ■ : L6-PVA+AP0 or □ : 1F5-PVA+AP0. The curve depicts the observed increase in cytotoxic activity when the tumor cells were penetrated with the 1F5-PVA conjugate, followed by APO treatment, compared to the cytotoxic effect observed after treatment of the cells with APO alone.
Antistoff-enzymkonjugat som administreres til en tumorbærende pattedyrvert, består av et tumorspesifikt antistoff som er bundet til et enzym som kan omdanne et prolegemiddel som er mindre cytotoksisk overfor tumorceller enn stamlegemidlet, til det mer aktive stam-legemiddel. Ved administrering til en vert fører anti-stof f-komponenten i konjugatet, hvilken komponent er reaktiv overfor et antigen som finnes på tumorcellene, konjugatet til tumorområdet og binder seg til tumorcellene. Antistoffet kan derfor betraktes som et middel til fremføring av enzymet til tumorområdet. Et prolegemiddel som er et substrat for enzymet, administreres deretter til verten og omdannes av enzymet i tumorområdet til et aktivt cytotoksisk legemiddel. Legemidlet aktiveres således ekstracellulært og kan diffundere inn i alle tumorceller i dette område, dvs. de celler som bærer det bestemte tumor-antigen overfor hvilket antistoffet i konjugatet utviser spesifisitet, og til hvilket antistoffet er bundet, såvel som de celler som er negative med hensyn til dette antigen, men ikke desto mindre forefinnes i tumorområdet (se fig. 1). Problemet med tumor-antigen-heterogenitet og kravet om antigen/konjugat-internalisering forbundet med konvensjonelle immuno-kon jugat-legemiddelfremføringsmetoder er derfor løst. Antibody-enzyme conjugate administered to a tumor-bearing mammalian host consists of a tumor-specific antibody bound to an enzyme that can convert a prodrug that is less cytotoxic to tumor cells than the parent drug into the more active parent drug. Upon administration to a host, the anti-substance f component of the conjugate, which component is reactive to an antigen present on the tumor cells, carries the conjugate to the tumor site and binds to the tumor cells. The antibody can therefore be regarded as a means of delivering the enzyme to the tumor area. A prodrug that is a substrate for the enzyme is then administered to the host and converted by the enzyme in the tumor area into an active cytotoxic drug. The drug is thus activated extracellularly and can diffuse into all tumor cells in this area, i.e. the cells that carry the specific tumor antigen for which the antibody in the conjugate shows specificity, and to which the antibody is bound, as well as the cells that are negative with regard to to this antigen, but is nevertheless present in the tumor area (see Fig. 1). The problem of tumor-antigen heterogeneity and the requirement for antigen/conjugate internalization associated with conventional immuno-conjugate drug delivery methods is therefore resolved.
Da det ikke kreves at legemidlet bindes direkte til antistoffet og derved begrenser mengden av legemiddel som kan fremføres, oppstår ikke det generelle problem med legemiddel-styrke i tumorområdet. I realiteten øker fremføringsmetoden antallet av aktive legemiddelmolekyler som finnes i tumorområdet, da det antistoff-bundne enzym i konjugatet kan utføre tallrike substratomdannelser idet prolegemidlene gjentatte ganger omdannes til aktivt legemiddel. I tillegg er frem-føringsmetoden i stand til spesifikt å frigjøre det aktive legemiddel i tumorområdet i motsetning til frigivelse i andre vev. Dette er tilfelle fordi enzymkonsentrasjonen i tumorområdet er høyere enn konsentrasjonen i andre vev som følge av belegning av tumorcellene med antistoff-enzymkonjugatet. As the drug is not required to bind directly to the antibody and thereby limit the amount of drug that can be delivered, the general problem of drug potency in the tumor area does not arise. In reality, the delivery method increases the number of active drug molecules found in the tumor area, as the antibody-bound enzyme in the conjugate can perform numerous substrate conversions as the prodrugs are repeatedly converted into active drug. In addition, the delivery method is able to specifically release the active drug in the tumor area as opposed to release in other tissues. This is the case because the enzyme concentration in the tumor area is higher than the concentration in other tissues as a result of coating the tumor cells with the antibody-enzyme conjugate.
Antistoffkomponenten i slike immunokonjugater omfatter ethvert antistoff som spesifikt bindes til et tumor-assosiert antigen. Eksempler på slike antistoffer omfatter, men er ikke begrenset til, slike antistoffer som spesifikt bindes til antigener som finnes på carcinoma, melanoma, lymfoma og sarcoma i knokler og bløtt vev, såvel som andre tumorer. Antistoffer som forblir bundet til celleoverflaten i lengre tidsrom, eller som internaliserer meget langsomt, foretrekkes. Disse antistoffer kan være polyklonale eller fortrinnsvis monoklonale, kan være intakte antistoffmolekyler eller fragmenter inneholdende det aktive bindingsområde av antistoffet, f.eks. Fab eller Ffab'^»°9 kan fremstilles under anvendelse av kjente metoder innen faget [se f.eks. R.A. DeWeger et al. "Eradication Of Murine Lymphoma And Melanoma Cells By Chlorambucil-Antibody Complexes, Immunological Rev., 62, s. 29-45 (1982) (tumor-spesifikke monoklonale antistoffer fremstilt og anvendt i konjugater), M. Yeh et al. "Cell Surface Antigens Of Human Melanoma Identified By Monoclonal Antibodies", Proe. Nati. Acad. Sei., 76, s. 2927 (1979), J.P. Brown et al. "Structural Characterization Of Human Melanoma-Associated Antigen p97 with Monoclonal Antibodies", J. Immunol., 127 (nr. 2), s. 539-546 (1981) (fremstilling av tumor-spesifikke, monoklonale antistoffer), og J.P. Mach et al. "Improvement Of Colon Carcinoma Imaging: From Polyclonal Anti-CEA Antibodies And Static Photoscanning to Monoclonal Fab Fragments And ECT", i Monoclonal Antibodies for Cancer Detection And Therapy, R.W. Baldwin et al. (red.), s. 53-64 (Academic Press 1985) (fremstilling av antistoffragmenter og anvendelse derav til lokalisering av tumorceller)]. Hvis monoklonale antistoffer anvendes, kan antistoffene dessuten være av museopprinnelse eller human opprinnelse, eller være kimære antistoffer [se f.eks. The antibody component of such immunoconjugates includes any antibody that specifically binds to a tumor-associated antigen. Examples of such antibodies include, but are not limited to, such antibodies that specifically bind to antigens found on carcinoma, melanoma, lymphoma and sarcoma in bone and soft tissue, as well as other tumors. Antibodies which remain bound to the cell surface for longer periods of time, or which internalize very slowly, are preferred. These antibodies can be polyclonal or preferably monoclonal, can be intact antibody molecules or fragments containing the active binding region of the antibody, e.g. Fab or Ffab'^»°9 can be produced using methods known in the art [see e.g. RAW. DeWeger et al. "Eradication Of Murine Lymphoma And Melanoma Cells By Chlorambucil-Antibody Complexes, Immunological Rev., 62, pp. 29-45 (1982) (tumor-specific monoclonal antibodies prepared and used in conjugates), M. Yeh et al. "Cell Surface Antigens Of Human Melanoma Identified By Monoclonal Antibodies", Proe. Nati. Acad. Sei., 76, p. 2927 (1979), J.P. Brown et al. "Structural Characterization Of Human Melanoma-Associated Antigen p97 with Monoclonal Antibodies", J. Immunol., 127 (No. 2), pp. 539-546 (1981) (production of tumor-specific, monoclonal antibodies), and J.P. Mach et al. "Improvement Of Colon Carcinoma Imaging: From Polyclonal Anti-CEA Antibodies And Static Photoscanning to Monoclonal Fab Fragments And ECT", in Monoclonal Antibodies for Cancer Detection And Therapy, R.W. Baldwin et al. (ed.), pp. 53-64 (Academic Press 1985) (production of antibody fragments and use thereof for localization of tumor cells) ].If monoclonal antibodies are used, the antibodies may also be e of mouse origin or human origin, or be chimeric antibodies [see e.g.
