NO173337B - WHITE OR BRIGHT COLORED CROSS-HALOGENED POLYMER MATERIAL AND PREPARATION OF THIS - Google Patents

WHITE OR BRIGHT COLORED CROSS-HALOGENED POLYMER MATERIAL AND PREPARATION OF THIS Download PDF

Info

Publication number
NO173337B
NO173337B NO91913441A NO913441A NO173337B NO 173337 B NO173337 B NO 173337B NO 91913441 A NO91913441 A NO 91913441A NO 913441 A NO913441 A NO 913441A NO 173337 B NO173337 B NO 173337B
Authority
NO
Norway
Prior art keywords
polymer material
halogen
polymer
cross
white
Prior art date
Application number
NO91913441A
Other languages
Norwegian (no)
Other versions
NO173337C (en
NO913441D0 (en
NO913441L (en
Inventor
Roger Dahl
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to NO913441A priority Critical patent/NO173337C/en
Publication of NO913441D0 publication Critical patent/NO913441D0/en
Priority to BR9206453A priority patent/BR9206453A/en
Priority to EP92918039A priority patent/EP0605446A1/en
Priority to KR1019940700698A priority patent/KR940702205A/en
Priority to PCT/NO1992/000131 priority patent/WO1993005112A1/en
Priority to CA002116861A priority patent/CA2116861A1/en
Priority to HU9400643A priority patent/HUT68670A/en
Priority to AU24749/92A priority patent/AU666494B2/en
Priority to JP5505119A priority patent/JP2631036B2/en
Priority to CN92110104A priority patent/CN1036401C/en
Priority to PT100835A priority patent/PT100835A/en
Priority to TW081107013A priority patent/TW254959B/zh
Publication of NO913441L publication Critical patent/NO913441L/en
Publication of NO173337B publication Critical patent/NO173337B/en
Publication of NO173337C publication Critical patent/NO173337C/en
Priority to FI940996A priority patent/FI940996A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

Hvit eller lyst farget tverrbundet polymer og fremgangsmåte for fremstilling av den samme. Polymeren består av 30-98 vekt% halogenholdig polymer, 0-60. vekt% mykner, 0.05-10 vekt% hydrolyserbar merkaptosilan, 0.1-10 vekt% blystabilisator, 0-4. vekt% smøremiddel og 0.1-10 vekt% epoxyharpiks. Kryssbindingen utfores i nærvær av fuktighet etter bearbeiding av polymeren.White or light colored crosslinked polymer and process for the preparation of the same. The polymer consists of 30-98% by weight of halogen-containing polymer, 0-60. weight% plasticizer, 0.05-10% by weight hydrolyzable mercaptosilane, 0.1-10% by weight lead stabilizer, 0-4. wt% lubricant and 0.1-10 wt% epoxy resin. The crosslinking is performed in the presence of moisture after processing of the polymer.

Description

Foreliggende oppfinnelse vedrører hvite eller lyst fargede termostabile tverrbundne halogenholdige polymermaterialer og en fremgangsmåte for fremstilling av disse. The present invention relates to white or light-coloured thermostable cross-linked halogen-containing polymer materials and a method for their production.

Det finnes flere måter for å tverrbinde halogenholdige polymerer, blant annet PVC. Av interessante metoder som har fremkommet de senere år kan nevnes metoder hvor organosilaner brukes som tverrbindere. I DE off.skrift 3719151 beskrives bruken av organosilaner,særlig merkaptosilaner (f.eks merkap-topropyl trimetoxysilan (I)) som tverrbindere for halogenholdige polymerer, spesielt homopolymeren PVC. There are several ways to crosslink halogen-containing polymers, including PVC. Of the interesting methods that have emerged in recent years, methods where organosilanes are used as crosslinkers can be mentioned. DE official publication 3719151 describes the use of organosilanes, especially mercaptosilanes (e.g. mercaptopropyl trimethoxysilane (I)) as crosslinkers for halogen-containing polymers, especially the homopolymer PVC.

Tverrbindingen foregår på følgende måte: The cross-linking takes place in the following way:

Først podes trimetoxysilan (I) til polymerkjeden, og dette bør helst skje ved en normal bearbeidingsprosess som f.eks kom-poundering, ekstrudering eller valsing. First, trimethoxysilane (I) is grafted onto the polymer chain, and this should preferably be done by a normal processing process such as compounding, extrusion or rolling.

