NO170407B - PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS - Google Patents

PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS Download PDF

Info

Publication number
NO170407B
NO170407B NO910445A NO910445A NO170407B NO 170407 B NO170407 B NO 170407B NO 910445 A NO910445 A NO 910445A NO 910445 A NO910445 A NO 910445A NO 170407 B NO170407 B NO 170407B
Authority
NO
Norway
Prior art keywords
group
compound
methyl
metal salt
aqueous solution
Prior art date
Application number
NO910445A
Other languages
Norwegian (no)
Other versions
NO910445D0 (en
NO170407C (en
NO910445L (en
Inventor
Taiiti Okada
Yasuaki Abe
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO881823A external-priority patent/NO167655C/en
Publication of NO910445L publication Critical patent/NO910445L/en
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to NO910445A priority Critical patent/NO170407C/en
Publication of NO910445D0 publication Critical patent/NO910445D0/en
Publication of NO170407B publication Critical patent/NO170407B/en
Publication of NO170407C publication Critical patent/NO170407C/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av 6-(10-hydroksydecyl)-2,3-dimetoksy-5-metyl-1,4-benzoquinon og dets analoge forbindelser nyttige som mellomprodukter for fremstilling av legemidler. The present invention relates to a method for the production of 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone and its analogous compounds useful as intermediates for the production of pharmaceuticals.

6-( 10-hydroksydecyl )-2 , 3-dimetoksy-5-metyl-l,4-benzokinon-(idebenon) har vært kjent som en forbindelse med spesifikke, farmakologiske aktiviteter så som, blant andre, immunopten-sierende aktivitet, glatt muskulatoravslappende virkning, enzym-aktiveringsvirkning i svakere vev, spesielt i hjerte-muskel og hjernevev. En kjent fremgangsmåte for fremstilling av idebenon med en industriell fordel, er fremgangsmåten (Toku-Kai-Sho 59-39855): (Steg 1) - alkyl 9-(2-hydroksy-3,4-dimetoksy-6-metylbenzo-yl)nonanoat blir utsatt for reduksjon for tilveiebringelse av 10-(2-hydroksy-3,4-dimetok-sy-6-metylfenyl)dekanoat, 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone-(idebenone) has been known as a compound with specific pharmacological activities such as, among others, immunopotentiating activity, smooth muscle relaxant effect, enzyme activation effect in weaker tissues, especially in cardiac muscle and brain tissue. A known process for producing idebenone with an industrial advantage is the process (Toku-Kai-Sho 59-39855): (Step 1) - alkyl 9-(2-hydroxy-3,4-dimethoxy-6-methylbenzo-yl) nonanoate undergoes reduction to provide 10-(2-hydroxy-3,4-dimethoxy-6-methylphenyl)decanoate,

(Steg 2) - denne forbindelsen blir utsatt for videre reduksjon med natrium bis(2-metoksyetoksy)alumi-niumhydrid(Vitride) for tilveiebringelse av 10-(hydroksy-3,4-dimetoksy-6-metylfenyl)dekan-l-ol, (Step 2) - this compound is subjected to further reduction with sodium bis(2-methoxyethoxy)aluminium hydride (Vitride) to provide 10-(hydroxy-3,4-dimethoxy-6-methylphenyl)decan-1-ol,

og and

(Steg 3) - denne forbindelsen blir utsatt for oksydasjon (Step 3) - this compound is subjected to oxidation

for tilveiebringelse av idebenon. for the provision of ideas.

I reaksjonen i trinn 3 er det kjent at oksydasjonen blir utført ved anvendelse av nitrosodisulfonsyre-kaliumsalt som oksidasjonsmiddel. I dette tilfelle er derimot utbytte av den ønskede forbindelsen ikke tilfredsstillende. I betraktning av dette, har det i foreliggende oppfinnelse blitt utført forskjellige undersøkelser og funnet at ved anvendelse av nitrosodisulfonsyre-dialkalimetallsalt som oksydasjonsmiddel oppnådd ved utsettelse av en vandig oppløsning av hydroksylamindisulfonsyre-dialkalimetallsalt for elektrolytisk oksydasjon, blir 6-(10-hydroksydecyl)-2,3-dimetoksy-5-metyl-1,4-benzoquinon og analoge forbindelser derav, fremstilt i høyt utbytte med en industriell fordel. In the reaction in step 3, it is known that the oxidation is carried out using nitrosodisulfonic acid potassium salt as oxidizing agent. In this case, however, yield of the desired compound is not satisfactory. In consideration of this, in the present invention various investigations have been carried out and found that by using nitrosodisulfonic acid dialkali metal salt as an oxidizing agent obtained by subjecting an aqueous solution of hydroxylamine disulfonic acid dialkali metal salt to electrolytic oxidation, 6-(10-hydroxydecyl)-2 ,3-dimethoxy-5-methyl-1,4-benzoquinone and analogous compounds thereof, prepared in high yield with an industrial advantage.

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av en forbindelse med formel: (der R<1> og R<2> hver betyr en laverealkylgruppe; n betyr et tall på 0 til 21), kjennetegnet ved at man oksiderer en forbindelse med formel: The present invention relates to a method for producing a compound of formula: (where R<1> and R<2> each means a lower alkyl group; n means a number from 0 to 21), characterized by oxidizing a compound of formula:

(der R<1>, R<2> og n hver har samme betydning som definert ovenfor; X betyr et hydrogenatom, en hydroksylgruppe, en lavere alkoksygruppe, en lavere acyloksygruppe, en silyloksygruppe eller metoksymetyloksygruppe; og Y betyr en hydroksylgruppe, en lavere alkoksygruppe, en lavere acyloksygruppe, en silyloksygruppe eller metoksymetyloksygruppe) med nitrosodisulfonsyre-dialkalimetallsalt oppnådd ved å utsette en vandig oppløsning av hydroksylamindisulfonsyre-dialkalimetallsalt for elektrolytisk oksidasjon. (wherein R<1>, R<2> and n each have the same meaning as defined above; X means a hydrogen atom, a hydroxyl group, a lower alkoxy group, a lower acyloxy group, a silyloxy group or a methoxymethyloxy group; and Y means a hydroxyl group, a lower alkoxy group, a lower acyloxy group, a silyloxy group or methoxymethyloxy group) with nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydroxylamine disulfonic acid dialkali metal salt to electrolytic oxidation.

