NO177564B - Process for the preparation of 4-substituted 2,6-dialkylanilines - Google Patents

Process for the preparation of 4-substituted 2,6-dialkylanilines Download PDF

Info

Publication number
NO177564B
NO177564B NO915028A NO915028A NO177564B NO 177564 B NO177564 B NO 177564B NO 915028 A NO915028 A NO 915028A NO 915028 A NO915028 A NO 915028A NO 177564 B NO177564 B NO 177564B
Authority
NO
Norway
Prior art keywords
mol
pressure
group
butyl
bar
Prior art date
Application number
NO915028A
Other languages
Norwegian (no)
Other versions
NO177564C (en
NO915028D0 (en
NO915028L (en
Inventor
Peter Hardt
Theodor Volker
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Publication of NO915028D0 publication Critical patent/NO915028D0/en
Publication of NO915028L publication Critical patent/NO915028L/en
Publication of NO177564B publication Critical patent/NO177564B/en
Publication of NO177564C publication Critical patent/NO177564C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/46Aniline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Oppfinnelsen vedrører en ny fremgangsmåte ved fremstilling av 4-substituerte 2,6-dialkylaniliner med den generelle formel The invention relates to a new process for the production of 4-substituted 2,6-dialkylanilines with the general formula

hvori Rx og R2 er like eller forskjellige og betyr rettkjedede eller forgrenede C1-C4-lavere alkylgrupper, og R3 betyr en fenylisopropylgruppe, en 1,1,3,3-tetrametylbutylgruppe eller en tert-butylgruppe. Derunder fremstilles de hittil ikke beskrevne 2,6-dialkyl-4-(l,i,3,3-tetrametylbutyl)-aniliner med den generelle formel wherein Rx and R2 are the same or different and mean straight-chain or branched C1-C4 lower alkyl groups, and R3 means a phenylisopropyl group, a 1,1,3,3-tetramethylbutyl group or a tert-butyl group. Below, the hitherto undescribed 2,6-dialkyl-4-(1,1,3,3-tetramethylbutyl)-anilines are prepared with the general formula

hvori Rx og R2 har den nevnte betydning, og særlig av interesse er 2,6-diisopropyl-4-(1,1,3,3-tetrametylbutyl)-anilin hvor Rx og R2 = isopropyl. in which Rx and R2 have the aforementioned meaning, and of particular interest is 2,6-diisopropyl-4-(1,1,3,3-tetramethylbutyl)-aniline where Rx and R2 = isopropyl.

De nevnte 4-substituerte 2,6-dialkylaniliner er blant annet verdifulle mellomprodukter for fremstilling av pesticider (EP-A 0 304 025) og av aryltioureaderivater (DE-OS 27 27 416) eller hydrolysebeskyttelsesmidler i polyuretaner (Becher/Braun, Kunststoff Handbuch "Polurethane", Bd. 77, C.Hauser-Verlag 1983, s. 407-408). The mentioned 4-substituted 2,6-dialkylanilines are, among other things, valuable intermediates for the production of pesticides (EP-A 0 304 025) and of arylthiourea derivatives (DE-OS 27 27 416) or hydrolysis protection agents in polyurethanes (Becher/Braun, Kunststoff Handbuch " Polyurethane", Vol. 77, C.Hauser-Verlag 1983, pp. 407-408).

Fra EP-A 0 069 065 er det kjent å alkylere aromatiske aniliner i parastilling med f.eks. a-metylstyren:hhv. med diisobutylen. Denne kjente fremgangsmåte er særpreget ved at det arbeides i nærvær av en vandig syre, som regel saltsyre, som katalysator og under tilsetning av sinkklorid som kokatalysator. Det uheldige ved denne fremgangsmåte er at det kreves en betydelig katalysatormengde (katalysator + kokatalysator) på opp til 2 mol pr. mol aromatisk anilin; og dessuten forløper reaksjonen meget langsomt. From EP-A 0 069 065 it is known to alkylate aromatic anilines in the para position with e.g. α-methylstyrene: respectively with diisobutylene. This known method is characterized by the fact that it works in the presence of an aqueous acid, usually hydrochloric acid, as a catalyst and with the addition of zinc chloride as a co-catalyst. The disadvantage of this method is that a significant amount of catalyst (catalyst + cocatalyst) of up to 2 mol per mol aromatic aniline; and furthermore, the reaction proceeds very slowly.

Fra US-PS 4 340 758 er det f.eks. kjent å fremstille 4-t-butyl-2,6-dimetylanilin gjennom de tre følgende trinn i et totalutbytte på 40%. Ved HF-katalysert alkylering av m-xylen med isobuten i det første trinn oppnåddes 5-t-butyl-l,3-dimetyl-benzenet. From US-PS 4 340 758 there is e.g. known to prepare 4-t-butyl-2,6-dimethylaniline through the following three steps in a total yield of 40%. By HF-catalyzed alkylation of m-xylene with isobutene in the first step, 5-t-butyl-1,3-dimethylbenzene was obtained.

Ved videre nitrering med NH03 i nærvær av kvikksølvacetat syntetiseres 2-nitro-l,3-dimetyl-5-t-butylbenzen, og til slutt reduseres nitrogruppen ved katalytisk hydrogenering. By further nitration with NH03 in the presence of mercuric acetate, 2-nitro-1,3-dimethyl-5-t-butylbenzene is synthesized, and finally the nitro group is reduced by catalytic hydrogenation.