Tverrbindingsreaksjonen utføres siden i to trinn: The cross-linking reaction is then carried out in two steps:

Ved varmtvanns- eller dampbehandling hydrolyseres alkoxysilaner og danner silanoler. Når silanoler er dannet reagerer de raskt med hverandre og danner en tverrbinding gjennom kondensasjon av H20: During hot water or steam treatment, alkoxysilanes are hydrolysed and form silanols. When silanols are formed, they quickly react with each other and form a cross-link through condensation of H20:

I norsk patentskrift nr. 166189 brukes halogenholdige polymerer som består av kopolymerer av halogehholdig monomer og glycidyl-holdig akrylat. De foretrukne er kopolymerer mellom vinyl-kloridmonomer (VCM) og glycidylmetakrylat (GMA). Det norske patentskrift skiller seg først og fremst fra DE 3719151 ved at epoxygruppen som blir innført via glycidylinneholdende mono-merer letter podingen av organosilaner til polymerkjeden. Den dominerende podingsreaksjonen antas å foregå på følgende måte hvor en kopolymer av VCM og 0.05-10 % av glycidylmetakrylat anvendes sammen med (I): In Norwegian patent document no. 166189, halogen-containing polymers are used which consist of copolymers of halogen-containing monomer and glycidyl-containing acrylate. The preferred ones are copolymers between vinyl chloride monomer (VCM) and glycidyl methacrylate (GMA). The Norwegian patent differs primarily from DE 3719151 in that the epoxy group which is introduced via glycidyline-containing monomers facilitates the grafting of organosilanes to the polymer chain. The dominant grafting reaction is assumed to take place in the following way, where a copolymer of VCM and 0.05-10% of glycidyl methacrylate is used together with (I):

I begge disse patentpublikasjoner skjer tverrbindingen etter formingen ved at materialet utsettes for varmtvann eller damp. I NO 166189 angis ; det at anvendelsen av glycidylholdige kopolymerer er betydelig mer effektiv enn anvendelsen av homopolymeren PVC, ved at podingen av organosilan til polymeren bli mer effektiv. In both of these patent publications, the cross-linking takes place after shaping by exposing the material to hot water or steam. In NO 166189 it is stated; the fact that the use of glycidyl-containing copolymers is significantly more effective than the use of the homopolymer PVC, in that the grafting of organosilane to the polymer becomes more effective.

I begge de fremtrukne patentskriftene poengteres viktigheten av å anvende blyholdige stabilisatorer for at tverrbindingen skal bli effektiv. En uønsket effekt av kombinasjonen blystabilisator og merkaptosilan er at materialet blir gulfarget. Dette skjer umiddelbart allerede ved romtemperatur når merkaptosilan og blystabilisatoren kommer i kontakt med hverandre. Det er derfor sannsynlig at den gule fargen kommer fra dannelsen av en forbindelse eller et kompleks mellom blystabilisatoren og merkaptosilan. Det kan heller ikke utelukkes at dannelsen av denne forbindelsen/kompleks er en forutsetning for at podingen skal skje på en effektiv måte. Den gule fargen viser tendens til å bli sterkere med økende tilsetning av merkaptosilan. In both of the featured patent documents, the importance of using lead-containing stabilizers is emphasized in order for the cross-linking to be effective. An undesirable effect of the combination of lead stabilizer and mercaptosilane is that the material becomes yellow. This happens immediately already at room temperature when the mercaptosilane and the lead stabilizer come into contact with each other. It is therefore likely that the yellow color comes from the formation of a compound or complex between the lead stabilizer and mercaptosilane. Nor can it be ruled out that the formation of this compound/complex is a prerequisite for grafting to take place in an efficient manner. The yellow color shows a tendency to become stronger with increasing addition of mercaptosilane.

Fargen begrenser anvendelsen av denne tverrbindingsteknikken ettersom det selv etter en stor tilsetning av hvitt pigment, titanoxid, fortsatt finnes en gultone. Dette gjør at denne tverrbindingsmetoden ikke kan anvendes der det stilles store krav til hvithet. Siden fargen heller ikke er stabil, men viser tendens til å forandres ved påvirkning av f.eks. sollys, blir det vanskelig å tilsette andre farger, spesielt lyse farger. The color limits the application of this cross-linking technique as even after a large addition of white pigment, titanium oxide, there is still a yellow tint. This means that this cross-linking method cannot be used where great demands are made on whiteness. Since the color is not stable either, but shows a tendency to change under the influence of e.g. sunlight, it becomes difficult to add other colors, especially bright colors.

Formålet med oppfinnelsen er således å unngå ulempene med de tidligere beskrevne metoder og å kunne oppnå en kryssbundet halogenholdig polymer med hvit eller lys farge. I visse systemer særlig med homopolymer, er det et formål å kunne forsterke nettverket. The purpose of the invention is thus to avoid the disadvantages of the previously described methods and to be able to obtain a cross-linked halogen-containing polymer with a white or light color. In certain systems, particularly with homopolymer, the aim is to be able to reinforce the network.

Disse og andre formål med oppfinnelsen oppnås med den fremgangsmåte som er beskrevet nedenfor, og oppfinnelsen er karakterisert og definert ved de medfølgende patentkrav. These and other purposes of the invention are achieved with the method described below, and the invention is characterized and defined by the accompanying patent claims.