V.T. Oi "Chimeric Antibodies", BioTechniques, 4, (nr. 3), s. 214-221 (1986)]. V.T. Oi "Chimeric Antibodies", BioTechniques, 4, (No. 3), pp. 214-221 (1986)].
Enzymkomponenten i slike immunokonjugater omfatter ethvert enzym som er i stand til å innvirke på et prolegemiddel på en slik måte at det omdannes til dets mer aktive, cytotoksiske form. Uttrykket "prolegemiddel" betegner her en forløper for, eller en derivatform av et farmasøytisk aktivt stoff, hvilken forløper eller derivatform i sammenligning med stamlegemidlet er mindre cytotoksisk overfor tumorceller og er i stand til enzymatisk å bli aktivert eller omdannet til den mer aktive stamform [se f.eks. D.E.V. Wilman "Prodrugs in Cancer Chemotherapy", Biochemical Society Transactions, 14, s. 375-382 (615th Meeting, Belfast 1986) og V.J. Stella et al. "Prodrugs: A Chemical Approach To Targeted Drug Delivery", Directed Drug Delivery, R. Borchardt et al. (red.), s. 247-267 (Humana Press 1985)]. The enzyme component of such immunoconjugates includes any enzyme capable of acting on a prodrug in such a way as to convert it to its more active, cytotoxic form. The term "prodrug" here denotes a precursor of, or a derivative form of, a pharmaceutical active substance, which precursor or derivative form, in comparison with the parent drug, is less cytotoxic towards tumor cells and is able to be enzymatically activated or converted into the more active parent form [see e.g. D.E.V. Wilman "Prodrugs in Cancer Chemotherapy", Biochemical Society Transactions, 14, pp. 375-382 (615th Meeting, Belfast 1986) and V.J. Stella et al. "Prodrugs: A Chemical Approach To Targeted Drug Delivery", Directed Drug Delivery, R. Borchardt et al. (ed.), pp. 247-267 (Humana Press 1985)].
Enzymer som er anvendbare ved fremføringsmetoden, omfatter penicillin-amidaser slik som penicillin V amidase og penicillin G amidase, som er anvendbare til omdannelse av legemidler som er derivatisert ved deres aminnitrogenatomer med hhv. fenoxyacetyl eller fenylacetyl, til frie legemidler. Enzymes useful in the delivery method include penicillin amidases such as penicillin V amidase and penicillin G amidase, which are useful for the transformation of drugs which are derivatized at their amine nitrogen atoms with, respectively, phenoxyacetyl or phenylacetyl, for over-the-counter medicines.
I henhold til det ovenfor angitte ble et penicillin-amidase-enzym kovalent bundet til det monoklonale L6 antistoff, og det resulterende immunokonjugat ble anvendt til å omdanne et hittil ukjent adriamycin-prolegemiddel fremstilt ifølge oppfinnelsen til det aktive antitumorlegemiddel. adriamycin. Den bestemte anvendte amidase var en fra Fusarium oxysporum isolert penicillin V amidase ("PVA") som hydrolyserer fenoxyacetylamid-bindinger. Således var det særlig anvendte prolegemiddel N-(p-hydroxyfenoxyacetyl)-adriamycin ("APO"), som ble hydrolysert av amidasen under frigivelse av det kraftige anti-tumormiddel adriamycin. L6-PVA-immunokonjugatet utviste ikke noe tap av enzymatisk aktivitet ved sammenligning med aktiviteten av det ukonjugerte enzym, og det meste av bindingsaktiviteten av L6-antistoffet ble bibeholdt i konjugatet. According to the above, a penicillin amidase enzyme was covalently bound to the monoclonal L6 antibody, and the resulting immunoconjugate was used to convert a previously unknown adriamycin prodrug produced according to the invention into the active antitumor drug. adriamycin. The particular amidase used was a penicillin V amidase ("PVA") isolated from Fusarium oxysporum which hydrolyzes phenoxyacetylamide bonds. Thus, the prodrug in particular used was N-(p-hydroxyphenoxyacetyl)-adriamycin ("APO"), which was hydrolyzed by the amidase to release the powerful anti-tumor agent adriamycin. The L6-PVA immunoconjugate showed no loss of enzymatic activity when compared with the activity of the unconjugated enzyme, and most of the binding activity of the L6 antibody was retained in the conjugate.
Ifølge de utførte in vitro-undersøkelser resulterte behandling av humane lungetumorceller med L6-PVA-konjugatet, etterfulgt av at cellene ble utsatt for APO-prolegemidlet, i en cytotoksisitet som kunne sammenlignes med cytotoksisiteten som ble oppnådd ved behandling av cellene med adriamycin alene. Det er viktig å merke seg at APO-prolegemidlet alene utviste langt lavere cytotoksisitet mot tumorcellene. According to the in vitro studies performed, treatment of human lung tumor cells with the L6-PVA conjugate, followed by exposure of the cells to the APO prodrug, resulted in cytotoxicity comparable to that obtained by treating the cells with adriamycin alone. It is important to note that the APO prodrug alone exhibited far lower cytotoxicity against the tumor cells.
Tilsvarende in vitro-undersøkelser ble også utført under anvendelse av et lF5-PVA-konjugat hvori PVA-enzymet var konjugert med 1F5 som er et monoklonalt antistoff som reagerer med et antigen som finnes på lymfomaceller. Behandling av Daudi lymfomaceller med lF5-PVA-konjugatet, etterfulgt av at cellene ble utsatt for APO, resulterte i en cytotoksisitet som kunne sammenlignes med cytotoksisiteten oppnådd ved behandling med adriamycin alene, mens behandling av celler med APO alene resulterte i meget liten cytotoksisitet. Corresponding in vitro studies were also carried out using an 1F5-PVA conjugate in which the PVA enzyme was conjugated with 1F5 which is a monoclonal antibody that reacts with an antigen found on lymphoma cells. Treatment of Daudi lymphoma cells with the lF5-PVA conjugate, followed by exposure of the cells to APO, resulted in cytotoxicity comparable to that obtained by treatment with adriamycin alone, while treatment of cells with APO alone resulted in very little cytotoxicity.