Eksempler på lavere alkylgruppe vist ved R<1> og R<2> i ovennevnte formler (II) og (III) omfatter de som har 1 til 4 karbonatomer så som metyl, etyl, propyl osv. Den lavere alkoksygruppen vist ved X og Y, er en med 1 til 3 karbonatomer og omfatter metoksy, etoksy osv. Den lavere acyloksygrup-pen vist ved X og Y, er en med 2 til 4 karbonatomer og omfatter acetyloksy, propionyloksy osv. Silyloksygruppen vist ved X og Y har 3 til 6 karbonatomer og omfatter trimetylsil-yloksy osv.; n betegner et tall på 0 til 21, og fortrinnsvis 8 til 12. Examples of the lower alkyl group shown by R<1> and R<2> in the above formulas (II) and (III) include those having 1 to 4 carbon atoms such as methyl, ethyl, propyl, etc. The lower alkoxy group shown by X and Y , is one with 1 to 3 carbon atoms and includes methoxy, ethoxy, etc. The lower acyloxy group shown by X and Y, is one with 2 to 4 carbon atoms and includes acetyloxy, propionyloxy, etc. The silyloxy group shown by X and Y has 3 to 6 carbon atoms and includes trimethylsilyloxy, etc.; n denotes a number from 0 to 21, and preferably 8 to 12.

I oksidasjonsreaksjonen ifølge foreliggende oppfinnelse, blir nitrosodisulfonsyre-dialkalimetallsalt oppnådd ved utsetting av en vandig oppløsning av hydroksylamindisulfonsyre-dialkalimetallsalt for elektrolytisk oksidasjon anvendt som oksidasjonsmiddel. In the oxidation reaction according to the present invention, nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydroxylamine disulfonic acid dialkali metal salt to electrolytic oxidation is used as oxidizing agent.

Dialkalimetallsaltet til hydroksylamindisulfonsyre, er eksemplifisert ved dinatriumsaltet til hydroksylamindisulfonsyre og dikaliumsaltet til hydroksylamindisulfonsyre. Dealkalimetallsaltet til nitrosodisulfonsyre, er eksemplifisert ved dinatriumsaltet til nitronatriumsulfonsyre og dikaliumsaltet til nitronatriumsulfonsyre, er denatrium-saltet til nitrosodisulfonsyre å foretrekke. The dialkali metal salt of hydroxylamine disulfonic acid is exemplified by the disodium salt of hydroxylamine disulfonic acid and the dipotassium salt of hydroxylamine disulfonic acid. The dealkali metal salt of nitrosodisulfonic acid is exemplified by the disodium salt of nitrosodiumsulfonic acid and the dipotassium salt of nitrosodiumsulfonic acid, the disodium salt of nitrosodisulfonic acid being preferred.