Foreliggende oppfinnelse vedrører en fremgangsmåte til fremstilling av hvite eller lyst fargede kryssbundne halogenholdige polymerer. Det ble overraskende funnet at disse polymere kan fremstilles ved anvendelse av merkaptosilan, blystabilisator og en lavmolekylær epoxyforbindelse. Den lavmolekylære epoxyforbindelsen reagerer med merkaptosilanen og/eller de biprodukter som sammen med blystabilisatoren gir opphav til farge, og avhjelper derved problemet. The present invention relates to a method for the production of white or light-coloured cross-linked halogen-containing polymers. It was surprisingly found that these polymers can be prepared using mercaptosilane, lead stabilizer and a low molecular weight epoxy compound. The low molecular weight epoxy compound reacts with the mercaptosilane and/or the by-products which together with the lead stabilizer give rise to colour, thereby remedying the problem.

Polymermaterialet består av 30-98 vekt% halogenholdig polymer, 0-60 vekt% mykner, 0.05-10 vekt% hydrolyserbar merkaptosilan, 0.1-10 vekt% blystabilisator, 0-4 vekt% smøremiddel og 0.1-10 vekt% epoxyharpiks. Den halogenholdige polymeren kan være en homopolymer som f.eks. PVC, eller en kopolymer basert på halogenholdig polymer og inaktive eller reaktive komonomerer med hensyn til tverrbindingen. En foretrukket forbindelse er en kopolymer mellom halogenholdig monomer og en glycidylinneholdende akrylat. Innholdet av glycidylinneholdende akrylat er 0,05%-10 vekt%. Under 0,05 vekt% blir effekten for liten og over 10 % blir polymerisasjonen for langsom. The polymer material consists of 30-98 wt% halogenated polymer, 0-60 wt% plasticizer, 0.05-10 wt% hydrolyzable mercaptosilane, 0.1-10 wt% lead stabilizer, 0-4 wt% lubricant and 0.1-10 wt% epoxy resin. The halogen-containing polymer can be a homopolymer such as e.g. PVC, or a copolymer based on halogen-containing polymer and inactive or reactive comonomers with respect to the cross-linking. A preferred compound is a copolymer between halogen-containing monomer and a glycidyl-containing acrylate. The content of glycidyl-containing acrylate is 0.05%-10% by weight. Below 0.05% by weight the effect is too small and above 10% the polymerization becomes too slow.

Merkaptosilanet er av den generelle formelen: The mercaptosilane is of the general formula:

hvor: where:

R1 = en -CH2- -C2H4- opp til -C8H16_ eller en annen ikke- funksjonell gruppe. R1 = a -CH2- -C2H4- up to -C8H16_ or another non- functional group.

R11 = en fritt valgt, ikke-hydrolyserbar gruppe R 11 = a freely selected, non-hydrolyzable group

Y = en eller flere hydrolyserbare grupper f.eks. -OCH3, - Y = one or more hydrolyzable groups, e.g. -OCH3, -

OC2H5, -OC3H7, - OC4H9OC2H5, -OC3H7, -OC4H9

n = 0,1 eller 2 n = 0.1 or 2

Forbindelsen R" kan være en fritt valgt ikke hydrolyserbar gruppe . Et eksempel på anvendbare grupper kan være -CH2- opp til -CsHi7_, men valg av grupper har prinsippielt ingen betyd- The compound R" can be a freely chosen non-hydrolyzable group. An example of usable groups can be -CH2- up to -CsHi7_, but the choice of groups has no meaning in principle-

ning for resultatet. ning for the result.

Blystabilisatoren er en fritt valgt kommersiell stabilisator basert på f.eks. tribasisk blysulfat, tetrabasisk blysulfat, dibasisk blyfosfitt, dibasisk blykarbonat, dibasisk blyftalat eller dibasisk blystearat. For å oppnå en effekt må det tilsettes mer enn 0,1 %. Den øvre grense fastlegges etter hva som er praktisk, det er intet nivå som ikke kan overskrides. Ulempene ved høye tilsatser blir en fordyring og høyere densitet. En praktisk grense kan settes til 10 vekt %. The lead stabilizer is a freely chosen commercial stabilizer based on e.g. tribasic lead sulfate, tetrabasic lead sulfate, dibasic lead phosphite, dibasic lead carbonate, dibasic lead phthalate or dibasic lead stearate. To achieve an effect, more than 0.1% must be added. The upper limit is determined according to what is practical, there is no level that cannot be exceeded. The disadvantages of high additions are an increase in price and a higher density. A practical limit can be set at 10% by weight.

Det benyttes vanlig kommersielle myknere i mengder opptil 60 vekt %. Over denne grensen blir blandingen ikke håndterbar. Kommersielle smøremidler benyttes i mengder inntil 4 vekt %. Høyere tilsatser gir en blanding som er oversmurt og derved vanskelig å håndtere. Commercial plasticizers are usually used in quantities of up to 60% by weight. Above this limit, the mixture becomes unmanageable. Commercial lubricants are used in amounts up to 4% by weight. Higher additions give a mixture that is over-lubricated and therefore difficult to handle.