Selv om syntesen og anvendelsen av det hittil ukjente adriamycin-prolegemiddel, N-(p-hydroxyfenoxy-acetyl)-adriamycin, er beskrevet her, er det åpenbart at foreliggende oppfinnelse omfatter syntese og anvendelse av andre beslektede adriamycin-prolegemidler som kan deri-vatiseres på hovedsakelig samme måte. Prolegemidlet N-(fenoxyacetyl)-adriamycin faller eksempelvis også inn under oppfinnelsens ramme, idet prolegemidlet kan syntetis-eres under anvendelse av den her beskrevne forskrift ved å erstatte reaktanten p-hydroxyfenoxyeddiksyre (se eksempel 4 Although the synthesis and use of the hitherto unknown adriamycin prodrug, N-(p-hydroxyphenoxy-acetyl)-adriamycin, is described here, it is obvious that the present invention encompasses the synthesis and use of other related adriamycin prodrugs which can be derivatized in essentially the same way. The prodrug N-(phenoxyacetyl)-adriamycin, for example, also falls within the framework of the invention, as the prodrug can be synthesized using the regulation described here by replacing the reactant p-hydroxyphenoxyacetic acid (see example 4
i det etterfølgende) med fenoxyeddiksyre. Det er dessuten åpenbart at adriamycin-prolegemidlene ifølge oppfinnelsen omfatter andre N-hydroxyfenoxyacetylderivater av adriamycin, f.eks. derivater substituert i forskjellige stillinger av fenylringen, såvel som N-fenoxyacetylderivater. in the following) with phenoxyacetic acid. It is also obvious that the adriamycin prodrugs according to the invention comprise other N-hydroxyphenoxyacetyl derivatives of adriamycin, e.g. derivatives substituted in different positions of the phenyl ring, as well as N-phenoxyacetyl derivatives.
Foreliggende utførelsesform omfatter enn videre anvendelsen av andre amidaser slik som penicillin G amidase som enzymkomponent i immunokonjugatet.' Når en penicillin G amidase eksempelvis anvendes som enzym, bør prolegemidlet inneholde en fenylacetylamid-gruppe (i motsetning til fenoxyacetylamid-gruppen i APO), da penicillin G amidase hydrolyserer denne type amidbinding [se f.eks. A.L. Margolin et al., Biochim. Biophys. Acta, 616, s. 283-89 (1980)]. Andre prolegemidler fremstilt ifølge oppfinnelsen omfatter således N- (p-hydroxyfenylacetyl)-adriamycin, N-(fenylacetyl)-adriamycin og andre eventuelt substituerte N-fenylacetylderiv-ater av adriamycin. The present embodiment further comprises the use of other amidases such as penicillin G amidase as an enzyme component in the immunoconjugate.' When, for example, a penicillin G amidase is used as an enzyme, the prodrug should contain a phenylacetylamide group (as opposed to the phenoxyacetylamide group in APO), as penicillin G amidase hydrolyzes this type of amide bond [see e.g. EEL. Margolin et al., Biochim. Biophys. Acta, 616, pp. 283-89 (1980)]. Other prodrugs produced according to the invention thus include N-(p-hydroxyphenylacetyl)-adriamycin, N-(phenylacetyl)-adriamycin and other optionally substituted N-phenylacetyl derivatives of adriamycin.
Oppfinnelsen beskrives ytterligere i det etter-følgende eksempel. The invention is further described in the following example.
Eksempel Example
Foreliggende eksempel illustrerer fremstilling av The present example illustrates the production of
antistoff-enzymkonjugater og fremstilling av prolegemidler ved analogifremgangsmåten ifølge oppfinnelsen, samt omdannelse av et relativt ikke-cytotoksisk prolegemiddel til et aktivt anti-tumormiddel som utviser in vitro cytotoksisitet mot tumorceller. I overensstemmelse med dette eksempel ble det anvendt et L6-penicillin V amidase (i det etterfølgende angitt som "PVA")-immunokonjugat til å omdanne et N-fenoxyacetylderivat av adriamycin til det kjente anti-tumormiddel adriamycin. antibody-enzyme conjugates and production of prodrugs by the analog method according to the invention, as well as conversion of a relatively non-cytotoxic prodrug into an active anti-tumor agent which exhibits in vitro cytotoxicity against tumor cells. In accordance with this example, an L6-penicillin V amidase (hereinafter referred to as "PVA") immunoconjugate was used to convert an N-phenoxyacetyl derivative of adriamycin into the known anti-tumor agent adriamycin.
Fremstilling av antistoff- penicillin V amidasekonjugater Preparation of antibody-penicillin V amidase conjugates
I overensstemmelse med foreliggende eksempel ble et L6-PVA-immunokonjugat og et lF5-PVA-konjugat fremstilt. L6 er et monoklonalt antistoff av IgG2a-underklassen, hvilket antistoff er spesifikt for og bindes til et glycoprotein-antigen på humane lungecarcinomaceller [se I. Hellstrom et al. (1986), supra]. 1F5 er et monoklonalt IgG2a antistoff som er spesifikt for CD-20-antigener på normale og neoplastiske B-celler [se E.A. Clark et al., "Role Of The Bp35 Cell Surface Polypeptide In Human B-Cell Activation", Proe. Nati. Acad. Sei. USA, 82, s. 1766-70 (1985)]. L6-hybridomet som danner det monoklonale L6 antistoff, er deponert ved American Type Culture Collection (ATCC) under deponeringsnr. HB8677 i forbindelse med inn-levering av Europapatentsøknad nr. 207963. lF5-hybridomet som danner det monoklonale lF5-antistoff, er deponert ved ATCC den 12. februar 1988 under deponeringsnr. HB9645. Det anvendte amidaseenzym var en penicillin V amidase isolert fra en sopp-kultur av Fusarium oxysporum i overensstemmelse med fremgangs-måtene beskrevet av D.A. Lowe et al., "Enzymatic Hydrolysis of Penicillin V to 6-aminopenicillanic Acid by Fusarium oxysporum", Biotechnology Letters, 8 (3), s. 151-156 (1986). Fusarium In accordance with the present example, an L6-PVA immunoconjugate and an IF5-PVA conjugate were prepared. L6 is a monoclonal antibody of the IgG2a subclass, which antibody is specific for and binds to a glycoprotein antigen on human lung carcinoma cells [see I. Hellstrom et al. (1986), supra]. 1F5 is a monoclonal IgG2a antibody specific for CD-20 antigens on normal and neoplastic B cells [see E.A. Clark et al., "Role Of The Bp35 Cell Surface Polypeptide In Human B-Cell Activation", Proe. Nati. Acad. Pollock. USA, 82, pp. 1766-70 (1985)]. The L6 hybridoma that forms the monoclonal L6 antibody has been deposited at the American Type Culture Collection (ATCC) under deposit no. HB8677 in connection with the submission of European patent application no. 207963. The lF5 hybridoma which forms the monoclonal lF5 antibody was deposited at ATCC on 12 February 1988 under deposit no. HB9645. The amidase enzyme used was a penicillin V amidase isolated from a fungal culture of Fusarium oxysporum in accordance with the procedures described by D.A. Lowe et al., "Enzymatic Hydrolysis of Penicillin V to 6-aminopenicillanic Acid by Fusarium oxysporum", Biotechnology Letters, 8 (3), pp. 151-156 (1986). Fusarium
<oxysporum-stammer hvorfra dette enzym kan isoleres, er deponert ved ATCC. PVA er således et lett tilgjengelig <oxysporum strains from which this enzyme can be isolated are deposited at ATCC. PVA is thus easily available
enzym som omdanner penicillin-V til pencillansyre. Nærmere bestemt hydrolyserer PVA fenoxyacetylamidbindingen i penicillin-V under dannelse av pencillansyre. Enzymet som reagerer med fenoxyacetamider, kan derfor anvendes til spaltning av prolegemidler av kjente cytotoksiske midler som er derivatisert med fenoxyeddiksyre eller p-hydroxyfenoxyeddiksyre. enzyme that converts penicillin-V to pencillanic acid. Specifically, PVA hydrolyzes the phenoxyacetylamide bond in penicillin-V to form pencillanic acid. The enzyme that reacts with phenoxyacetamides can therefore be used to cleave prodrugs of known cytotoxic agents that are derivatized with phenoxyacetic acid or p-hydroxyphenoxyacetic acid.