Oksydering av forbindelse (II) blir utført ved oppløsning av forbindelse (II) i et vannblandbart oppløsningsmiddel så som metanol, etanol, dioksan, tetrahydrofuran osv, og deretter tilsetting av et dialkalimetallsalt av nitrosodisulfonsyre. Mengden dialkalimetallsalt av nitrosodisulfonsyre som blir benyttet i fremgangsmåten ifølge foreliggende oppfinnelse, er støkiometrisk, 2,0 ganger mol relativt til forbindelse (II), men hvis man tar stabiliteten til dialkalimetallsaltet til nitrosodisulfonsyren i betraktning, er det vanligvis 2,6 ganger mol eller mer, fortrinnsvis 3,0 ganger mol eller mere. Reaksjonstemperaturen varierer fra 20"C til 70°C, fortrinnsvis omtrent 50°C. Når temepraturen er for lav, forløper reaksjonen saktere, og når temperaturen er høy, blir nedbryting av dialkalimetallsaltet til nitronatriumsul-fonsyren fremmet, og uønskede sidereaksjoner oppstår, og som dermed ikke er foretrukne. Reaksjonstiden varierer med konsentrasjonen av utgangsforbindelse (II) oppløsningsmiddel benyttet, mengden av dialkalimetallsalt til nitrosodisulfonsyre, reaksjonstemperaturen, osv., men når utgangsfor-bindelsen er fullstendig oppbrukt, avsluttes reaksjonen. For eksempel ved bruk av tynnsjiktskromatograf1, HPLC, (high performance liquid chromatography), gasskromatografi, osv., blir reduksjonen av utgangsstoffet fulgt i løpet av tiden, og når utgangsstoffet ikke er detektert mere, avsluttes reaksjonen. Ved utføring av reaksjonen ved 50"C, avsluttes reaksjonen vanligvis i løpet av to timer. Den vannholdige oppløsningen av dialkalimetallsaltet til nitrosodisulfonsyre benyttet som et oksyderingsmiddel, kan bli tilveiebragt ved utsetting av en vannholdig oppløsning av et dialkalimetallsalt av hydroksylamindisulfonsyre for elektrolytisk oksydering som blir utført i en konvensjonell elektrokjemisk celle. Denne elektrokjemiske cellen blir eventuelt utstyrt med en separator eller difragma. Generelt er bruk av en filterpresstype elektrokjemisk celle utstyrt med kationbytte-membran foretrukket. Varmen som dannes fra reaksjonen kan bli undertrykket ved kontrollering av økingen i cellespenningen ved å holde elektrodeavstanden nære, og ved å avkjøle utenfor både analyten og katolyten som sirkulerer gjennom begge kamrene med høy hastighet. Anoden og katoden blir laget fra et hvilket som helst vanlig materiale som vanligvis benyttes for elektroder innenfor elektrokjemien, f.eks. karbon, platina, rustfritt stål, palladium, nikkel, nikkellegering osv. Generelt er bruk av rustfritt stål meshelektrode å foretrekke. Den elektrolytiske cellen kan bli utstyrt med en omrøringsanordning, og det er også mulig å sirkulere reaksjonsblandingen ved bruk av en pumpe. Oxidation of compound (II) is carried out by dissolving compound (II) in a water-miscible solvent such as methanol, ethanol, dioxane, tetrahydrofuran, etc., and then adding a dialkali metal salt of nitrosodisulfonic acid. The amount of dialkali metal salt of nitrosodisulfonic acid used in the method of the present invention is stoichiometric, 2.0 times mol relative to compound (II), but if the stability of the dialkali metal salt of nitrosodisulfonic acid is taken into consideration, it is usually 2.6 times mol or more , preferably 3.0 times mol or more. The reaction temperature varies from 20°C to 70°C, preferably about 50°C. When the temperature is too low, the reaction proceeds more slowly, and when the temperature is high, decomposition of the dialkali metal salt to the nitrosodium sulfonic acid is promoted, and undesirable side reactions occur, and which thus not preferred. The reaction time varies with the concentration of starting compound (II), solvent used, the amount of di-alkali metal salt of nitrosodisulfonic acid, the reaction temperature, etc., but when the starting compound is completely used up, the reaction ends. For example, when using a thin-layer chromatograph1, HPLC, ( high performance liquid chromatography), gas chromatography, etc., the reduction of the starting material is followed over time, and when the starting material is no longer detected, the reaction is terminated. When carrying out the reaction at 50°C, the reaction is usually terminated within two hours. The aqueous solution of the dialkali metal salt of nitrosodisulfonic acid used as an oxidizing agent can be provided by subjecting an aqueous solution of a dialkali metal salt of hydroxylamine disulfonic acid to electrolytic oxidation which is carried out in a conventional electrochemical cell. This electrochemical cell is optionally equipped with a separator or diaphragm. In general, the use of a filter press type electrochemical cell equipped with a cation exchange membrane is preferred. The heat generated from the reaction can be suppressed by controlling the increase in cell voltage by keeping the electrode spacing close, and by cooling outside both the analyte and the catholyte circulating through both chambers at high speed. The anode and cathode are made from any common material commonly used for electrodes in electrochemistry, e.g. carbon, platinum, stainless steel, palladium, nickel, nickel alloy, etc. In general, the use of stainless steel mesh electrode is preferable. The electrolytic cell can be equipped with a stirring device, and it is also possible to circulate the reaction mixture using a pump.

Den elektrolytiske oksyderingen kan bli utført ved tilføring av en spenning på 0,5 til 50 volt til en vannholdig oppløs-ning inneholdende dialkalimetallsaltet til hjydroksylamin-disulfonsyre. Generelt blir reaksjonen ledet ved bruk av 2 til 20 volt. Strømstyrken som går gjennom oppløsningen, har en styrke på opptil 50 A/dm<2>. Det er generelt foretrukket å bruke en strømtetthet på 2 til 20 A/dm<2> For å utføre den elektrolytiske oksydasjonen mere effektivt, er det også mulig å tilsette en konvensjonell elektrolytt til den vannholdige oppløsningen. Eksempler på en slik elektrolytt innbefatter natriumhydroksyd, natriumacetat, natriumkarbonat, natriumhydrogenkarbonat, natriumfosfat, natriumklorid osv. Mengden av en elektrolytt som generelt blir tilsatt, er fortrinnsvis i området på fra 0,1 til 30 vekt-£ relativt til den vannholdige oppløsningen. Den vannholdige oppløsningen som skal utsettes for elektrolytisk oksydasjon, inneholder generelt dialkalimetallsalt av hydroksylamindisulfonsyre ved en konsentrasjon på minst 0,1 mol, fortrinnsvis 0,1 mol til 2 mol, relativt til en liter av oppløsningen. Den elektrolytiske oksydasjonen kan bli utført ved en temperatur varierende fra -15°C til 50°C. Denne reaksjonen blir fortrinnsvis utført ved en temperatur varierende fra 0°C til 35°C. Den elektrolytiske oksydasjonen kan bli utført i minst 0,5 t eller i løpet av en lengere tidsperiod. Det er generelt foretrukket å utføre oksydasjonen i 1 til 10 timer. The electrolytic oxidation can be carried out by applying a voltage of 0.5 to 50 volts to an aqueous solution containing the dialkali metal salt of hydroxylamine disulfonic acid. Generally, the reaction is conducted using 2 to 20 volts. The current passing through the solution has a strength of up to 50 A/dm<2>. It is generally preferred to use a current density of 2 to 20 A/dm<2> In order to carry out the electrolytic oxidation more efficiently, it is also possible to add a conventional electrolyte to the aqueous solution. Examples of such an electrolyte include sodium hydroxide, sodium acetate, sodium carbonate, sodium hydrogen carbonate, sodium phosphate, sodium chloride, etc. The amount of an electrolyte generally added is preferably in the range of from 0.1 to 30% by weight relative to the aqueous solution. The aqueous solution to be subjected to electrolytic oxidation generally contains the dialkali metal salt of hydroxylamine disulfonic acid at a concentration of at least 0.1 mol, preferably 0.1 mol to 2 mol, relative to one liter of the solution. The electrolytic oxidation can be carried out at a temperature varying from -15°C to 50°C. This reaction is preferably carried out at a temperature varying from 0°C to 35°C. The electrolytic oxidation can be carried out for at least 0.5 h or during a longer period of time. It is generally preferred to carry out the oxidation for 1 to 10 hours.