Den lavmblekylære epoxyforbindelsen kan bestå av f.eks. mono-eller flerfunksjonene glycidyletre, glycidylestre, glycidyl aminer, eller av lineær eller cykloalifatisk type. Denne tilsettes med 0,1-10 vekt %. En tilsats under 0,1 % gir ingen effekt og en tilsats over 10 % gir et for stort overskudd av epoksyharpiks i forhold til merkaptosilanen. I tillegg kan blandingen inneholde små mengde av vanlige tilsatsmidler som brukes for denne type produkter. The low molecular weight epoxy compound can consist of e.g. mono- or polyfunctional glycidyl ethers, glycidyl esters, glycidyl amines, or of the linear or cycloaliphatic type. This is added at 0.1-10% by weight. An addition of less than 0.1% has no effect and an addition of more than 10% gives an excess of epoxy resin in relation to the mercaptosilane. In addition, the mixture may contain small amounts of common additives used for this type of product.

Oppfinnelsen vil bli nærmere belyst i de følgende eksempler. I eksemplene er mengder gitt i phr ( phr = deler pr. 100 deler polymer). The invention will be explained in more detail in the following examples. In the examples, amounts are given in phr (phr = parts per 100 parts polymer).

EKSEMPEL 1: EXAMPLE 1:

Tre ulike formuleringer ble fremstilt ifølge tabell 1. Three different formulations were prepared according to table 1.

<1><=> kommersiell blystabilisator og smøremiddelkombinasjon <1><=> commercial lead stabilizer and lubricant combination

2 = ytre smøremiddel 2 = external lubricant

<3> = kommersiell epoxyharpiks av diglycidyleter-bisphenol A <3> = commercial diglycidyl ether bisphenol A epoxy resin

type, sk, DGEBA-harpiks. type, sk, DGEBA resin.

DOP = dioktylftalat DOP = dioctyl phthalate

Formuleringene ble blandet/ varmblandet opp til 110° C. De ble så valset ved 170° C i 5 min. Tverrbindingen ble deretter utført i autoklav ved 110° C i 2 timer. The formulations were mixed/hot mixed up to 110° C. They were then rolled at 170° C for 5 min. The cross-linking was then carried out in an autoclave at 110° C. for 2 hours.

Følgende analyser ble gjort: The following analyzes were done:

Gelhalt: Måles som uløselig andel polymer i tetrahydro- furan (THF) ved romtemperatur. Gel content: Measured as the insoluble proportion of polymer in tetrahydro- furan (THF) at room temperature.

Hot- set: Måles som den tøyning som en belastning på 0.1 Hot set: Measured as the strain as a load of 0.1

MPa lager på en prøvestav ved 200° C etter 15 min., samt som den gjenstående tøyning 5 min. etter at belastningen er fjernet fra prøven. MPa stock on a test rod at 200° C after 15 min., as well as the remaining strain 5 min. after the load is removed from the specimen.

Farge i Måles visuelt. Color i Measured visually.

Resultatet av analysene fremgår av tabell 2: The results of the analyzes appear in table 2:

Resultatene i dette eksempelet viser at ved tilsetning av 2 phr DGEBA-harpiks til en formulering med 3 % trimetoxysilan (I) så kan all gulfarge elimineres. I eksempelet har ikke tverrbinding oppstått for noen formulering. En sannsynlig årsak til dette er at bearbeidningsbetingelsene har vært for milde til at podingen av merkaptosilan til PVC-kjeden skal fungere. The results in this example show that by adding 2 phr of DGEBA resin to a formulation with 3% trimethoxysilane (I) all yellow color can be eliminated. In the example, cross-linking has not occurred for any formulation. A likely reason for this is that the processing conditions have been too mild for the grafting of mercaptosilane to the PVC chain to work.

EKSEMPEL 2: EXAMPLE 2:

Tre ulike formuleringer ble fremstilt ifølge tabell 3. Three different formulations were prepared according to table 3.

Formuleringene ble blandet/varmblandet opp til 110° C og valset ved 190° C i 5 min. Samme analyser som eksempel 1 ble utført med følgende resultat som vises i tabell 4: The formulations were mixed/hot mixed up to 110° C and rolled at 190° C for 5 min. The same analyzes as Example 1 were performed with the following results shown in Table 4:

Den høyere bearbeidingstemperaturen har her sannsynligvis bidratt til at vi har fått poding til polymerkjedene og at vi dermed har fått en viss kryssbinding. En mindre tilsetning av DGEBA-harpiks ser ut til å være gunstig for kryssbindingen. Dette kan forklares med at f.eks. epoxyharpiks som har reagert med to merkaptosilaner kan danne en bro: The higher processing temperature here has probably contributed to the fact that we have obtained grafting to the polymer chains and that we have thus obtained a certain amount of cross-linking. A minor addition of DGEBA resin appears to be beneficial to the cross-linking. This can be explained by the fact that e.g. epoxy resin that has reacted with two mercaptosilanes can form a bridge:

(CH2)3-Si-(OCH3)3 (IV) (CH2)3-Si-(OCH3)3 (IV)

Da det med tanke på det lave gelinnholdet må være mellomrom mellom podede merkaptosilaner kan (IV) etter hyrolyse og kodensasjonsreaksjoner med to merkaptopropyltrimetoxysilan (I) podet til polymerkjeden utgjøre en bro mellom disse. Since in view of the low gel content there must be spaces between grafted mercaptosilanes, (IV) can form a bridge between these after hydrolysis and co-condensation reactions with two mercaptopropyltrimethoxysilanes (I) grafted to the polymer chain.