Den nevnte syntese er imidlertid på den ene side utenkelig ut fra økologisk synspunkt og fra prosessteknisk synspunkt med problematiske reaksjonsdeltagere HF og kvikksølvacetat, og på den annen side gjennom de dårlige utbytter for en moderne industriell prosess. However, the aforementioned synthesis is on the one hand unthinkable from an ecological point of view and from a process engineering point of view with problematic reaction participants HF and mercuric acetate, and on the other hand through the poor yields for a modern industrial process.

I DE-OS 27 27 416, s. 60, ble det foreslått å danne 4-t-butyldietylanilin analogt med eksempel 9, s. 59 gjennom etylering av 4-t-butylanilin med etylen i nærvær av aluminiumklorid ved 200 atm overtrykk og 250°C. En utbytteangivelse foreligger ikke. In DE-OS 27 27 416, p. 60, it was proposed to form 4-t-butyldiethylaniline analogously to example 9, p. 59 through the ethylation of 4-t-butylaniline with ethylene in the presence of aluminum chloride at 200 atm overpressure and 250 °C. A dividend statement is not available.

Uheldig ved denne fremgangsmåte er at ved siden av de drastiske, prosessteknisk tungvinte betingelser er 4-t-butyl-anilinet tungt tilgjengelig, dvs. må fremstilles gjennom nitrering av t-butylbenzen og gjennom etterfølgende reduksjon av nitrogruppen til anilin. Som kjent oppstår ved nitrering av monoalkylbenzener dertil isomerblandinger (J. Am. Chem. Soc. 73, 5605 (1951)) som betydelig vanskeliggjør tilgjengeligheten av 4-t-buty1ani1inet. The unfortunate thing about this method is that, in addition to the drastic, technically cumbersome conditions, 4-t-butyl-aniline is difficult to obtain, i.e. it must be produced through nitration of t-butylbenzene and through subsequent reduction of the nitro group to aniline. As is known, the nitration of monoalkylbenzenes therewith produces isomeric mixtures (J. Am. Chem. Soc. 73, 5605 (1951)) which considerably complicate the availability of 4-t-butylanine.

Omsetninger av det usubstituerte anilin med isobutylen er likeledes lenge kjent. Således fremgår fra GB-PS 823 223, eksempel 17, 20 og 49, at ved omsetningen av anilin med isobuten i nærvær av aluminiumklorid og metallisk aluminium eller nærvær av bortrifluorid og under trykk og ved temperaturer mellom 200°C og 300°C ved delvis liten omsetning, blandinger av mono- og diisobutylaniliner. Reactions of the unsubstituted aniline with isobutylene have also been known for a long time. Thus, it appears from GB-PS 823 223, examples 17, 20 and 49, that in the reaction of aniline with isobutene in the presence of aluminum chloride and metallic aluminum or in the presence of boron trifluoride and under pressure and at temperatures between 200°C and 300°C at partial low turnover, mixtures of mono- and diisobutylanilines.

Det lyktes riktignok med fastskiktkatalysatorer å forbedre omsetningene, men produktet bestod fortsatt av en blanding av mono- og diisobutylaniliner (EP-A 226 781, EP-A 245 797, Appl. Catalysis 62 (1990), s. 161-169). It was true that solid-bed catalysts succeeded in improving the conversions, but the product still consisted of a mixture of mono- and diisobutylanilines (EP-A 226 781, EP-A 245 797, Appl. Catalysis 62 (1990), pp. 161-169).

Oppgaven bestod følgelig i å utvikle en fremgangsmåte som ikke har ulempene ved de kjente fremgangsmåter. The task therefore consisted of developing a method which does not have the disadvantages of the known methods.

Denne oppgave kunne på overraskende måte løses ved frem-gangsmåten ifølge oppfinnelsen ifølge krav 1. This task could surprisingly be solved by the method according to the invention according to claim 1.

Utgangsprodukter er de i industriell målestokk tilgjenge-lige 2,6-dialkylaniliner med formelen Starting products are the industrially available 2,6-dialkylanilines with the formula

hvori Rx og R2 er like eller forskjellige og betyr rettkjedede eller forgrenede Ci-^-lavere alkylgrupper. wherein R x and R 2 are the same or different and mean straight or branched C 1-6 lower alkyl groups.

2,6-dialkylanilinene omsettes ifølge oppfinnelsen med a-metylstyren for innføring av fenylisopropylgruppen, med diisobutylen for innføring av l,l,3,3-tetrametylbutylgruppen, eller med isobuten for innføring av tert-butylgruppen i nærvær av According to the invention, the 2,6-dialkylanilines are reacted with α-methylstyrene to introduce the phenylisopropyl group, with diisobutylene to introduce the 1,1,3,3-tetramethylbutyl group, or with isobutene to introduce the tert-butyl group in the presence of

en Friedel-Craft alkyleringskatalysator i en mengde på 0,01 til 0,3 mol i forhold til 1 mol 2,6-dialkylanilin ved en temperatur mellom 100"C og 300°C og et trykk mellom normaltrykk og 60 bar. a Friedel-Craft alkylation catalyst in an amount of 0.01 to 0.3 mol relative to 1 mol of 2,6-dialkylaniline at a temperature between 100°C and 300°C and a pressure between normal pressure and 60 bar.

Særlig egnede katalysatorer er aluminiumklorid eller bortrifluorid-eterkomplekser, såsom f.eks. bortrifluorid-dietyleterkomplekset eller aluminiumsilikater, såsom f.eks. montmorillonitt. Particularly suitable catalysts are aluminum chloride or boron trifluoride-ether complexes, such as e.g. the boron trifluoride-diethyl ether complex or aluminum silicates, such as e.g. montmorillonite.