Antistoff-PVA-konjugatene fremstilles ved kovalent å binde prolegemidlet til de monoklonale antistoffer L6, 96,5 eller 1F5 via en thioetherbinding under anvendelse av en fremgangsmåte svarende til metoden som er beskrevet i J.M. Lambert et al., "Purified Immunotoxins That Are Reactive With Human Lymphoid Cells", J. Biol. Chem., 260 (nr. 22), s. 12035-12041 The antibody-PVA conjugates are prepared by covalently linking the prodrug to the monoclonal antibodies L6, 96.5 or 1F5 via a thioether bond using a method similar to the method described in J.M. Lambert et al., "Purified Immunotoxins That Are Reactive With Human Lymphoid Cells", J. Biol. Chem., 260 (No. 22), pp. 12035-12041
(1985). Antistoffene L6 og 1F5 ble omsatt med iminothiolan som beskrevet, og antallet av innførte sulfhydrylgrupper i hvert av antistoffene ble bestemt til mellom 1 og 2, under anvendelse av Ellmans reagens [se P.W. Riddles et al., "Ellman's Reagent: 5,5'-Dithiobis(2-nitrobenzoid Acid)-A Reexamination", Analytical Biochemistry, 94, s. 75-81 (1979)]. (1985). Antibodies L6 and 1F5 were reacted with iminothiolane as described, and the number of introduced sulfhydryl groups in each antibody was determined to be between 1 and 2, using Ellman's reagent [see P.W. Riddles et al., "Ellman's Reagent: 5,5'-Dithiobis(2-nitrobenzoic Acid)-A Reexamination", Analytical Biochemistry, 94, pp. 75-81 (1979)].
En 9 mg/ml løsning av PVA-enzymet ble deretter fremstilt i PBS og ble behandlet med SMCC (succimidyl-4-(N-maleimidomethyl)-cyclohexan-l-carboxylat, 100 mM i DMF), slik at sluttkonsentrasjonen var 5 mM. Behandling med SMCC innførte maleimidogrupper i enzymet. Etter 30 minutter ved 30°C ble det modifiserte enzym renset ved gelfiltrering på "G-25 PD-10 Sephadex" og ble eluert med PBS. Det modifiserte PVA ble deretter tilsatt til en løsning av hvert av de thiolerte antistoffer i et molforhold på 3:1. Hver reaksjonsblanding ble mettet med nitrogen og fikk stå ved romtemperatur i 3 timer og ble deretter inkubert ved 4 C i ytterligere 18 timer. På dette tidspunkt ble det tilsatt 2-aminoethanthiol (sluttkonsentrasjon 1 mM) til hver løs-ning for blokkering av eventuelt ytterligere uomsatte maleimider. A 9 mg/ml solution of the PVA enzyme was then prepared in PBS and was treated with SMCC (succimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate, 100 mM in DMF) so that the final concentration was 5 mM. Treatment with SMCC introduced maleimido groups into the enzyme. After 30 minutes at 30°C, the modified enzyme was purified by gel filtration on "G-25 PD-10 Sephadex" and was eluted with PBS. The modified PVA was then added to a solution of each of the thiolated antibodies in a molar ratio of 3:1. Each reaction mixture was saturated with nitrogen and allowed to stand at room temperature for 3 hours and then incubated at 4°C for an additional 18 hours. At this point, 2-aminoethanethiol (final concentration 1 mM) was added to each solution to block any further unreacted maleimides.
Hver reaksjonsblanding ble deretter ført gjennom en gelfiltreringskolonne ("G-25") under eluering med 20 mM Each reaction mixture was then passed through a gel filtration column ("G-25") eluting with 20 mM
Tris, pH 7,2, med 50 mM NaCl. De resulterende blandinger Tris, pH 7.2, with 50 mM NaCl. The resulting mixtures
ble renset på "DEAE Sephadex"-kolonner (2,5 x 10 cm). was purified on "DEAE Sephadex" columns (2.5 x 10 cm).
Fraksjonene ble overvåket ved 280 nm. Det uomsatte antistoff i hver blanding ble ikke bundet til kolonnen, og konjugatet og uomsatt PVA ble eluert med 20 mM Tris, pH 7,2, med 0,5 M NaCl. Fraksjonene inneholdende PVA og konjugat, ble deretter konsentrert under anvendelse av et "Amicon YM-30"-ultrafiltreringsfilter og ble renset på en The fractions were monitored at 280 nm. The unreacted antibody in each mixture was not bound to the column, and the conjugate and unreacted PVA were eluted with 20 mM Tris, pH 7.2, with 0.5 M NaCl. The fractions containing PVA and conjugate were then concentrated using an "Amicon YM-30" ultrafiltration filter and were purified on a
"Sephacryl S-300"-kolonne (2,5 x 95 cm) under eluering med PBS. Fraksjonene ble overvåket ved 280 nm, og de fraksjoner som inneholdt rent konjugat ifølge bestemmelse ved SDS-PAGE (4-12% gradientgel), ble forenet. "Sephacryl S-300" column (2.5 x 95 cm) eluting with PBS. The fractions were monitored at 280 nm, and the fractions containing pure conjugate as determined by SDS-PAGE (4-12% gradient gel) were combined.
Fremstilling av et hittil ukjent adriamycin- prolegemiddel Preparation of a previously unknown adriamycin prodrug
Hvert av de ovenfor fremstilte antistoff-PVA-konjugater ble omsatt deretter med et hittil ukjent adriamycin-prolegemiddel. Nærmere bestemt var det anvendte prolegemiddel N-(p-hydroxyfenoxyacetyl)-adriamycin (i det etterfølgende angitt som "APO"), hvor aminogruppen i sukkerdelen av adriamycin er acylert med p-hydroxyfenoxyeddiksyre som angitt i figur 2. Each of the antibody-PVA conjugates prepared above was then reacted with a previously unknown adriamycin prodrug. More specifically, the prodrug used was N-(p-hydroxyphenoxyacetyl)-adriamycin (hereinafter referred to as "APO"), where the amino group in the sugar part of adriamycin is acylated with p-hydroxyphenoxyacetic acid as indicated in Figure 2.