Ved høyere innhold av epoxyharpiks minsker trolig antallet (I) podet til polymerkj edene på grunn av at for det meste har reagert med epoxyharpiksen istedet. With a higher content of epoxy resin, the number of (I) grafted to the polymer chains probably decreases because most have reacted with the epoxy resin instead.

EKSEMPEL 3: EXAMPLE 3:

Tre ulike formuleringer ble fremstilt ifølge tabell 5. Three different formulations were prepared according to table 5.

Formuleringene ble blandet/varmblandet opp til 110° C. De ble så valset ved 170° C i 2 timer. Kryssbindingen ble senere utført i autoklav ved 110°C i to timer. Samme analyse som i eksempel 1 ble utført. Resultatet fremgår av tabell 6: The formulations were mixed/hot mixed up to 110° C. They were then rolled at 170° C for 2 hours. The crosslinking was later carried out in an autoclave at 110°C for two hours. The same analysis as in example 1 was carried out. The result appears in table 6:

Eksempel 3 viser at det er mulig å fremstille hvitt materiale som er sterkt kryssbundet gjennom tilsetning av lavmolekylær epoxyforbindelse til den tidligere kjente reaksjonen mellom merkaptosilan, epoxyinneholdende halogenholdig komonomer og blystabilisator. At gelhalter synker ved tilsetning av epoxyharpiks og at tøyningen i varme også blir større er med stor sannsynlighet en funksjon av at den lavmolekylære epoxyforbindelsen "stjal" merkaptosilan fra epoxygruppene forankret i kjeden. Det kan ikke utelukkes at hydrolyserte og kondenserte forbindelser at typen (IV) har en positiv innvirkning på hot-seten, men at deri heller ikke er mindre enn om (I) er podet til Example 3 shows that it is possible to produce white material that is strongly cross-linked through the addition of a low molecular weight epoxy compound to the previously known reaction between mercaptosilane, epoxy-containing halogen-containing comonomer and lead stabilizer. The fact that gel contents decrease with the addition of epoxy resin and that the elongation in heat also increases is very likely a function of the low molecular weight epoxy compound "stole" mercaptosilane from the epoxy groups anchored in the chain. It cannot be ruled out that hydrolyzed and condensed compounds of the type (IV) have a positive effect on the hot seat, but that there is also no less than if (I) is grafted to

polymerkj edene. the polymer chains.

EKSEMPEL 4 EXAMPLE 4

Tre ulike formuleringer ble fremstilt ifølge tabell 7. Three different formulations were prepared according to table 7.

Formuleringene ble blandet/varmblandet opp til 110° C. De ble så valset ved 170° C i 5 min. Kryssbindingen ble siden utført i autoklav ved 110° C i 2 timer. Samme analyser som i eksempel 1 ble utført. Resultatet fremgår av tabell 8: The formulations were mixed/hot mixed up to 110° C. They were then rolled at 170° C for 5 min. The cross-linking was then carried out in an autoclave at 110° C. for 2 hours. The same analyzes as in example 1 were carried out. The result appears in table 8:

Eksempel 4 viser at gjennom økning av epoxymengden i polymerkj edene kan man oppnå et hvitt materiale med lavere innhold av lavmolekylært epoxyharpiks. Eksempelet viser samme tendens som eksempel 3, ved at tilsetning av epoxyharpiks senker gelhalten og øker tøyningen ved hot-set. Man kan merke seg at formulering D2 og Cl i eksempel 3 har samme gelhalt, men D2 er betydelig bedre i hot-set. Dette kan sannsynligvis forklares med at en større andel av (I) er forankret i polymerkjedene. Example 4 shows that by increasing the amount of epoxy in the polymer chains, a white material with a lower content of low molecular weight epoxy resin can be obtained. The example shows the same tendency as example 3, in that the addition of epoxy resin lowers the gel content and increases the strain during hot-set. It can be noted that formulation D2 and Cl in example 3 have the same gel content, but D2 is significantly better in hot-set. This can probably be explained by the fact that a larger proportion of (I) is anchored in the polymer chains.

EKSEMPEL 5 EXAMPLE 5

Tre ulike formuleringer ble fremstilt ifølge tabell 9. Three different formulations were prepared according to table 9.