Når man begynner den elektrolytiske oksydasjonen, blir pH til en vannholdig oppløsning av dialkalimetallsalt av hydroksylamindisulfonsyre justert til 10 til 13, fortrinnsvis rundt 11,5, for dermed å tilveiebringe det høyeste utbytte av dialkalimetallsaltet til nitrosodisulfonsyre. When starting the electrolytic oxidation, the pH of an aqueous solution of the dialkali metal salt of hydroxylamine disulfonic acid is adjusted to 10 to 13, preferably around 11.5, so as to provide the highest yield of the dialkali metal salt of nitrosodisulfonic acid.

Forbindelse (III) har en immunopotensierende aktivitet, glatt muskelaturavslappende virkning, en enzymaktiverende virkning på hjernevev osv. Compound (III) has an immunopotentiating activity, a smooth muscle relaxant effect, an enzyme-activating effect on brain tissue, etc.

Utgangsforbindelse (I) i foreliggende oppfinnelse kan oppnås ved å utsette en forbindelse representert ved den generelle formel: Starting compound (I) in the present invention can be obtained by exposing a compound represented by the general formula:

(der R<1>, R<2>, X, Y og n har samme betydninger som ovenfor, og r<3> betyr en lavere alkylgruppe) for reduksjon ved en konven- (where R<1>, R<2>, X, Y and n have the same meanings as above, and r<3> means a lower alkyl group) for reduction by a conventional

sjonell fremgangsmåte, for eksempel Clemensen-reduksjon ved anvendelse av sinkamalgam og saltsyre, Wolff-Kishner-reduksjon av hydrazon, desulfuratlv reduksjon av ditioacetal eller katalytisk reduksjon for å tilveiebringe en forbindelse med den generelle formel: conventional method, for example Clemensen reduction using zinc amalgam and hydrochloric acid, Wolff-Kishner reduction of hydrazone, desulfuratlv reduction of dithioacetal or catalytic reduction to provide a compound of the general formula:

(der hvert symbol har samme betydning som ovenfor), etterfulgt av redusering av forbindelse I. (where each symbol has the same meaning as above), followed by reduction of compound I.

Eksempler på den lavere alkylgruppe vist ved R<3> i ovennevnte formler (I) og (IV) omfatter de med 1 til 4 karbonatomer så som metyl, etyl, propyl osv. Examples of the lower alkyl group shown by R<3> in the above formulas (I) and (IV) include those with 1 to 4 carbon atoms such as methyl, ethyl, propyl, etc.

Reduksjonsreaksjonen ifølge foreliggende oppfinnelse blir helst utført i et egnet oppløsningsmiddel. Som oppløsnings-middel kan et hvilket som helst som har evnen til å løse opp utgangsforbindelse (I) og som ikke forhindrer reduksjonsreaksjonen, bli benyttet. Praktiske eksempler på slike opp-løsningsmidler innbefatter etere så som dietyleter, tetrahydrofuran, dioksan osv., og aromatiske hydrokarboner så som benzen, toluen, xylen, osv. Reaksjonstemperaturene varierer vanligvis fra 0"C til 140<C>C, fortrinnsvis 10°C til 40°C. Mengden natriumborhydrid er vanligvis relativt til utgangsforbindelse (I) ikke 1,5 til 10 ganger så manmge mol, fortrinnsvis omtrent 2 til 6 ganger så mange mol. Åluminium-klorid blir fortrinnsvis benyttet i en slik mengde at det molare forhold mellom aluminiumklorid og natriumborhydrid omtrent er 1:3. The reduction reaction according to the present invention is preferably carried out in a suitable solvent. Any solvent which has the ability to dissolve starting compound (I) and which does not prevent the reduction reaction can be used as a solvent. Practical examples of such solvents include ethers such as diethyl ether, tetrahydrofuran, dioxane, etc., and aromatic hydrocarbons such as benzene, toluene, xylene, etc. Reaction temperatures generally range from 0°C to 140°C, preferably 10°C. to 40° C. The amount of sodium borohydride is usually relative to starting compound (I) not 1.5 to 10 times as many moles, preferably about 2 to 6 times as many moles. Aluminum chloride is preferably used in such an amount that the molar ratio between aluminum chloride and sodium borohydride approximately is 1:3.

Denne reaksjonen vil tilveiebringe mere foretrukne resultater ved å la et lite volum vann være tilstede i reaksjonssy-stemet. Nærvær av vann undertrykker dannelsen av et uønsket sideprodukt, dvs., en forbindelse med formel (II) hvori én eller begge R<1> og R<2> er hydrogen, slik at utbyttet av den ønskede forbindelsen (II) blir enda bedre. Volumet av vannet som benyttes, varierer vanligvis fra 0,1 til 1,7 ganger så mange mol, fortrinnsvis 0,2 til 1,5 ganger så mange mol relativt til aluminiumklorid. Når det benyttes et overskudd av vann, tilveiebringes ikke den ønskede forbindelsen i et høyt utbytte, og reaksjonstiden blir lang. This reaction will provide more preferred results by allowing a small volume of water to be present in the reaction system. The presence of water suppresses the formation of an undesired side product, i.e., a compound of formula (II) in which one or both R<1> and R<2> are hydrogen, so that the yield of the desired compound (II) is even better. The volume of water used usually varies from 0.1 to 1.7 times as many moles, preferably 0.2 to 1.5 times as many moles relative to aluminum chloride. When an excess of water is used, the desired compound is not provided in a high yield, and the reaction time becomes long.

I de følgende eksempler og referanseeksemplene, vil foreliggende oppfinnelse bli beskrevet i detalj. In the following examples and reference examples, the present invention will be described in detail.