Fortrinnsvis anvendes katalysatoren i en mengde på 0,05 til 0,15 mol i forhold til 1 mol 2,6-dialkylanilin. Preferably, the catalyst is used in an amount of 0.05 to 0.15 mol in relation to 1 mol of 2,6-dialkylaniline.

Det har vist seg at en forutgående aktivering av katalysatoren eller tilsetning av en kokatalysator ikke er nødvendig. It has been found that a prior activation of the catalyst or addition of a cocatalyst is not necessary.

Omsetningen foregår fortrinnsvis ved en temperatur mellom 150 og 250°C, og ved trykk mellom normaltrykk og 40 bar. The reaction preferably takes place at a temperature between 150 and 250°C, and at a pressure between normal pressure and 40 bar.

Reaksjonen foregår med fordel uten tilstedeværelse av et ytterligere løsningsmiddel. Hensiktsmessig fungerer olefinene som anvendes for alkyleringen, eventuelt anvendt i overskudd, som løsningsmiddel. Det er imidlertid absolutt mulig å utføre The reaction advantageously takes place without the presence of an additional solvent. Appropriately, the olefins used for the alkylation, possibly used in excess, act as solvent. However, it is certainly possible to perform

omsetningen i nærvær av et inert løsningsmiddel. the reaction in the presence of an inert solvent.

Etter en reaksjonstid på normalt 2-20 timer, kan de oppnådde 4-substituerte 2,6-dialkylaniliner isoleres gjennom enkel destillasjon eller ved saltdannelse fra reaksjonsblandingen i god renhet og utbytte. After a reaction time of normally 2-20 hours, the obtained 4-substituted 2,6-dialkylanilines can be isolated through simple distillation or by salt formation from the reaction mixture in good purity and yield.

Eksempel 1 Example 1

Fremstilling av 2. 6- diisopropyl- 4-( fenvlisopropyl)- anilin Preparation of 2.6-diisopropyl-4-(phenylisopropyl)-aniline

354,6 g 2,6-diisopropylanilin (2,0 mol), 239,9 g o-metylstyren (2,0 mol) og 18,62 g aluminiumklorid (0,14 mol) ble oppvarmet i en autoklav i fire timer ved 205°C (trykk 1-2 bar). Etter avkjølingen ble autoklavinnholdet opptatt i 600 ml toluen. Toluenløsningen ble i rekkefølge vasket med 10% natriumlut og vann og inndampet ved vannstrålevakuum og 60"C badtemperatur til tørrhet. 354.6 g of 2,6-diisopropylaniline (2.0 mol), 239.9 g of o-methylstyrene (2.0 mol) and 18.62 g of aluminum chloride (0.14 mol) were heated in an autoclave for four hours at 205°C (pressure 1-2 bar). After cooling, the autoclave contents were taken up in 600 ml of toluene. The toluene solution was successively washed with 10% sodium hydroxide solution and water and evaporated to dryness under water jet vacuum and 60°C bath temperature.

Det erholdtes 599,7 g rest med 73,4% 2,6-diisopropyl-4-(fenylisopropyl)-anilin og 13,4% 2,6-diisopropylanilin. Det tilsvarte et utbytte på 74% i forhold til det anvendte 2,6-diisopropylanilin. 599.7 g of residue with 73.4% 2,6-diisopropyl-4-(phenylisopropyl)aniline and 13.4% 2,6-diisopropylaniline were obtained. This corresponded to a yield of 74% in relation to the 2,6-diisopropylaniline used.

Produktet lot seg rense ved destillasjon (kokepunkt ca. 150°C/0,8 mbar; innhold 98-99%). The product could be purified by distillation (boiling point approx. 150°C/0.8 mbar; content 98-99%).

Eksempel 2 Example 2

Fremstilling av 2. 6- diisopropyl- 4-( 1. 1. 3. 3- tetrametylbutyl)-anilin Preparation of 2.6-diisopropyl-4-(1.1.3.3-tetramethylbutyl)-aniline

59,6 g 2,6-diisopropylanilin (0,33 mol), 3,89 g aluminiumklorid (0,03 mol) og 224,1 g diisobutylen (78% 2,4,4-trimetyl-l-penten, 20% 2,4,4-trimetyl-2-penten) ble oppvarmet i en autoklav i 15 timer ved 200°C. (Trykk 6-7 bar). Etter avkjølingen ble autoklavinnholdet vasket to ganger med 100 ml vann hver gang og befridd for overskudd av diisobutylen ved vakuumdestillasjon i rotasjonsfordamper. 59.6 g of 2,6-diisopropylaniline (0.33 mol), 3.89 g of aluminum chloride (0.03 mol) and 224.1 g of diisobutylene (78% 2,4,4-trimethyl-l-pentene, 20% 2,4,4-trimethyl-2-pentene) was heated in an autoclave for 15 hours at 200°C. (Pressure 6-7 bar). After cooling, the autoclave contents were washed twice with 100 ml of water each time and freed of excess diisobutylene by vacuum distillation in a rotary evaporator.

Man fikk 87,4 g destillasjonsrest med 57,5% 2,6-diiso-propy1-4-(1,1,3,3-tetrametylbutyl)-anilin og 13,2% 2,6-diisopropylanilin. Det tilsvarte et utbytte på 52% i forhold til det anvendte 2,6-diisopropylanilin. 87.4 g of distillation residue with 57.5% 2,6-diiso-propyl-4-(1,1,3,3-tetramethylbutyl)-aniline and 13.2% 2,6-diisopropylaniline were obtained. This corresponded to a yield of 52% in relation to the 2,6-diisopropylaniline used.