Formuleringene ble blandet/varmblandet opp til 110° C. De ble siden valset ved 170° C i 2 timer. Samme analyser som i eksempel 1 ble utført. Resultatet fremgår av tabell 10: Cykloalifatiske epoxyharpikser anses for å være mindre reaktive mot merkaptogrupper enn f.eks. dyglycideter-baserte epoxyharpikser som f.eks. de av DGEBA-typen. Den høyere gelhalten og den lavere tøyningen sammenlignet med da DGEBA-harpiks anvendes kan bero på den cykloalif atiske epoxyharpiksen ikke konkurrerte like godt med de polymerbaserte epoxygruppene om (I). The formulations were mixed/hot mixed up to 110° C. They were then rolled at 170° C for 2 hours. The same analyzes as in example 1 were carried out. The result is shown in table 10: Cycloaliphatic epoxy resins are considered to be less reactive towards mercapto groups than e.g. dyglycidether-based epoxy resins such as those of the DGEBA type. The higher gel content and lower strain compared to when DGEBA resin is used may be due to the cycloaliphatic epoxy resin not competing as well with the polymer-based epoxy groups for (I).

I eksempelene 3-5 har tilsetning av lavmolekylært epoxyharpiks gitt et lysere eller hvitt materiale på bekostning av en noe dårligere kryssbinding. Epoxyharpiksen har i alle disse forsøkene vært difunksjonell og merkaptosilan har vært tetra-funksjonell. Dette har åpenbart ikke vært tilstrekkelig for å gi et sammenlagt positivt bidrag til den mekaniske holdbarheten i nettverket, utifrå en bedømmelse av hot-set verdiene. In examples 3-5, the addition of low molecular weight epoxy resin has produced a lighter or whiter material at the expense of somewhat poorer cross-linking. In all these experiments, the epoxy resin has been difunctional and the mercaptosilane has been tetra-functional. This has obviously not been sufficient to make an overall positive contribution to the mechanical durability of the network, based on an assessment of the hot-set values.

EKSEMPEL 6: EXAMPLE 6:

Tre ulike formuleringer ble fremstilt ifølge tabell 11. Three different formulations were prepared according to table 11.

Formuleringene ble blandet/varmblandet opp til 100° C. De ble siden valset ved 170° C i 5 min. Kryssbindingen ble siden utført i autoklav ved 110° C i 2 timer. Samme analyser som i eksempel 1 ble utført. Resultatet fremgår av tabell 12: The formulations were mixed/hot mixed up to 100° C. They were then rolled at 170° C for 5 min. The cross-linking was then carried out in an autoclave at 110° C. for 2 hours. The same analyzes as in example 1 were carried out. The result appears in table 12:

Eksempel 6 viser at anvendelsen av en tetrafunsjonell harpiks gir et bidrag til nettverkets mekaniske holdbarhet i det minste ved små tilsetninger. At materialet ble lysgult beror antagelig på at Araldit 0163 i seg selv er intens gul. At gelhalten ble lavere enn i eksempel 3 kan forklares ved at epoxyinnholdet er høyere pr. vektenhet i den tetrafunksjonelle harpiksen enn for DGEBA-harpiks. Example 6 shows that the use of a tetrafunctional resin makes a contribution to the mechanical durability of the network at least with small additions. The fact that the material became light yellow is probably due to Araldite 0163 itself being intense yellow. That the gel content was lower than in example 3 can be explained by the fact that the epoxy content is higher per unit weight in the tetrafunctional resin than for DGEBA resin.

I samtlige eksempler hvor hvitt materiale har fremkommet har det skjedd først etter autoklavering. Før autoklaveringen har materialet hatt en lysgul fargetone. Materiale som ikke inneholder lavmolekylær epoxy viser derimot tendens til å gi sterkere gulfarge etter autoklavering. In all examples where white material has appeared, it has only happened after autoclaving. Before autoclaving, the material had a light yellow hue. Material that does not contain low molecular weight epoxy, on the other hand, shows a tendency to give a stronger yellow color after autoclaving.

Med foreliggende oppfinnelse har man kommet frem til en metode for å fremstille hvitt eller lyst farget tverrbundet materiale ved hjelp av halogenholdige polymerer, merkaptosilaner, blystabilisatorer og en lavmolekylær epoxyharpiks. I visse formuleringer, spesielt når tetrafunksjonellt epoxyharpiks anvendes kan et positivt bidrag til nettverkes mekaniske egenskaper opprettholdes. With the present invention, a method has been arrived at for producing white or light-coloured cross-linked material using halogen-containing polymers, mercaptosilanes, lead stabilizers and a low molecular weight epoxy resin. In certain formulations, especially when tetrafunctional epoxy resin is used, a positive contribution to the network's mechanical properties can be maintained.