Referanse- eksempel 1 Reference example 1

Til en oppløsning av 9-(2-hydroksy-3,4-dimetoksy-6-metylben-zoyl)nonanoat (2,0 kg) i etylacetat (10 1) ble 5£ palladium-karbon (vanninnhold:50) (400g) og svovelsyre (10 ml) tilsatt. Blandingen ble omrørt i 5 timer ved 30°C til 40°C i hydrogenstrøm (hydrogentrykk: ca. 8,5 kg/cm<2>G). Katalysatoren ble filtrert ut, og etylacetatlaget ble vasket med vann (10 1), 5% natriumhydrogenkarbonat (10 1) og vann (10 1), suksessivt. Etylacetatlaget ble konsentrert for å tilveiebringe metyl-10-(2-hydroksy-3,4-dimetoksy-metylfenyl )dekanoat (1,8 kg) som oljeaktig produkt. To a solution of 9-(2-hydroxy-3,4-dimethoxy-6-methylbenzoyl)nonanoate (2.0 kg) in ethyl acetate (10 1) was added 5£ palladium carbon (water content: 50) (400g) and sulfuric acid (10 ml) added. The mixture was stirred for 5 hours at 30°C to 40°C in hydrogen flow (hydrogen pressure: about 8.5 kg/cm<2>G). The catalyst was filtered out, and the ethyl acetate layer was washed with water (10 L), 5% sodium bicarbonate (10 L) and water (10 L), successively. The ethyl acetate layer was concentrated to provide methyl 10-(2-hydroxy-3,4-dimethoxy-methylphenyl)decanoate (1.8 kg) as an oily product.

film film

Infrarødt absorpsjonsspektrum X cm-<1>:3450(OH),1740(C00CH3) Infrared absorption spectrum X cm-<1>:3450(OH),1740(C00CH3)

maks max

CDC13CDC13

Nukleær magnetisk resonansspektrum S : 1,10 til 1,87 Nuclear magnetic resonance spectrum S : 1.10 to 1.87

ppm ppm

(14H, multippel, -(CH2)7-), 2,17 til 2,57 (4H, multippel, ring CH2, CH2C0), 2,27(3H, singlet, ring CH3), 3,63 (14H, multiple, -(CH2)7-), 2.17 to 2.57 (4H, multiple, ring CH2, CH2CO), 2.27(3H, singlet, ring CH3), 3.63

(3H, singlet, COOCH3), 3,80 (3H, singlet, 0CH3), 3,85 (3H, singlet, OCH3), 5,80(1H, singlet, OH), 6,27 (1H, singlet, ring H). (3H, singlet, COOCH3), 3.80 (3H, singlet, 0CH3), 3.85 (3H, singlet, OCH3), 5.80(1H, singlet, OH), 6.27 (1H, singlet, ring H).

Referanse- eksempel 2 Reference example 2

I tetrahydrofuran (1,8 1) ble metyl 10-(2-hydroksy-3,4-dimetoksy-6-metylfenyl)dekanoat (881 g, 2,5 mol) oppløst. Til oppløsningen ble en suspensjon av natriumborhydrid (340 g, 9 mol) i tetrahydrofuran (10,7 1), tilsatt, og blandingen ble omrørt. Til den resulterende suspensjonen ble vann tilsatt (75 ml, 4,16 mol). Aluminiumklorid (400 g, 3 mol) ble oppløst i tetrahydrofuran (6,0 1). Oppløsningen ble dråpevis tilsatt til ovenfornevnte suspensjon i løpet av en gitt hastighet som varte i 90 minutter, hvorpå den indre temperaturen av reaksjonsblandingen ble holdt ved 25 ± 2°C. Deretter, ble reaksjonsblandingen omrørt ved samme temperatur i 30 minutter til, og ble deretter avkjølt til omtrent 15°C. Til reaksjonsblandingen ble vann (22 1) dråpevis tilsatt for å tilveiebringe oppløsningn, og saltsyre (2,7 1) ble deretter dråpevis tilsatt. Blandingen ble deretter utsatt for ekstraksjon to ganger med 9 1 toluen. Deretter ble toluenlagene slått sammen og vasket med en 556 vannholdig oppløsning av natriumhydrogenkarbonat (4,4 1), etterfulgt av vasking med vann (4,4 1). Toluenlaget ble konsentrert under redusert trykk for å tilveiebringe 10-(2-hydroksy-3,4-dimetoksy-6-metylfenyl)dekan-l-ol (805 g, 2,48 mol, utbytte 99,2$) som et oljeaktig produkt. In tetrahydrofuran (1.8 L) was dissolved methyl 10-(2-hydroxy-3,4-dimethoxy-6-methylphenyl)decanoate (881 g, 2.5 mol). To the solution was added a suspension of sodium borohydride (340 g, 9 mol) in tetrahydrofuran (10.7 L), and the mixture was stirred. To the resulting suspension was added water (75 mL, 4.16 mol). Aluminum chloride (400 g, 3 mol) was dissolved in tetrahydrofuran (6.0 L). The solution was added dropwise to the above suspension at a given rate lasting 90 minutes, after which the internal temperature of the reaction mixture was maintained at 25 ± 2°C. Then, the reaction mixture was stirred at the same temperature for another 30 minutes, and was then cooled to about 15°C. To the reaction mixture, water (22 L) was added dropwise to provide the solution, and hydrochloric acid (2.7 L) was then added dropwise. The mixture was then subjected to extraction twice with 9 L of toluene. The toluene layers were then combined and washed with an aqueous solution of sodium bicarbonate (4.4 L), followed by washing with water (4.4 L). The toluene layer was concentrated under reduced pressure to provide 10-(2-hydroxy-3,4-dimethoxy-6-methylphenyl)decan-1-ol (805 g, 2.48 mol, yield 99.2%) as an oily product .