Dette adriamycin-prolegemiddel ble fremstilt som følger: This adriamycin prodrug was prepared as follows:
Til 10 ml tetrahydrofuran ble det tilsatt 84 mg 84 mg was added to 10 ml of tetrahydrofuran
(0,5 mmol) p-hydroxyfenoxyeddiksyre, 57 mg (0,5 mmol) N-hydroxysuccinimid og 100 mg (0,49 mmol) dicyclohexylcarbo-diimid. Denne blanding ble omrørt i 2 timer, hvoretter løsningen ble filtrert og filtratet ble tilsatt til 200 mg (0,35 mmol) adriamycin-hydroklorid. 0,1 ml triethylamin ble tilsatt til reaksjonsblandingen, og omrøringen ble fortsatt i 4 timer. Reaksjonsblandingen ble deretter filtrert gjennom glassull og ble inndampet til et residuum under høyvakuum. Den resulterende blanding ble renset på en "Silicagel 60"-kolonne (2,5 x 20 ml) under eluering med 95:5 diklormethan:methanol. De forenede fraksjoner ble igjen renset på samme type kolonne, hvorved det ble erholdt 70 mg (0,1 mmol, 30% utbytte) rent N-(p-hydroxyfenoxy-acetyl)-adriamycin. (0.5 mmol) of p-hydroxyphenoxyacetic acid, 57 mg (0.5 mmol) of N-hydroxysuccinimide and 100 mg (0.49 mmol) of dicyclohexylcarbodiimide. This mixture was stirred for 2 hours, after which the solution was filtered and the filtrate was added to 200 mg (0.35 mmol) of adriamycin hydrochloride. 0.1 ml of triethylamine was added to the reaction mixture, and stirring was continued for 4 hours. The reaction mixture was then filtered through glass wool and evaporated to a residue under high vacuum. The resulting mixture was purified on a "Silicagel 60" column (2.5 x 20 mL) eluting with 95:5 dichloromethane:methanol. The combined fractions were again purified on the same type of column, whereby 70 mg (0.1 mmol, 30% yield) of pure N-(p-hydroxyphenoxy-acetyl)-adriamycin was obtained.
FAB MS m/e 694,2125 (M+H)<+>. Beregnet for <C>35<H>36N014' 694'2136- 360 MHz 1h nmr (CDCIj) S : 1,06 (d, 3H, sukker CR"3) , 1,5-2,2 (m, 6H, sukker H) , 3,0 (q, 2H) , 4,0 (s, 3H, 0CH3), 4,35 (s, 2H, C0CH20), 4,8-5,0 (m, 3H), 5,2 og 5,4 (s, 1H), 6,6-6,8 (dd,;4H, fenoxy Arh), 7,4-7,9 (m, 3H, 2,3,4-H), 9,0 (s, 1H, Ar<1>OH), 11,61 og 12,39 (s, 1H, ArOH). FAB MS m/e 694.2125 (M+H)<+>. Calculated for <C>35<H>36N014' 694'2136- 360 MHz 1h nmr (CDCIj) S : 1.06 (d, 3H, sugar CR"3) , 1.5-2.2 (m, 6H, sugar H) , 3.0 (q, 2H) , 4.0 (s, 3H, 0CH3), 4.35 (s, 2H, COCH2O), 4.8-5.0 (m, 3H), 5, 2 and 5.4 (s, 1H), 6.6-6.8 (dd,;4H, phenoxy Arh), 7.4-7.9 (m, 3H, 2,3,4-H), 9 .0 (s, 1H, Ar<1>OH), 11.61 and 12.39 (s, 1H, ArOH).
Det vil være åpenbart at andre fenoxyacetylamid-derivater av adriamycin kan fremstilles ved hovedsakelig å anvende samme fremgangsmåte som ovenfor beskrevet. Eksempelvis kan N-(fenoxyacetyl)-adriamycin fremstilles som ovenfor beskrevet, ved å erstatte p-hydroxyfenoxyeddiksyre med 0,5 mmol (76 mg) fenoxyeddiksyre. It will be obvious that other phenoxyacetylamide derivatives of adriamycin can be prepared by using substantially the same method as described above. For example, N-(phenoxyacetyl)-adriamycin can be prepared as described above, by replacing p-hydroxyphenoxyacetic acid with 0.5 mmol (76 mg) of phenoxyacetic acid.
Omsetning av et antistoff- penicillin V amidasekon jugat med et adriamycin- prolegemiddel Reaction of an antibody penicillin V amidasecon conjugate with an adriamycin prodrug
Evnen hos antistoff-PVA-konjugatet, L6-PVA, til å omdanne det hittil ukjente prolegemiddel APO til adriamycin ble bestemt som følger: enten ble det tilsatt a) PVA alene (sluttkonsentrasjon: 50 yg/ml), b) 100 Mg/ml L6-PVA-konjugat (PVA-sluttkonsentrasjon: 25 yg/ml) eller The ability of the antibody-PVA conjugate, L6-PVA, to convert the previously unknown prodrug APO to adriamycin was determined as follows: either a) PVA alone (final concentration: 50 ug/ml), b) 100 Mg/ml was added L6-PVA conjugate (final PVA concentration: 25 yg/ml) or
c) 10 yg/ml L6-PVA (PVA-sluttkonsentrasjon: 2,5 ug/ml) til en løsning av APO (0,1 mM) i PBS. Hver reaksjon ble overvåket ved hjelp av HPLC under anvendelse av en "Phenominex C-18"-kolonne (3 um, 4,5 x 100 mm) og gradienteluering med 20-60% tetrahydrofuran i vann med 0,1% H3P04 (1,0 ml/minutt, påvisning ved 495 nm). Under disse betingelser ble adriamycinet eluert etter 8,9 minutter, og APO ble eluert etter 12,2 minutter. Resultatene fremgår fra figur 3: Som det fremgår fra figuren, ble amidgruppen i APO hydrolysert ved hjelp av PV, hvilket fremgår av dannelsen av adriamycin. Under de anvendte betingelser var halverings-tiden for hydrolyse av APO ved hjelp av PVA ca. 20 minutter. Enn videre viste det seg at innen 40 minutter fra reaksjonens start kunne både enzymet alene og antistoff PVA-konjugatet bevirke hydrolyse av minst 80% av APO til adriamycin. 10 ug/ml (2,5 pg/ml PVA) kunne bevirke hydrolyse i denne størrelsesorden i løpet av 120 minutter. Endelig fremgår det tydelig fra disse undersøkelser at antistoff- c) 10 µg/ml L6-PVA (final PVA concentration: 2.5 µg/ml) to a solution of APO (0.1 mM) in PBS. Each reaction was monitored by HPLC using a "Phenominex C-18" column (3 µm, 4.5 x 100 mm) and gradient elution with 20-60% tetrahydrofuran in water with 0.1% H 3 PO 4 (1, 0 ml/minute, detection at 495 nm). Under these conditions, the adriamycin was eluted after 8.9 minutes, and the APO was eluted after 12.2 minutes. The results appear from figure 3: As can be seen from the figure, the amide group in APO was hydrolysed with the help of PV, which is evident from the formation of adriamycin. Under the conditions used, the half-life for hydrolysis of APO by means of PVA was approx. 20 minutes. Furthermore, it was found that within 40 minutes from the start of the reaction, both the enzyme alone and the antibody PVA conjugate could cause hydrolysis of at least 80% of APO to adriamycin. 10 ug/ml (2.5 pg/ml PVA) could effect hydrolysis of this magnitude within 120 minutes. Finally, it is clear from these investigations that antibody
PVA-konjugatet ifølge oppfinnelsen ikke utviste noe til-synelatende tap av enzymatisk aktivitet som følge av bindingen av enzymet til antistoffet, hvilket fremgår av at konjugatet og det frie enzym utviste like egenskaper med hensyn til hydrolysering av APO til adriamycin. The PVA conjugate according to the invention showed no apparent loss of enzymatic activity as a result of the binding of the enzyme to the antibody, which is evident from the fact that the conjugate and the free enzyme showed similar properties with regard to hydrolyzing APO to adriamycin.