Claims (6)

1. Hvitt eller lyst farget tverrbundet polymermateriale, som er dannet av 30-98 vekt% halogenholdig polymer, 0-60 vekt% mykner, 0.05-10 vekt% hydrolyserbart silan, 0.1-10 vekt% blystabilisator, 0-4 vekt% smøremiddel og 0.1-10 vekt% av en ytterligere bestanddel, karakterisert ved at den ytterligere bestanddel er en epoxyharpiks og at silanet er et merkaptosilan.1. White or light colored crosslinked polymer material, which is formed from 30-98 wt% halogenated polymer, 0-60 wt% plasticizer, 0.05-10 wt% hydrolyzable silane, 0.1-10 wt% lead stabilizer, 0-4 wt% lubricant and 0.1-10% by weight of a further component, characterized in that the further component is an epoxy resin and that the silane is a mercaptosilane. 2. Halogenholdig polymermateriale ifølge krav 1, karakterisert ved at epoksyharpiksen er en lavmolekylær mono- til tetra-funksjonell forbindelse av glycidyleter-, glyci-dylester-, glydicylamin- eller lineær- eller cykloalif atisk type.2. Halogen-containing polymer material according to claim 1, characterized in that the epoxy resin is a low molecular weight mono- to tetra-functional compound of the glycidyl ether, glycidyl ester, glycidylamine or linear or cycloaliphatic type. 3. Polymermateriale ifølge krav 1, karakterisert ved at den halogenholdige polymeren er PVC-homopolymer.3. Polymer material according to claim 1, characterized in that the halogen-containing polymer is PVC homopolymer. 4. Polymermateriale ifølge krav 1, karakterisert ved at den halogenholdige polymer er en kopolymer mellom halogenholdig monomer og et glycidylinneholdende akrylat.4. Polymer material according to claim 1, characterized in that the halogen-containing polymer is a copolymer between a halogen-containing monomer and a glycidyl-containing acrylate. 5. Polymermateriale ifølge krav 4, karakterisert ved at inneholdet av glycidylinneholdende akrylat i kopoly-meren er 0.05-10 vekt%.5. Polymer material according to claim 4, characterized in that the content of glycidyl-containing acrylate in the copolymer is 0.05-10% by weight. 6. Fremgangsmåte for fremstilling av hvitt eller lyst tverrbundet halogenholdig polymermateriale i henhold til kravene 1-5, hvor det anvendes en merkaptosilan av typen: hvor: R' = en -CH2~ -C2H4- opp til - C<q>H^^ eller annen ikke- funksjonell gruppe. R''= en fritt valgt (ikke-hydrolyserbar gruppe). Y = en eller flere hydrolyserbare grupper som f.eks. -OCH3, -OC2H5, - OC3H7, -OC4H9 n = 0,1 eller 2 som kryssbinder og hvor kryssbindingen utføres i nærvær av fuktighet etter bearbeiding av polymeren, karakterisert ved at blandingen tilsettes en lavmolekylær epoxyharpiks.6. Process for the production of white or light cross-linked halogen-containing polymer material according to claims 1-5, where a mercaptosilane of the type is used: where: R' = a -CH2~ -C2H4- up to - C<q>H^^ or other non-functional group. R''= a freely chosen (non-hydrolyzable group). Y = one or more hydrolyzable groups which e.g. -OCH3, -OC2H5, -OC3H7, -OC4H9 n = 0.1 or 2 as a cross-linker and where the cross-linking is carried out in the presence of moisture after processing the polymer, characterized in that a low molecular weight epoxy resin is added to the mixture.
NO913441A 1991-09-03 1991-09-03 White or light colored crosslinked halogenated polymeric material and its preparation NO173337C (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
NO913441A NO173337C (en) 1991-09-03 1991-09-03 White or light colored crosslinked halogenated polymeric material and its preparation
EP92918039A EP0605446A1 (en) 1991-09-03 1992-08-17 Procedure for synthesis of a white or light-coloured cross-linked halogen containing polymer
HU9400643A HUT68670A (en) 1991-09-03 1992-08-17 Process for producing of a white or light-coloured crosslinked polymer containing halogen, and the product
JP5505119A JP2631036B2 (en) 1991-09-03 1992-08-17 Composition for crosslinked polymer and method for producing the same
KR1019940700698A KR940702205A (en) 1991-09-03 1992-08-17 Procedure for synthesis of a white or light-coloured crlss-linked halogen conaining polymer
PCT/NO1992/000131 WO1993005112A1 (en) 1991-09-03 1992-08-17 Procedure for synthesis of a white or light-coloured cross-linked halogen containing polymer
CA002116861A CA2116861A1 (en) 1991-09-03 1992-08-17 Procedure for synthesis of a white or light-coloured cross-linked halogen containing polymer
BR9206453A BR9206453A (en) 1991-09-03 1992-08-17 White or light colored crosslinked polymer and process for its production
AU24749/92A AU666494B2 (en) 1991-09-03 1992-08-17 Procedure for synthesis of a white or light-coloured cross-linked halogen containing polymer
CN92110104A CN1036401C (en) 1991-09-03 1992-09-03 White or light-colored crosslinked polymer composition
PT100835A PT100835A (en) 1991-09-03 1992-09-03 METHOD FOR SYNTHESIS OF A RETICULATED, WHITE OR CLEAR POLYMER CONTAINING HALOGENEUM
TW081107013A TW254959B (en) 1991-09-03 1992-09-04
FI940996A FI940996A (en) 1991-09-03 1994-03-02 Method for synthesizing a white or light crosslinked halogen-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO913441A NO173337C (en) 1991-09-03 1991-09-03 White or light colored crosslinked halogenated polymeric material and its preparation