netto net

Infrarødt absorpsjonsspektrum 7 cm-<1>: rundt 3400 (OH) Infrared absorption spectrum 7 cm-<1>: around 3400 (OH)

maks max

CDC 13CDC 13

Nukleær magnetisk resonansspektrum S : 1,10 til 1,80 Nuclear magnetic resonance spectrum S : 1.10 to 1.80

ppm ppm

(16H, multippel,-(CH2)g-), 2,22(3H, singlet, CH3), 2,40 til 2,75(2H, multippel,CH2), 3,50 til 3,70 (2H, multippel) CH2), 3,80 (3H, singlet,0CH3), 3,84 (3H, singlet, 0CH3), 6,25(1H, singlet, ring H) (16H, multiple,-(CH2)g-), 2.22(3H, singlet, CH3), 2.40 to 2.75(2H, multiple,CH2), 3.50 to 3.70 (2H, multiple ) CH2), 3.80 (3H, singlet,0CH3), 3.84 (3H, singlet, 0CH3), 6.25(1H, singlet, ring H)

Referanse- eksempel 3 Reference example 3

Undersøkelser ble foretatt på forholdet mellom, volum tilsatt vann og utbyttet av 10-(2-hydroksy-3,4-dimetoksy-6-metyl-fenyl)dekan-l-ol. I tetrahydrofuran (35,7 1) var metyl 10-(2-hydroksy-3, 4-dimetoksy-6-metylfenyl )dekanoat (metyl-dekanoat) (17,3 g, 49,1 mmol) oppløst. Oppløsningen ble satt til en suspensjon av natriumborhydrid (6,8 g, 180 mmol) i tetrahydrofuran (214,5 ml), og blandingen ble omrørt. Et gitt volum vann ble nøyaktig målt (som beskrevet i tabell 1), som ble satt til denne suspensjonen. I tetrahydrofuran (1432 ml) var aluminiumklorid (8,0 g, 60 mmol) oppløst. Oppløsnin-gen ble dråpevis tilsatt til ovenfor nevnte suspensjon ved indre temperatur 25 ± 2°C i løpet av 90 til 120 minutter. Reaksjonsblandingen ble deretter omrørt i 30 minutter mens temperaturen ble holdt på 25 ± 2°C. Reaksjonsblandingen ble deretter avkjølt til 15 ± 2°C, og vann (446 ml) ble dråpevis tilsatt. Til blandingen ble saltsyre (53,5 ml) dråpevis tilsatt, og temperaturen til reaksjonsblandingen ble holdt ved temperaturer som ikke var høyere enn 20°C. Reaksjonsblandingen ble deretter utsatt for ekstraksjon to ganger med 178,5 ml toluen hver gang. Toluenlagene ble slått sammen og vasket to ganger med vann (89,5 ml). Toluenlaget ble konsentrert under redusert trykk for tilveiebringelse av 10-(2-hydroksy-3,4-dimetoksy-6-metylfenyl)dekan-l-ol(dekanolfor-bindelse) som et oljeaktig produkt. Tabell 1 viser forholdet til volumet av vann tilsatt med et utbytte av dekanolforbind-elsen og med mengden av di-OH-forbindelse fremstilt. Investigations were carried out on the relationship between the volume of added water and the yield of 10-(2-hydroxy-3,4-dimethoxy-6-methyl-phenyl)decan-1-ol. In tetrahydrofuran (35.7 L) was dissolved methyl 10-(2-hydroxy-3,4-dimethoxy-6-methylphenyl)decanoate (methyl decanoate) (17.3 g, 49.1 mmol). The solution was added to a suspension of sodium borohydride (6.8 g, 180 mmol) in tetrahydrofuran (214.5 mL) and the mixture was stirred. A given volume of water was accurately measured (as described in Table 1), which was added to this suspension. Aluminum chloride (8.0 g, 60 mmol) was dissolved in tetrahydrofuran (1432 mL). The solution was added dropwise to the above-mentioned suspension at an internal temperature of 25 ± 2°C over a period of 90 to 120 minutes. The reaction mixture was then stirred for 30 minutes while the temperature was maintained at 25 ± 2°C. The reaction mixture was then cooled to 15 ± 2°C, and water (446 mL) was added dropwise. To the mixture, hydrochloric acid (53.5 ml) was added dropwise, and the temperature of the reaction mixture was maintained at temperatures not higher than 20°C. The reaction mixture was then subjected to extraction twice with 178.5 ml of toluene each time. The toluene layers were combined and washed twice with water (89.5 mL). The toluene layer was concentrated under reduced pressure to provide 10-(2-hydroxy-3,4-dimethoxy-6-methylphenyl)decan-1-ol (decanol compound) as an oily product. Table 1 shows the relationship of the volume of water added with a yield of the decanol compound and with the amount of di-OH compound produced.

Referanse- eksempel 4 Reference example 4

Fremstilling av en vannholdig oppløsning av dinatriumsalt til hydroksylamindisulfonsyre Preparation of an aqueous solution of the disodium salt of hydroxylamine disulfonic acid