^-NMR: (CDC13, 300 MHz) 5 i ppm: 0,68 (s, 9H) , 1,26 (d, J=6,8Hz, 12H), 1,35 (s, 6H), 1,66 (s, 2H), 2,94 (m, J=6,8Hz, 2H), 3,57 (s, 2H), 7,02 (s, 2H). ^-NMR: (CDC13, 300 MHz) δ in ppm: 0.68 (s, 9H), 1.26 (d, J=6.8Hz, 12H), 1.35 (s, 6H), 1.66 (s, 2H), 2.94 (m, J=6.8Hz, 2H), 3.57 (s, 2H), 7.02 (s, 2H).

Eksempel 3 Example 3

4- t- butyl- 2. 6- diisopropylanilin 4-t-butyl-2.6-diisopropylaniline

I en oppvarmbar 1-liters røreautoklav fyltes 211,9 g 2,6-diisopropylanilin (1,14 mol, innhold 95,2%) og 12,1 g aluminiumklorid (0,09 mol). Autoklaven var forbundet gjennom tilsvarende tilførselsledninger med en nitrogentrykkflaske og gjennom en trykkfast væskedoseringspumpe med en isobutenflaske. Gjennom flere gangers forsiktig kompresjon og ekspansjon på ca. 2 bar nitrogen ble autoklaven gjort inert. 211.9 g of 2,6-diisopropylaniline (1.14 mol, content 95.2%) and 12.1 g of aluminum chloride (0.09 mol) were filled into a heatable 1-liter stirring autoclave. The autoclave was connected through corresponding supply lines with a nitrogen pressure bottle and through a pressurized liquid dosing pump with an isobutene bottle. Through several times of careful compression and expansion of approx. 2 bar nitrogen, the autoclave was made inert.

På samme måte fortrengtes nitrogen med isobuten, og til slutt ble reaksjonsblandingen mettet ved 10-20°C med 2 bar isobuten. In the same way, nitrogen was displaced with isobutene, and finally the reaction mixture was saturated at 10-20°C with 2 bar of isobutene.

I løpet av 50-60 minutter ble autoklaven oppvarmet til 180°C, derunder steg trykket til 28-30 bar før begynnende trykkfall viste starten på reaksjonen. Ved trykkfall til 25 bar ble alltid etterpåfylt til 30 bar, inntil metning var nådd etter ca. ti timer. In the course of 50-60 minutes, the autoclave was heated to 180°C, during which the pressure rose to 28-30 bar before an initial pressure drop indicated the start of the reaction. When the pressure dropped to 25 bar, it was always refilled to 30 bar, until saturation was reached after approx. ten hours.

Autoklaven ble avkjølt til 20°C, trykket sluppet ut og innholdet tømt i 250 ml toluen. Toluenløsningen ble i rekkefølge vasket med 10%-ig natronlut og vann og inndampet til tørrhet på rotasjonsfordamper. Man fikk 293 g inndampningsrest inneholdende 90,2% 4-t-butyl-2,6-diisopropylanilin. Videre rensning fant sted gjennom fraksjonert destillasjon og omkrystallisering fra heksan. The autoclave was cooled to 20°C, the pressure released and the contents emptied into 250 ml of toluene. The toluene solution was successively washed with 10% caustic soda and water and evaporated to dryness on a rotary evaporator. 293 g of evaporation residue containing 90.2% 4-t-butyl-2,6-diisopropylaniline were obtained. Further purification took place through fractional distillation and recrystallization from hexane.

<t>ø-NMR: (CDC13, 300 MHz) 6 i ppm, 1,28 (d, 12H, J=6,8Hz), 1,30 (s, 9H), 2,94 (m, 2H, J=6,8Hz), 3,62 (s, 2H), 7,07 (s, 2H). Kokepunkt: 154-156"C/22 mbar. <t>ø-NMR: (CDC13, 300 MHz) 6 in ppm, 1.28 (d, 12H, J=6.8Hz), 1.30 (s, 9H), 2.94 (m, 2H, J =6.8Hz), 3.62 (s, 2H), 7.07 (s, 2H). Boiling point: 154-156"C/22 mbar.

Smeltepunkt: 73-74°C. Melting point: 73-74°C.

Eksempel 4 Example 4

4- t- butyl- 2- etyl- 6- metylanilin 4-t-butyl-2-ethyl-6-methylaniline

Analogt med eksempel 3 ble 161,7 g 2-etyl-6-metylanilin (1,2 mol, innhold 100%) oppvarmet i nærvær av 12,1 g aluminiumklorid (0,09 mol) med 20 bar isobuten i 2 0 timer ved 200°C og opparbeidet. Ved vakuumdestillasjon av inndampningsresten fra toluenløsningen erholdtes 182,5 g 4-t-butyl-2-etyl-6-metylanilin som fargeløs, oljeaktig væske (innhold 97,4%, kokepunkt: 134°C/15 mbar). Det tilsvarer et utbytte på 78% i forhold til Analogous to example 3, 161.7 g of 2-ethyl-6-methylaniline (1.2 mol, content 100%) was heated in the presence of 12.1 g of aluminum chloride (0.09 mol) with 20 bar of isobutene for 20 hours at 200°C and worked up. By vacuum distillation of the evaporation residue from the toluene solution, 182.5 g of 4-t-butyl-2-ethyl-6-methylaniline was obtained as a colorless, oily liquid (content 97.4%, boiling point: 134°C/15 mbar). This corresponds to a dividend of 78% in relation to

det anvendte 2-etyl-6-metylanilin. 2-ethyl-6-methylaniline was used.