Publications (4)

Publication Number Publication Date
NO913441D0 NO913441D0 (en) 1991-09-03
NO913441L NO913441L (en) 1993-03-04
NO173337B true NO173337B (en) 1993-08-23
NO173337C NO173337C (en) 1993-12-01

Family

ID=19894424

Family Applications (1)

Application Number Title Priority Date Filing Date
NO913441A NO173337C (en) 1991-09-03 1991-09-03 White or light colored crosslinked halogenated polymeric material and its preparation

Country Status (13)

Country Link
EP (1) EP0605446A1 (en)
JP (1) JP2631036B2 (en)
KR (1) KR940702205A (en)
CN (1) CN1036401C (en)
AU (1) AU666494B2 (en)
BR (1) BR9206453A (en)
CA (1) CA2116861A1 (en)
FI (1) FI940996A (en)
HU (1) HUT68670A (en)
NO (1) NO173337C (en)
PT (1) PT100835A (en)
TW (1) TW254959B (en)
WO (1) WO1993005112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051353A1 (en) * 2004-10-21 2006-04-27 Wacker Polymer Systems Gmbh & Co. Kg Silane-modified polyvinyl alcohols

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1339497C (en) * 1988-06-10 1997-10-14 Owens-Illinois Closure Inc. Closure assembly and method of making same using epoxidized natural oil in a low fusing, curable plastisol
NO166189C (en) * 1989-02-08 1991-06-12 Norsk Hydro As CIRCULATED THERMOSTABLE POLYMER AND MANUFACTURING THEREOF.
CN1045218A (en) * 1989-03-02 1990-09-12 合肥四达应用化学研究所 Chinese toon juice beverage preparation and extraction technology for Chinese toon juice
BE1005674A3 (en) * 1991-02-20 1993-12-14 Solvay Compositions chloride copolymers vinylidene heat stabilized and use.

Also Published As

Publication number Publication date
AU666494B2 (en) 1996-02-15
JPH07500852A (en) 1995-01-26
CN1036401C (en) 1997-11-12
KR940702205A (en) 1994-07-28
NO173337C (en) 1993-12-01
AU2474992A (en) 1993-04-05
EP0605446A1 (en) 1994-07-13
HU9400643D0 (en) 1994-06-28
TW254959B (en) 1995-08-21
WO1993005112A1 (en) 1993-03-18
JP2631036B2 (en) 1997-07-16
CA2116861A1 (en) 1993-03-18
FI940996A (en) 1994-03-15
FI940996A0 (en) 1994-03-02
NO913441D0 (en) 1991-09-03
CN1070661A (en) 1993-04-07
NO913441L (en) 1993-03-04
HUT68670A (en) 1995-07-28
PT100835A (en) 1993-10-29
BR9206453A (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPH0725897B2 (en) Crosslinked vinyl chloride copolymer composition and method for producing the same
CA1038534A (en) Vinyl chloride polymer composition
US3520953A (en) Vinyl chloride resin composition
US3960825A (en) High-modulus thermoplastic ethylene-tetrafluoroethylene hexafluoropropene terpolymers
NO173337B (en) WHITE OR BRIGHT COLORED CROSS-HALOGENED POLYMER MATERIAL AND PREPARATION OF THIS
EP0695782A1 (en) Chlorinated polyvinyl chloride compounds having improved stability, toughness and a low rate of heat release and smoke generation
US5747617A (en) Copolymers of vinyl chloride, allyl glycidyl ether, a vinyl ester and an unsaturated organic trifunctional silane and method of making the same
US3432576A (en) Graft copolymers prepared by polymerizing vinyl chloride in the presence of vinyl acetate polymers
US3639512A (en) Process for preparing an impact resistant vinyl chloride resin composition
Hardt ‘Elasticisation’and plasticisation of PVC with ethylene‐vinyl acetate copolymers
US3591660A (en) Thermoplastic compositions for the preparation of inherently flexible sheet materials
JP2630958B2 (en) Γ-ray resistant vinyl chloride resin material
CN112126177B (en) Anti-tear protective film and preparation method thereof
JP2630957B2 (en) Γ-ray resistant vinyl chloride resin material
US3907934A (en) High impact compositions of PVC and chlorinated polyalkenamers
EP0366271B2 (en) Weather-resistant thermoplastic resin composition
KR910007594B1 (en) Vinyl chloride-based resin composition
JP2619462B2 (en) Chlorinated ethylene copolymer mixture
JP2531746B2 (en) Rubber composition
US3541184A (en) Impact resistant vinyl chloride polymer compositions
RU2086584C1 (en) Polymeric composition
AU3097492A (en) Method for productional thermostable chemical resistant plastics
Fernández et al. Properties of aminosilane grafted moisture curable poly (vinyl chloride) formulations
EP0309996A2 (en) Gamma-ray resistant polyvinyl chloride-based resinous material and manufacturing method thereof
JP2905588B2 (en) Method for producing resin containing inorganic compound