I vann (7,5 1) var natriumnitrit (1875 g) løst opp, og til dette ble en 35 v/v56 vannholdig oppløsning av natrium-hydrogensulfitt (11,5 1) dråpevis tilsatt, mens temperaturen av oppløsningen ble opprettholdt ved 0°C eller under. Til blandingen ble det deretter dråpevis tilsatt eddiksyre (2,860 ml) ved temperaturer som ikke var høyere enn 5°C, etterfulgt av omrøring i 90 minutter ved 5°C eller under. Til det resulterende ble det deretter dråpevis tilsatt en 30 v/v56 vannholdig oppløsning av kaustisk soda (3,125 ml) ved 10°C eller under, etterfulgt av dråpevis tilsetning av en 25 v/v56 vannholdig oppløsning av natriumkarbonat (20 1) for tilveiebringelse av en vannholdig oppløsning av dinatriumsalt til hydroksylamindisulfonsyre som har evnen til å bli utsatt for elektrolytisk oksydasjon. Utbyttet var omtrent 8456. In water (7.5 L) sodium nitrite (1875 g) was dissolved, and to this a 35 v/v 56 aqueous solution of sodium hydrogen sulphite (11.5 L) was added dropwise, while the temperature of the solution was maintained at 0° C or below. To the mixture was then added dropwise acetic acid (2.860 ml) at temperatures not higher than 5°C, followed by stirring for 90 minutes at 5°C or below. To the resulting was then added dropwise a 30 v/v56 aqueous solution of caustic soda (3.125 mL) at 10°C or below, followed by dropwise addition of a 25 v/v56 aqueous solution of sodium carbonate (20 L) to provide an aqueous solution of the disodium salt of hydroxylamine disulfonic acid which has the ability to undergo electrolytic oxidation. The yield was approximately 8456.

Referanse- eksempel 5 Reference example 5

Fremstilling av en vannholdig oppløsning av dinatriumsalt til nitrosodisulfonsyre ved elektrolytisk oksydas. ion Monopolar, toavdelingstype og filterpresstype elektrokjemisk celle (aktiv elektrodeområde: 4,5 dm<2>/celle x 2 celler) ble tilført en vannholdig oppløsning av dinatriumsalt til hydroksylamindisulfonsyre (6 til 8 1) som analyt og med en 10 v/v56 vannholdig oppløsning av natriumkarbonat (6 til 8 1) som katalyt, deretter ble sirkulasjon tilveiebragt ved bruk av en pumpe. Ved bruk av en strømstyrke i 2 til 3 timer under bestemte elektrolytiske betingelser (strømtetthet: 8 A/dm<2>, sirkulasjonslinje lineær hastighet: 10,4 cm/sek., temperatur-:15°C), ble en vannholdig oppløsning av dinatrium nitroso-disulfonat tilveiebragt i et utbytte på 9056 eller høyere. Preparation of an aqueous solution of the disodium salt of nitrosodisulfonic acid by electrolytic oxidase. ion Monopolar, two-compartment type and filter press type electrochemical cell (active electrode area: 4.5 dm<2>/cell x 2 cells) was fed an aqueous solution of disodium salt of hydroxylamine disulfonic acid (6 to 8 L) as analyte and with a 10 v/v56 aqueous solution of sodium carbonate (6 to 8 L) as catalyst, then circulation was provided using a pump. Using an amperage for 2 to 3 hours under certain electrolytic conditions (current density: 8 A/dm<2>, circulation line linear velocity: 10.4 cm/sec., temperature: 15°C), an aqueous solution of disodium nitrosodisulfonate provided in a yield of 9056 or higher.

Referanse- eksempel 1 til 4 Reference examples 1 to 4

I metanol (5,4 1) var 10-(2-hydroksy-3,4-dimetoksy-6-metyl-fenyl )dekan-l-ol(271 g) løst opp, og til denne ble en vannholdig oppløsning av dinatriumnitrosodlsulfonat (6,7 1, innhold 0,359 mol/l) fremstilt ved elektrolytisk oksydasjon. Blandingen ble omrørt i to timer mens temperaturen ble holdt på 50 ± 2°C. Etter bekreftelse på at utgangsmaterialet var borte ved tinnsjiktskromatografi, ble vann (8,6 1) satt til reaksjonsblandingen etterfulgt av ekstraksjon to ganger med toluen (5,5 1 og 2,7 1). Toluenlagene ble slått sammen og vasket med vann. Toluenlaget ble konsentrert under redusert trykk for tilveiebringelse av et råprodukt, 6-(10-hydroksydecyl )-2,3-dimetoksy-5-metyl-l,4-benzokinon (288 g, innhold 94 ,856, utbytte 96,956). Dette råproduktet (20g) ble omkrystallisert fra en blandidng av toluen (60 ml) og n-heksan (180 ml). Krystallene ble løst opp i toluen (60 ml), og opp-løsningen ble tillatt sendt gjennom et forbelagt lag av aktivert aluminiumoksyd (30g). Filtratet ble konsentrert under redusert trykk, og konsentratet ble igjen omkrystallisert fra en blanding toluen (55 ml) og n-heksan (165 ml). Krystallene ble videre omkrystallisert fra 5056 etanol (108 ml), etterfulgt av tørking for tilveiebringelse av 6-(10-hydroksydecyl )-2 , 3-dimetoksy-5-metyl-l , 4-benzokinon (16,2 g) som orangegule krystaller, sm.p. 54,0°C. In methanol (5.4 L) 10-(2-hydroxy-3,4-dimethoxy-6-methyl-phenyl)decan-1-ol (271 g) was dissolved, and to this was added an aqueous solution of disodium nitrosodlsulfonate ( 6.7 1, content 0.359 mol/l) produced by electrolytic oxidation. The mixture was stirred for two hours while the temperature was maintained at 50 ± 2°C. After confirming that the starting material was gone by TLC, water (8.6 L) was added to the reaction mixture followed by extraction twice with toluene (5.5 L and 2.7 L). The toluene layers were combined and washed with water. The toluene layer was concentrated under reduced pressure to provide a crude product, 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (288 g, content 94.856, yield 96.956). This crude product (20g) was recrystallized from a mixture of toluene (60ml) and n-hexane (180ml). The crystals were dissolved in toluene (60 ml) and the solution was allowed to pass through a pre-coated layer of activated alumina (30 g). The filtrate was concentrated under reduced pressure, and the concentrate was again recrystallized from a mixture of toluene (55 mL) and n-hexane (165 mL). The crystals were further recrystallized from 5056 ethanol (108 mL), followed by drying to provide 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (16.2 g) as orange-yellow crystals , sm.p. 54.0°C.