4I-NMR: (CDC13/ 300 MHz) S i ppm, 1,24 (t, 3H, J=7,5Hz), 1,28 (s, 9H) , 2,17 (S, 3H), 2,52 (m, 2H), 3,46 (s, 2H), 6,97 (s, 2H). Eksempel 5 4I-NMR: (CDC13/ 300 MHz) S in ppm, 1.24 (t, 3H, J=7.5Hz), 1.28 (s, 9H), 2.17 (S, 3H), 2.52 (m, 2H), 3.46 (s, 2H), 6.97 (s, 2H). Example 5

4- t- buty1- 2- isopropy1- 6- metylanilin 4- t-buty1- 2- isopropyl1- 6- methylaniline

Som i eksempel 3 ble 178 g 2-metyl-6-isopropylanilin (1,2 mol, innhold 97,3%) rørt i nærvær av 12,1 g aluminiumklorid (0,09 mol) med 30 bar isobutylen i fire timer ved 220°C. As in example 3, 178 g of 2-methyl-6-isopropylaniline (1.2 mol, content 97.3%) was stirred in the presence of 12.1 g of aluminum chloride (0.09 mol) with 30 bar of isobutylene for four hours at 220 °C.

Etter opparbeiding og destillasjon erholdtes 183,5 g 4-t-butyl-2-isopropyl-6-metylanilin (innhold 97,6%, kokepunkt: 138°C/16 mbar) som fargeløs, oljeaktig væske. Det tilsvarer et utbytte på 75% i forhold til det anvendte 2-metyl-6-isopropyl-anilin. After work-up and distillation, 183.5 g of 4-t-butyl-2-isopropyl-6-methylaniline (content 97.6%, boiling point: 138°C/16 mbar) were obtained as a colorless, oily liquid. This corresponds to a yield of 75% in relation to the 2-methyl-6-isopropylaniline used.

^-NMR: (CDC13, 300 MHz) S i ppm, 1,28 (s, 9H), 1,28 (d, 6H, J=6,8Hz), 2,18 (s, 3H), 2,91 (sept. 1H, J=6,8Hz), 3,46 (s, 2H), 6,96 (d, 1H, J=1,8HZ), 7,09 (d, 1H, J=l,8Hz). ^-NMR: (CDC13, 300 MHz) S in ppm, 1.28 (s, 9H), 1.28 (d, 6H, J=6.8Hz), 2.18 (s, 3H), 2.91 (sept. 1H, J=6.8Hz), 3.46 (s, 2H), 6.96 (d, 1H, J=1.8HZ), 7.09 (d, 1H, J=l.8Hz) .

Eksempel 6 Example 6

4- t- butyl- 2. 6- diisopropylanilin 4-t-butyl-2.6-diisopropylaniline

En 100 ml autoklav ble fylt med 17,73 g 2,6-diisopropylanilin (0,1 mol), 199 g toluen, 0,93 g montmorillonitt KSF (Fluka) og 34,3 g isobuten og oppvarmet i et oljebad i 16 timer ved 200°C. Trykket ble sluppet ut av den avkjølte autoklav. Reaksjonsløsningen inneholdt for uten montmorillonitt isobuten og toluen 19,0% 2,6-diisopropylanilin og 58,3% 4-t-butyl-2,6-diisopropylanilin. A 100 ml autoclave was filled with 17.73 g of 2,6-diisopropylaniline (0.1 mol), 199 g of toluene, 0.93 g of montmorillonite KSF (Fluka) and 34.3 g of isobutene and heated in an oil bath for 16 hours at 200°C. The pressure was released from the cooled autoclave. The reaction solution contained, without montmorillonite, isobutene and toluene, 19.0% 2,6-diisopropylaniline and 58.3% 4-t-butyl-2,6-diisopropylaniline.

Eksempel 7 Example 7

4- t- butyl- 2- etyl- 6- isopropvlanilin 4- t-butyl- 2- ethyl- 6- isopropvlaniline

Som i eksempel 3 ble 129,0 g 2-etyl-6-isopropylanilin (0,79 mol) rørt i nærvær av 8,0 g aluminiumklorid (0,06 mol) med 3 0 bar isobutylen i seks timer ved 200°C. As in Example 3, 129.0 g of 2-ethyl-6-isopropylaniline (0.79 mol) was stirred in the presence of 8.0 g of aluminum chloride (0.06 mol) with 30 bar of isobutylene for six hours at 200°C.

Etter opparbeiding og destillasjon erholdtes 139,1 g 4-t-butyl-2-etyl-6-isopropylanilin (innhold 99,3%, kokepunkt: 143°C/17 mbar) som fargeløs, oljeaktig væske. Det tilsvarer et utbytte på 80% i forhold til det anvendte 2-etyl-6-isopropyl-anilin. After work-up and distillation, 139.1 g of 4-t-butyl-2-ethyl-6-isopropylaniline (content 99.3%, boiling point: 143°C/17 mbar) was obtained as a colorless, oily liquid. This corresponds to a yield of 80% in relation to the 2-ethyl-6-isopropylaniline used.

^-NMR: (CDCI3, 300 MHz) S i ppm, 1,27 (t, 3H, J=7,5Hz), 1,29 (d, 6H, J=6,8Hz), 1,30 (s, 9H), 2,54 (g, 2H, J=7,5Hz), 3,57 (s, 2H), ^-NMR: (CDCl3, 300 MHz) S in ppm, 1.27 (t, 3H, J=7.5Hz), 1.29 (d, 6H, J=6.8Hz), 1.30 (s, 9H), 2.54 (g, 2H, J=7.5Hz), 3.57 (s, 2H),

6,99 (d, 1H, J=2,1HZ), 7,08 (d, 1H, J=2,lHz). 6.99 (d, 1H, J=2.1Hz), 7.08 (d, 1H, J=2.1Hz).