Serumstabilitet av det hittil ukjente adriamycin- prolegemiddel Serum stability of the hitherto unknown adriamycin prodrug
Stabiliteten av APO i humant serum ble bestemt under anvendelse av HPLC og måling av hastigheten for APO's for-svinning og hastigheten for dannelse av adriamycin. En.løs-ning av APO (10 mM i dimethylformamid) ble således tilsatt til friskt, humant serum slik at sluttkonsentrasjonen var The stability of APO in human serum was determined using HPLC and measuring the rate of APO disappearance and the rate of formation of adriamycin. A solution of APO (10 mM in dimethylformamide) was thus added to fresh human serum so that the final concentration was
0,1 mM. Aliquoter (50 yl) ble fortynnet med methanol (50 ul)' for utfelling av serumproteiner. Disse prøver ble deretter sentrifugert og analysert ved hjelp av HPLC som beskrevet ovenfor. I løpet av 2 timer forekom ingen hydrolyse av APO til adriamycin. 0.1 mM. Aliquots (50 µl) were diluted with methanol (50 µl) to precipitate serum proteins. These samples were then centrifuged and analyzed by HPLC as described above. No hydrolysis of APO to adriamycin occurred within 2 hours.
Binding av antistoff- PVA- konjugatene til H2981- tumorceller Binding of the antibody-PVA conjugates to H2981 tumor cells
Evnen hos L6-PVA- og lF5-PVA-konjugatene ifølge oppfinnelsen til å bindes til H2981-tumorceller ble målt The ability of the L6-PVA and 1F5-PVA conjugates of the invention to bind to H2981 tumor cells was measured
som følger: Immunokonjugatene eller de frie antistoffer ble seriefortynnet i modifisert Dulbeccos ufullstendige medium (IMDM), og 100 pl aliquoter ble inkubert ved 4°C med IO<6 >30 minutter. Cellene ble vasket og inkubert med 50 yl FITC-geite-anti-muse-antistoff (fortynnet 1:12,5) i ytterligere 30 minutter ved 4°C. Cellene ble vasket og analysert på en "Coulter Epics-C"-celle-fluorescensanalysator. Døde celler ble utelukket, og den logaritmiske middelverdi for den grønne fluorescensintensitet hos hver prøve ble erholdt. Dette tall ble omdannet til en lineær skala, og forhold mellom den negative kontroll (celler + FITC-geite-anti-muse-antistoff) og alle testprøver ble beregnet. Resultatene av bindingsprøven er avbildet i figur 4. as follows: The immunoconjugates or free antibodies were serially diluted in modified Dulbecco's incomplete medium (IMDM), and 100 µl aliquots were incubated at 4°C with 10<6 >30 minutes. The cells were washed and incubated with 50 µl FITC goat anti-mouse antibody (diluted 1:12.5) for an additional 30 min at 4°C. The cells were washed and analyzed on a Coulter Epics-C cell fluorescence analyzer. Dead cells were excluded, and the logarithmic mean value of the green fluorescence intensity of each sample was obtained. This number was converted to a linear scale, and ratios between the negative control (cells + FITC goat anti-mouse antibody) and all test samples were calculated. The results of the bond test are depicted in figure 4.
FACS-analyse indikerer at både L6- og L6-PVA-konjugatet utviste kraftig binding til tumorcellene, mens lF5-PVA-konjugatet ikke utviste binding av noen signifikant størrelsesorden. Denne bindingsundersøkelse indikerer for det første at konjugeringen til enzymet ikke på noen vesentlig måte påvirket bindingsevnen hos antistoffkomponenten 1 immunokonjugatene. For det andre demonstrerer denne prøve igjen spesifisiteten av bindingen av konjugatene, idet L6-PVA-konjugatet bindes til de L6-positive H2981-tumorceller, og lF5-PVA-konjugatet som følge av den manglende spesifisitet hos lF5-antistoffet for tumorcellene, hovedsakelig ikke utviser noen binding. FACS analysis indicates that both the L6 and L6-PVA conjugate showed strong binding to the tumor cells, while the lF5-PVA conjugate did not show binding of any significant magnitude. This binding study indicates, firstly, that the conjugation to the enzyme did not in any significant way affect the binding ability of the antibody component 1 immunoconjugates. Second, this sample again demonstrates the specificity of the binding of the conjugates, in that the L6-PVA conjugate binds to the L6-positive H2981 tumor cells, and the lF5-PVA conjugate, due to the lack of specificity of the lF5 antibody for the tumor cells, essentially does not exhibits some bonding.
In vitro- cvtotoksisitet av antistoff- PVA- koniugat/ adriamvcin-prolegemiddelkombinasjonen på H2981- tumorceller In Vitro Cytotoxicity of the Antibody-PVA Conjugate/Adriamvicin-Prodrug Combination on H2981 Tumor Cells
Den in vitro cytotoksiske virkning av antistoff-PVA/adriamycin-prolegemiddelkombinasjonen mot H2981-tumorceller ble målt under anvendelse av en <3>H-thymidin-opptagelses-prøve. I korthet ble H2981-tumorceller anbrakt på mikro-titerplater inneholdende 96 brønner i IMDM (10.000 celler/brønn) og fikk stå for å bli bundet i 18 timer ved 37°C. Antistoff-PVA-konjugatene, L6-PVA eller 1F5-PVA, The in vitro cytotoxicity of the antibody-PVA/adriamycin prodrug combination against H2981 tumor cells was measured using a <3>H-thymidine uptake assay. Briefly, H2981 tumor cells were plated on 96-well microtiter plates in IMDM (10,000 cells/well) and allowed to attach for 18 hours at 37°C. The antibody-PVA conjugates, L6-PVA or 1F5-PVA,
ble deretter tilsatt i en konsentrasjon på 10 yg/ml antistoff, og platene ble inkubert i 30 minutter ved 4°C. was then added at a concentration of 10 µg/ml antibody, and the plates were incubated for 30 minutes at 4°C.
Brønnene ble deretter vasket 4 ganger med IMDM, og APO ble tilsatt i forskjellige konsentrasjoner i IMDM. Etter 2 timer ble brønnene igjen vasket, IMDM ble tilsatt, og cellene fikk stå i 18 timer ved 37°C. På dette tidspunkt ble H-thymidin (1 pCi/brønn) tilsatt, og etter 6 timer ble platene nedfryst ved -70°C for å løsne cellene. Etter opp-tining ble cellene høstet på glassfiberfiltre. Inkorporer-ing av ^H-thymidin ble målt under anvendelse av en "Beckman 3801"-scintillasjonsteller og ble sammenlignet med celler behandlet med APO eller adriamycin (ADM) alene. The wells were then washed 4 times with IMDM, and APO was added at various concentrations in IMDM. After 2 hours, the wells were again washed, IMDM was added, and the cells were allowed to stand for 18 hours at 37°C. At this point, H-thymidine (1 pCi/well) was added, and after 6 hours the plates were frozen at -70°C to detach the cells. After thawing, the cells were harvested on glass fiber filters. Incorporation of ^H-thymidine was measured using a "Beckman 3801" scintillation counter and was compared to cells treated with APO or adriamycin (ADM) alone.