Eksempel 8 Example 8

4- t- butvl- 2. 6- di- sek- butvlanilin 4- t- butvl- 2. 6- di- sec- butvlanilin

Som i eksempel 3 ble 20,6 g 2,6-di-sek-butylanilin (0,1 mol), 0,59 g aluminiumklorid (0,004 mol) og ca. isobuten oppvarmet i seks timer ved 203°C. As in example 3, 20.6 g of 2,6-di-sec-butylaniline (0.1 mol), 0.59 g of aluminum chloride (0.004 mol) and approx. isobutene heated for six hours at 203°C.

Etter opparbeiding og destillasjon erholdtes 19,5 g 4-t-buty1-2,6-di-sek-butylanilin som fargeløs, olje (innhold 99,6%, kokepunkt: 156°C/17 mbar). Utbytte 74%. After work-up and distillation, 19.5 g of 4-t-butyl1-2,6-di-sec-butylaniline were obtained as a colorless oil (content 99.6%, boiling point: 156°C/17 mbar). Yield 74%.

4I-NMR: (CDC13, 300 MHz) <S i ppm, 0,94 (m, 6H) , 1,28 (d, 6H, J=6,8Hz), 1,29 (s, 9H), 1,56 (m, 2H), 1,72 (m, 2H), 2,66 (m, 2H), 3,56 (s, 2H), 6,99 (s, 2H). 4I-NMR: (CDC13, 300 MHz) <S in ppm, 0.94 (m, 6H), 1.28 (d, 6H, J=6.8Hz), 1.29 (s, 9H), 1, 56 (m, 2H), 1.72 (m, 2H), 2.66 (m, 2H), 3.56 (s, 2H), 6.99 (s, 2H).

Eksempel 9 Example 9

4- t- butyl- 2. 6- dimetvlanilin 4-t-butyl-2.6-dimethylaniline

Som i eksempel 3 ble 242,0 g 2,6-dimetylanilin (2 mol) rørt i nærvær av 24,0 g aluminiumklorid (0,18 mol) i åtte timer ved 200"C med 60 bar isobutylen. As in Example 3, 242.0 g of 2,6-dimethylaniline (2 mol) was stirred in the presence of 24.0 g of aluminum chloride (0.18 mol) for eight hours at 200°C with 60 bar of isobutylene.

Etter opparbeiding og destillasjon erholdtes 335,7 g 4-t-butyl-2,6-dimetylanilin (innhold 99,8%, kokepunkt: 129"C/19 mbar) som fargeløs, oljeaktig væske. Det tilsvarer et utbytte på 95% i forhold til det anvendte 2,6-dimetylanilin. ^-NMR: (CDCI3, 300 MHz) S i ppm, 1,27 (s, 9H) , 2,18 (s, 6H) , 3,45 (s, 2H), 6,96 (s, 2H). After work-up and distillation, 335.7 g of 4-t-butyl-2,6-dimethylaniline (content 99.8%, boiling point: 129"C/19 mbar) were obtained as a colorless, oily liquid. This corresponds to a yield of 95% in relative to the 2,6-dimethylaniline used.^-NMR: (CDCl3, 300 MHz) S in ppm, 1.27 (s, 9H), 2.18 (s, 6H), 3.45 (s, 2H) , 6.96 (p, 2H).

Eksempel 10 Example 10

4- t- butyl- 2. 6- dietvlanilin 4- t- butyl- 2. 6- dietvlaniline

Som i eksempel 3 ble 179,9 g 2,6-dietylanilin (1,2 mol) rørt med 1,0 g aluminiumklorid (0,09 mol) i tolv timer ved 200°C med 30 bar isobutylen. As in example 3, 179.9 g of 2,6-diethylaniline (1.2 mol) was stirred with 1.0 g of aluminum chloride (0.09 mol) for twelve hours at 200° C. with 30 bar of isobutylene.

Etter opparbeiding og destillasjon erholdtes 227,2 g 4-t-butyl-2,6-dietylanilin (innhold 99,7%, kokepunkt: 141°C/16 mbar) som fargeløs, oljeaktig væske. Det tilsvarer et utbytte på 92% i forhold til anvendt 2,6-dietylanilin. After work-up and distillation, 227.2 g of 4-t-butyl-2,6-diethylaniline (content 99.7%, boiling point: 141°C/16 mbar) were obtained as a colorless, oily liquid. This corresponds to a yield of 92% in relation to the 2,6-diethylaniline used.

^-NMR: (CDCI3, 300 MHz) S i ppm, 1,26 (t, 6H, J=7,5Hz), 1,29 (s, 9H), 2,53 (g, 4H, J=7,5Hz), 3,51 (s, 2H), 6,99 (s, 2H). Eksempel 11 ^-NMR: (CDCl 3 , 300 MHz) S in ppm, 1.26 (t, 6H, J=7.5Hz), 1.29 (s, 9H), 2.53 (g, 4H, J=7, 5Hz), 3.51 (s, 2H), 6.99 (s, 2H). Example 11

4- t- butyl- 2, 6- diisopropylanilin 4-t-butyl-2,6-diisopropylaniline

Som i eksempel 3 ble 17,7 g 2,6-diisopropylanilin (0,95 mol, innhold 95,2%), 2,0 g toluen, 2,05 g bortrifluorid-dietyl-eterat (0,013 mol) og 16,4 g isobuten (0,29 mol) oppvarmet i 15 timer ved 200°C. As in Example 3, 17.7 g of 2,6-diisopropylaniline (0.95 mol, content 95.2%), 2.0 g of toluene, 2.05 g of boron trifluoride diethyl etherate (0.013 mol) and 16.4 g of isobutene (0.29 mol) heated for 15 hours at 200°C.