Under anvendelse av denne prøve ble inhiberingen av <3>H-thymidin-inkorporeringen i tumorcellenes DNA målt, og den cytotoksiske virkning av prolegemidlet APO på celler med eller uten forbehandling av cellene med L6-PVA- eller lF5-PVA-konjugatene ble deretter målt. De cytotoksiske virkninger av disse kombinasjoner ble sammenlignet med cytotoksisiteten som ble iakttatt ved behandling av cellene med stamlegemidlet adriamycin alene. Som det fremgår fra figur 5, var adriamycin med IC^Q-verdi på 3 8 nM signi- Using this assay, the inhibition of <3>H-thymidine incorporation into tumor cell DNA was measured, and the cytotoxic effect of the prodrug APO on cells with or without pretreatment of the cells with the L6-PVA or lF5-PVA conjugates was then measured. . The cytotoxic effects of these combinations were compared with the cytotoxicity observed when treating the cells with the parent drug adriamycin alone. As can be seen from Figure 5, adriamycin with an IC^Q value of 38 nM was signi-
fikant mer toksisk overfor tumorceller som ikke var behandlet med konjugat, enn APO med en IC50~verdi på 2 pM. Dette var forventet under hensyn til tidligere rapporter, hvorav det fremgår at adriamycinamider er mindre toksiske enn adriamycin (se f.eks. Y. Levin og B.A. Sela, FEBS Letters, 98, s. 119 (1979) og R...Baurain et al., J. Med. Chem., 23, s. 1171 (1980)). Forbehandling av cellene med L6-PVA øket cytotoksisiteten av APO 20 ganger, til et nivå som kan sammenlignes med cytotoksisiteten for adriamycin alene. Forbehandling av celler med 1F5-PVA påvirket på ingen måte toksisiteten av APO. Disse resultater indikerer at L6-PVA-konjugatet vil kunne hydrolysere det relativt ikke-cytotoksiske prolegemiddel APO for tilintetgjørelse av tumorceller i en utstrekning som er sammenlignbar med anvendelse av adriamycin alene, og at denne cytotoksisitet er antigenspesifikk, hvilket fremgår av at lF5-PVA-konjugatet som ikke signifikant bindes til denne bestemte tumorcelle-linje, ikke bevirket en slik cytotoksisitet. significantly more toxic towards tumor cells that had not been treated with conjugate, than APO with an IC50~ value of 2 pM. This was expected in view of previous reports, from which it appears that adriamycin amides are less toxic than adriamycin (see, for example, Y. Levin and B.A. Sela, FEBS Letters, 98, p. 119 (1979) and R...Baurain et al., J. Med. Chem., 23, p. 1171 (1980)). Pretreatment of the cells with L6-PVA increased the cytotoxicity of APO 20-fold, to a level comparable to the cytotoxicity of adriamycin alone. Pretreatment of cells with 1F5-PVA did not affect the toxicity of APO in any way. These results indicate that the L6-PVA conjugate will be able to hydrolyze the relatively non-cytotoxic prodrug APO for the destruction of tumor cells to an extent comparable to the use of adriamycin alone, and that this cytotoxicity is antigen-specific, as evidenced by the fact that lF5-PVA- the conjugate that did not significantly bind to this particular tumor cell line did not cause such cytotoxicity.
Binding av antistoff- PVA- konjugatene til Daudi- lymfomaceller Binding of the antibody-PVA conjugates to Daudi lymphoma cells
Evnen hos L6-PVA- og lF5-PVA-konjugatene til å bindes til den kjente Daudi-cellelinje ble også målt. Denne cellelinje er en Burkitt-lymfomacellelinje som er deponert ved ATCC (ATCC nr. CCL 213) og som uttrykker CD-20-antigenet hvortil lF5-antistoffet bindes. Resultatene er avbildet i figur 6. The ability of the L6-PVA and 1F5-PVA conjugates to bind to the known Daudi cell line was also measured. This cell line is a Burkitt's lymphoma cell line deposited at ATCC (ATCC No. CCL 213) and which expresses the CD-20 antigen to which the 1F5 antibody binds. The results are depicted in Figure 6.
I dette tilfelle ble både det monoklonale 1F5-antistoff og lF5-PVA-konjugat bundet sterkt til lymforaa-cellene. Denne undersøkelse indikerte igjen at bindingsevnen hos konjugatene ikke signifikant ble påvirket av konjugeringsmetoden. In this case, both the 1F5 monoclonal antibody and 1F5-PVA conjugate bound strongly to the lymphora cells. This investigation again indicated that the binding ability of the conjugates was not significantly affected by the conjugation method.
Som det fremgår fra figuren, utviste L6-antistoffet As can be seen from the figure, the L6 antibody exhibited
og L6-PVA-konjugatet i tillegg ikke noen tydelig binding til Daudi-cellene. Dette kunne også forventes da Daudi-tumorceller ikke utviser antigenet hvormed L6-antistoffet reagerer. Denne undersøkelse kombinert med de ovenfor beskrevne bindingsundersøkelser, demonstrerer klart bindings-spesifisiteten hos konjugatene, dvs. at L6-holdige konjugater bindes spesifikt til L-positive tumorceller, og lF5-holdige konjugater bindes spesifikt til CD-20-positive tumorceller. and the L6-PVA conjugate additionally showed no apparent binding to the Daudi cells. This could also be expected as Daudi tumor cells do not display the antigen with which the L6 antibody reacts. This study, combined with the binding studies described above, clearly demonstrates the binding specificity of the conjugates, i.e. that L6-containing conjugates bind specifically to L-positive tumor cells, and lF5-containing conjugates bind specifically to CD-20-positive tumor cells.
In vitro- cytotoksisitet hos antistoff- PVA- koniuqat/ adriamycin-proleqemiddelkombinasionen på Daudi- celler In vitro cytotoxicity of the antibody-PVA conjugate/adriamycin-proleq agent combination on Daudi cells
Den in vitro cytotoksiske virkning av L6-PVA- eller lF5-PVA-konjugatet i kombinasjon med APO-prolegemidlet ble deretter prøvet på Daudi-celler. The in vitro cytotoxic effect of the L6-PVA or lF5-PVA conjugate in combination with the APO prodrug was then tested on Daudi cells.
<3>H-thymidinprøven ble utført hovedsakelig som beskrevet ovenfor, med lette modifikasjoner som følge av at Daudi-cellene er ikke-adhererende. Således ble ca. 250.000 Daudi-celler i IMDM anbrakt i hver brønn i en mikrotiterplate med 96 brønner, og antistoffenzymkonjugatet ble tilsatt. Reaksjonsblandingen ble inkubert ved 4°C i 30 minutter. Ubundet anti-stof f-enzymkonjugat ble fjernet ved sentrifugering ved 500 x g i 5 minutter, og supernatanten ble fjernet. Cellene ble re-suspendert i IMDM, og vaskeprosedyren ble gjentatt 3 ganger for fjerning av alt ubundet konjugat. Deretter ble APO i IMDM tilsatt, og etter henstand i 2 timer ble cellene vasket én gang som ovenfor beskrevet. Den resulterende del av prøven ble utført som beskrevet tidligere. The <3>H-thymidine assay was performed essentially as described above, with slight modifications due to the fact that the Daudi cells are non-adherent. Thus, approx. 250,000 Daudi cells in IMDM were placed in each well of a 96-well microtiter plate, and the antibody-enzyme conjugate was added. The reaction mixture was incubated at 4°C for 30 minutes. Unbound anti-substance f-enzyme conjugate was removed by centrifugation at 500 x g for 5 min, and the supernatant was removed. The cells were re-suspended in IMDM and the washing procedure was repeated 3 times to remove all unbound conjugate. Then, APO in IMDM was added, and after resting for 2 hours, the cells were washed once as described above. The resulting part of the sample was performed as described previously.