Inndampningsresten man fikk ved slutten av opparbeidingen The evaporation residue obtained at the end of the work-up

av den organiske fase (21,3 g) inneholdt 75,6% 4-t-butyl-2,6-diisopropylanilin. of the organic phase (21.3 g) contained 75.6% 4-t-butyl-2,6-diisopropylaniline.

Eksempel 12 Example 12

2. 6- diisopropvl- 4-( 1- fenvlisopropvl)- anilin 2. 6-diisopropyl-4-(1-phenylisopropyl)-aniline

177,3 g 2,6-diisopropylanilin (1 mol) ble blandet med 13,38 177.3 g of 2,6-diisopropylaniline (1 mol) was mixed with 13.38

g A1C13 (0,1 mol) og oppvarmet til 155°C. I løpet av seks timer ble 195,8 g a-metylstyren (2,5 mol) dryppet til. Man lot avkjøle til romtemperatur og blandet under røring etter hverandre med 300 ml heksan og 300 ml natronlut (20%). Tofaseblandingen ble skilt, den organiske fase fortynnet med 900 ml heksan og mettet med HCl-gass. Det utfelte presipitat ble samlet på et glassfilter, vasket med heksan, utpresset godt og blandet med en tofaseblanding av 400 ml toluen og 450 ml natronlut (10%). Den øverste, organiske fase ble skilt fra og inndampet til tørrhet på rotasjonsfordamper. Man fikk 288,1 g inndampningsrest med 98,0% 2,6-diisopropyl-4-(1-fenylisopropyl)-anilin tilsvarende et utbytte på 96% i forhold til det anvendte 2,6-diisopropylanilin. 4I-NMR: (CDCI3, 300 MHz) S i ppm, 6,90 (s, 2H), 7,1-7,3 (m, 5H) , 3,70 (s, 2H), 1,12 (d, 12H, J=6,9Hz), 2,91 (sept, 2H, J=6,9Hz), 1,66 (s, 6H). g of AlCl3 (0.1 mol) and heated to 155°C. In the course of six hours, 195.8 g of α-methylstyrene (2.5 mol) were added dropwise. It was allowed to cool to room temperature and mixed with stirring successively with 300 ml of hexane and 300 ml of caustic soda (20%). The biphasic mixture was separated, the organic phase diluted with 900 ml of hexane and saturated with HCl gas. The precipitate was collected on a glass filter, washed with hexane, squeezed well and mixed with a two-phase mixture of 400 ml of toluene and 450 ml of caustic soda (10%). The upper organic phase was separated and evaporated to dryness on a rotary evaporator. 288.1 g of evaporation residue with 98.0% 2,6-diisopropyl-4-(1-phenylisopropyl)-aniline were obtained, corresponding to a yield of 96% in relation to the 2,6-diisopropylaniline used. 4I-NMR: (CDCl 3 , 300 MHz) S in ppm, 6.90 (s, 2H), 7.1-7.3 (m, 5H), 3.70 (s, 2H), 1.12 (d , 12H, J=6.9Hz), 2.91 (Sept, 2H, J=6.9Hz), 1.66 (s, 6H).

Claims (4)

1. Fremgangsmåte ved fremstilling av 4-substituerte 2,6-dialkylaniliner med den generelle formel1. Procedure for the preparation of 4-substituted 2,6-dialkylanilines with the general formula hvori Ri og R2 er like eller forskjellige og betyr rettkjedede eller forgrenede C1-C4-lavere alkylgrupper, og R3 betyr en fenylisopropylgruppe, en l,l,3,3-tetrametylbutylgruppe eller en tert-butylgruppe, karakterisert ved at et 2,6-dialkylanilin med den generelle formel hvori Rx og R2 har de ovenfor nevnte betydninger for innføring av fenylisopropylgruppen alkyleres med a-metylstyren, for innføring av 1,1,3,3-tetrametylbutylgruppen alkyleres med diisobutylen, og for innføring av tert-butylgruppen alkyleres med isobuten, - i begge tilfeller i nærvær av en Friedel-Craft alkyleringskatalysator i en mengde på 0,01 til 0,3 mol i forhold til 1 mol 2,6-dialkylanilin ved en temperatur mellom 100°C og 300°C og et trykk mellom normaltrykk og 60 bar. wherein R1 and R2 are the same or different and mean straight-chain or branched C1-C4 lower alkyl groups, and R3 means a phenylisopropyl group, a 1,1,3,3-tetramethylbutyl group or a tert-butyl group, characterized in that a 2,6-dialkylaniline of the general formula in which Rx and R2 have the meanings mentioned above for the introduction of the phenylisopropyl group is alkylated with α-methylstyrene, for the introduction of the 1,1,3,3-tetramethylbutyl group is alkylated with diisobutylene, and for the introduction of the tert-butyl group is alkylated with isobutene, - in both cases in the presence of a Friedel-Craft alkylation catalyst in an amount of 0.01 to 0.3 mol relative to 1 mol of 2,6-dialkylaniline at a temperature between 100°C and 300°C and a pressure between normal pressure and 60 bar. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at aluminiumklorid, et bortrifluorid-eterkompleks eller montmorillonitt anvendes som katalysator. 2. Method according to claim 1, characterized in that aluminum chloride, a boron trifluoride-ether complex or montmorillonite is used as catalyst. 3. Fremgangsmåte ifølge krav 1 og 2, karakterisert ved at alkyleringen utføres med 0,05 til 0,15 mol katalysator pr. mol 2,6-dialkylanilin. 3. Method according to claims 1 and 2, characterized in that the alkylation is carried out with 0.05 to 0.15 mol of catalyst per moles of 2,6-dialkylaniline. 4. Fremgangsmåte ifølge krav 1-3 , karakterisert ved at alkyleringen utføres ved en temperatur mellom 150°C og 250"C og ved et trykk mellom atmosfæretrykk og 40 bar.4. Method according to claims 1-3, characterized in that the alkylation is carried out at a temperature between 150°C and 250°C and at a pressure between atmospheric pressure and 40 bar.
NO915028A 1990-12-20 1991-12-19 Process for the preparation of 4-substituted 2,6-dialkylanilines NO177564C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH406490 1990-12-20
CH137191 1991-05-07