Under anvendelse av denne prøve ble inhiberingen av <3>H-thymidin-inkorporering i Daudi-cellenes DNA målt, og således den cytotoksiske virkning av APO-prolegemidlet på cellene med eller uten forbehandling av cellene med L6-PVA-eller lF5-PVA-konjugatet. De cytotoksiske virkninger av disse kombinasjoner ble sammenlignet med den iakttatte cytotoksisitet etter behandling av cellene med adriamycin alene. Som det fremgår fra figur 7, var adriamycin signifikant mere toksisk enn APO overfor Daudi-celler som ikke var behandlet med noe konjugat. Forbehandling av cellene med lF5-PVA-konjugatet øket signifikant cytotoksisiteten av APO-prolegemidlet til et nivå som kunne sammenlignes med cytotoksisiteten av adriamycin alene, mens forbehandling med L6-PVA-konjugatet ikke resulterte i en slik økning. Using this test, the inhibition of <3>H-thymidine incorporation into Daudi cells' DNA was measured, and thus the cytotoxic effect of the APO prodrug on the cells with or without pretreatment of the cells with L6-PVA- or lF5-PVA- the conjugate. The cytotoxic effects of these combinations were compared with the observed cytotoxicity after treatment of the cells with adriamycin alone. As can be seen from figure 7, adriamycin was significantly more toxic than APO towards Daudi cells that had not been treated with any conjugate. Pretreatment of the cells with the lF5-PVA conjugate significantly increased the cytotoxicity of the APO prodrug to a level comparable to the cytotoxicity of adriamycin alone, whereas pretreatment with the L6-PVA conjugate did not result in such an increase.
Det skal bemerkes at de oppnådde resultater ved disse bindings- og cytotoksisitetsundersøkelser er de motsatte av resultatene som ble oppnådd med disse konjugater ved de tidligere beskrevne undersøkelser under anvendelse av H2981-tumorceller hvor L6-PVA pluss APO-kombinasjonen utviste øket cytotoksisk virkning og 1F5-PVA pluss APO-kombinasjonen ikke utviste en slik virkning. Dette kunne forventes under hensyn til de forskjellige spesifisiteter hos L6- og 1F5-antistoffene i konjugatene og demonstrerer tydelig spesifisiteten av de cytotoksiske virkninger oppnådd med konjugat /prolegemiddelkombinasjonene. It should be noted that the results obtained in these binding and cytotoxicity studies are the opposite of the results obtained with these conjugates in the previously described studies using H2981 tumor cells where the L6-PVA plus APO combination showed increased cytotoxicity and 1F5- The PVA plus APO combination did not show such an effect. This could be expected given the different specificities of the L6 and 1F5 antibodies in the conjugates and clearly demonstrates the specificity of the cytotoxic effects achieved with the conjugate/prodrug combinations.
Denne undersøkelse antyder enn videre nytten av lF5-PVA-konjugatet i kombinasjon med APO til frembringelse av cytotoksiske virkninger på tumorceller in vitro. Således påviser in vitro-cytotoksisitetsundersøkelsene i dette eksempel at ethvert av de ifølge oppfinnelsen oppnådde konjugater som inneholder et antistoff som reagerer med et tumorassosiert antigen, kan anvendes til behandling av tumorer, hvormed dette antistoff reagerer. This study further suggests the utility of the 1F5-PVA conjugate in combination with APO in producing cytotoxic effects on tumor cells in vitro. Thus, the in vitro cytotoxicity studies in this example demonstrate that any of the conjugates obtained according to the invention containing an antibody that reacts with a tumor-associated antigen can be used for the treatment of tumors with which this antibody reacts.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO940675A NO178341C (en) | 1987-08-04 | 1994-02-25 | Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8138287A | 1987-08-04 | 1987-08-04 | |
US16106888A | 1988-02-26 | 1988-02-26 | |
US07/211,301 US4975278A (en) | 1988-02-26 | 1988-06-29 | Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells |
NO883414A NO178138C (en) | 1987-08-04 | 1988-08-02 | Process for preparing an antibody-enzyme conjugate |
NO940675A NO178341C (en) | 1987-08-04 | 1994-02-25 | Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives |
Publications (4)
Publication Number | Publication Date |
---|---|
NO940675L NO940675L (en) | 1989-02-06 |
NO940675D0 NO940675D0 (en) | 1994-02-25 |
NO178341B true NO178341B (en) | 1995-11-27 |
NO178341C NO178341C (en) | 1996-03-06 |
Family
ID=27532597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO940675A NO178341C (en) | 1987-08-04 | 1994-02-25 | Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives |
Country Status (1)
Country | Link |
---|---|
NO (1) | NO178341C (en) |
-
1994
- 1994-02-25 NO NO940675A patent/NO178341C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO178341C (en) | 1996-03-06 |
NO940675L (en) | 1989-02-06 |
NO940675D0 (en) | 1994-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI98197C (en) | A method of delivering a cytotoxic agent to tumor cells to prepare a useful antibody-enzyme conjugate | |
US4975278A (en) | Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells | |
US4981979A (en) | Immunoconjugates joined by thioether bonds having reduced toxicity and improved selectivity | |
AU646121B2 (en) | Acid-labile linker molecules | |
CN104220458A (en) | Modified antibody bound to motif comprising cysteine residue, modified antibody-drug conjugate comprising the modified antibody, and production method for same | |
JP2018502047A (en) | Biological substances and their use | |
Kerr et al. | Antibody-penicillin-V-amidase conjugates kill antigen-positive tumor cells when combined with doxorubicin phenoxyacetamide | |
NO178229B (en) | Anthracycline hydrazone derivatives and process for the preparation of anthracycline immunoconjugates using these | |
JP2004529963A (en) | Cytotoxic CD44 antibody immunoconjugate | |
KR20190122833A (en) | Linker Units and Molecular Structures Comprising the Same | |
WO2016108587A1 (en) | Repebody derivative-drug conjugate, preparation method and use thereof | |
JP3062696B2 (en) | Anthracycline conjugate having novel linker and method for producing the same | |
CN115175917A (en) | Drug conjugates and uses thereof | |
US5514794A (en) | Antibody-drug conjugates | |
CN111544600B (en) | Conjugate of anti-human DLL4 humanized antibody and dolastatin derivative MMAE, preparation method and application thereof | |
KR0185967B1 (en) | Site-specific in-vivo activation of therapeutic drugs | |
CN113941007B (en) | Tandem double-drug linked assembly unit and application thereof | |
WO2019046859A1 (en) | Anti-egfr antibody drug conjugates (adc) and uses thereof | |
NO178341B (en) | Analogous Process for Preparation of Therapeutically Active Anthracycline Derivatives | |
WO2023141855A1 (en) | Protein conjugates with multiple payloads and methods for making the same | |
CN118846111A (en) | Anti-TROP 2 antibody-drug conjugate and preparation method and application thereof | |
WO1994002174A1 (en) | Immunocomplex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1K | Patent expired |