Publications (4)

Publication Number Publication Date
NO915028D0 NO915028D0 (en) 1991-12-19
NO915028L NO915028L (en) 1992-06-22
NO177564B true NO177564B (en) 1995-07-03
NO177564C NO177564C (en) 1995-10-11

Family

ID=25687474

Family Applications (1)

Application Number Title Priority Date Filing Date
NO915028A NO177564C (en) 1990-12-20 1991-12-19 Process for the preparation of 4-substituted 2,6-dialkylanilines

Country Status (13)

Country Link
EP (1) EP0492473A1 (en)
JP (1) JPH04360856A (en)
KR (1) KR920012005A (en)
CA (1) CA2058140A1 (en)
CS (1) CS389491A3 (en)
HU (1) HU210083B (en)
IE (1) IE914348A1 (en)
IL (1) IL100388A0 (en)
MX (1) MX9102649A (en)
NO (1) NO177564C (en)
PL (1) PL167126B1 (en)
PT (1) PT99870A (en)
RU (1) RU2051898C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234708A (en) * 1992-10-21 1994-08-23 Lonza Ag Production of 4,4'-(phenylenediisopropyl)bis(2,6- dialkylaniline)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275690A (en) * 1955-07-14 1966-09-27 Bayer Ag Process for the production of aromatic amines which are alkylated on the nucleus
GB846226A (en) * 1958-12-18 1960-08-31 Bayer Ag Process for producing tertiary butylphenylamines
US3714258A (en) * 1970-08-28 1973-01-30 Reichhold Chemicals Inc Dialkylated diarylamines and a method for producing same
US4436936A (en) * 1981-06-19 1984-03-13 Ciba-Geigy Corporation Alkylation and aralkylation of aromatic amines

Also Published As

Publication number Publication date
MX9102649A (en) 1992-07-01
NO177564C (en) 1995-10-11
NO915028D0 (en) 1991-12-19
PT99870A (en) 1992-12-31
EP0492473A1 (en) 1992-07-01
RU2051898C1 (en) 1996-01-10
JPH04360856A (en) 1992-12-14
IE914348A1 (en) 1992-07-01
PL292870A1 (en) 1992-10-05
NO915028L (en) 1992-06-22
CS389491A3 (en) 1992-07-15
KR920012005A (en) 1992-07-25
CA2058140A1 (en) 1992-06-21
HUT61267A (en) 1992-12-28
HU210083B (en) 1995-02-28
PL167126B1 (en) 1995-07-31
HU914079D0 (en) 1992-03-30
IL100388A0 (en) 1992-09-06

Similar Documents

Publication Publication Date Title
US3275690A (en) Process for the production of aromatic amines which are alkylated on the nucleus
US8030527B2 (en) Process for preparing substituted biphenyls
EP1856024B1 (en) Method for producing substituted biphenyls
US8921598B2 (en) Method for producing urethanes composed of mono and di-functional aromatic amines
US2762845A (en) Alkylation of aromatic amines
JPH0455418B2 (en)
US4351958A (en) Process for producing orthoalkylated aromatic amine
NO177564B (en) Process for the preparation of 4-substituted 2,6-dialkylanilines
US3957875A (en) Synthesis of bis[2-(N,N-dimethylamino)ethyl] ether
EP0362507B1 (en) Process for production of 2,6-dimethylnaphthalene
EP0320783B1 (en) Process for preparing alkylthioethylamine salts
EP0079093B1 (en) Process for the selective alkylation of an aniline
JPH06211753A (en) Preparation of dialkyl amine
US4480127A (en) Process for the production of variable amounts of DPA and aniline using only phenol and ammonia as the feedstock
EP0410684B1 (en) Method of condensing N-phenylcarbamates
US5536877A (en) Preparation of arylbenzylamines
US3941844A (en) Continuous manufacture of N-alkylated arylamines
US5840983A (en) Process for preparing 2-trifluoromethoxy-aniline
US5124483A (en) Ortho-alkylation of aromatic amines
US4340758A (en) Nitration process for the preparation of 2,6-dialkylaniline
US6388160B1 (en) Method for producing of 2,3-dimethylbutene-1 and 2,3-dimethylbutene-2
EP0073277B1 (en) Process for producing orthoalkylated aromatic amines
HU224039B1 (en) Method of preparing 2-trifluoromethoxybenzene sulphonamide
CA2027191A1 (en) Ortho-alkylation of aromatic amines
EP0066325B1 (en) Process for the preparation of aniline derivatives