KB r KB r

Infrarødt absorpsjonsspektrum 7 cm"^: 3550(OH), 1660, Infrared absorption spectrum 7 cm"^: 3550(OH), 1660,

maks 1650, 1610 (1,4-benzokinon) max 1650, 1610 (1,4-benzoquinone)

CDC 13 Nukleær magnetisk resonansspektrum S : 1,1 til 1,8(16H, CDC 13 Nuclear magnetic resonance spectrum S : 1.1 to 1.8(16H,

ppm ppm

multippel, -(CH2)8-), 2,00(3H, singlet, CH3), 2,43 (2H, triplet, J=7Hz,CH2), 3,63(2H, triplet, J=6Hz,CH20H), 3,97(6H, singlet, 0CH3) multiple, -(CH2)8-), 2.00(3H, singlet, CH3), 2.43 (2H, triplet, J=7Hz,CH2), 3.63(2H, triplet, J=6Hz,CH20H) , 3.97(6H, singlet, 0CH3)

Eksempler som benytter en vannholdig oppløsning av dinatrium-nitrosodisulfonat fremstilt ved bruk av elektrolytisk oksydasjon er alle beskrevet i tabell 2. Examples using an aqueous solution of disodium nitrosodisulfonate prepared using electrolytic oxidation are all described in Table 2.

Referanseeksempel 6 til 8 Reference Example 6 to 8

I metanol (110 1) var 10-(2-hydroksy-3,4-dimetoksy-6-metyl-fenyl)dekan-l-ol (6,84 kg) oppløst. Til denne oppløsningen ble natriumacetat (27,4 kg) og vann (110 1). Til denne blandingen ble det deretter tilsatt dikaliumnitrosodisul-fonat (23,5 kg, innhold 69,956), som ble omrørt ved 50 ± 3°C i 3 timer. Etter bekreftelse på at utgangsmaterialet var borte ved bruk av tynnsjiktskromatografi, ble vann (550 1) satt til blandingen, som ble omrørt ved 10°C eller under i 30 minutter eller lengere, deretter ble de presipiterende krystallene sentrifugert. Våtkrystallene som på denne måten ble samlet ble løst opp i etylacetat (40 1), etterfulgt av vasking med vann (25 1). Etylacetatlaget ble konsentrert under redusert trykk for tilveiebringelse av et råprodukt 6-(10-hydroksydecyl )-2,3-dimetoksy-5-metyl-l,4-benzokinon (6,70 kg, utbytte 93,956). Ref eranseeksemplene som benytter dikalium-nitrosodisulfonat (Fremy's salt) er beskrevet i tabell 3. In methanol (110 1) 10-(2-hydroxy-3,4-dimethoxy-6-methyl-phenyl)decan-1-ol (6.84 kg) was dissolved. To this solution were added sodium acetate (27.4 kg) and water (110 L). To this mixture was then added dipotassium nitrosodisulphonate (23.5 kg, content 69.956), which was stirred at 50 ± 3°C for 3 hours. After confirming that the starting material was gone using thin layer chromatography, water (550 L) was added to the mixture, which was stirred at 10°C or below for 30 minutes or longer, then the precipitated crystals were centrifuged. The wet crystals thus collected were dissolved in ethyl acetate (40 L), followed by washing with water (25 L). The ethyl acetate layer was concentrated under reduced pressure to provide a crude product 6-(10-hydroxydecyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (6.70 kg, yield 93.956). The reference examples using dipotassium nitrosodisulfonate (Fremy's salt) are described in Table 3.

Claims (1)

Fremgangsmåte for fremstilling av en forbindelse med formel [der R<1> og R<2> hver betyr en lavere alkylgruppe; n betyr et tall på 0 til 21] , karakterisert ved at man oksiderer en forbindelse med formel [der R<*>, R<2> og n hver har samme betydning som definert ovenfor; X betyr et hydrogenatom, en hydroksylgruppe, en lavere alkoksygruppe, en lavere acyloksygruppe, en silyloksygruppe eller metoksymetyloksygruppe; og Y betyr en hydroksylgruppe, en lavere alkoksygruppe, en lavere acyloksygruppe, en silyloksygruppe eller metoksymetyloksygruppe] med nitrosodisulfonsyre-dialkalimetallsalt oppnådd ved utsetting av en vandig oppløsning av hydroksylamin-disulfonsyre-dialkalimetallsalt for elektrolytisk oksidasjon.Process for preparing a compound of formula [wherein R<1> and R<2> each represents a lower alkyl group; n means a number from 0 to 21], characterized by oxidizing a compound of formula [where R<*>, R<2> and n each have the same meaning as defined above; X means a hydrogen atom, a hydroxyl group, a lower alkoxy group, a lower acyloxy group, a silyloxy group or a methoxymethyloxy group; and Y means a hydroxyl group, a lower alkoxy group, a lower acyloxy group, a silyloxy group or methoxymethyloxy group] with nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydroxylamine disulfonic acid dialkali metal salt to electrolytic oxidation.
NO910445A 1987-04-27 1991-02-05 PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS NO170407C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO910445A NO170407C (en) 1987-04-27 1991-02-05 PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10579587 1987-04-27
JP10574487 1987-04-29
NO881823A NO167655C (en) 1987-04-27 1988-04-26 REDUCTION OF CARBOXYL ESTERS.
NO910445A NO170407C (en) 1987-04-27 1991-02-05 PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS

Publications (4)

Publication Number Publication Date
NO910445L NO910445L (en) 1988-10-28
NO910445D0 NO910445D0 (en) 1991-02-05
NO170407B true NO170407B (en) 1992-07-06
NO170407C NO170407C (en) 1992-10-14

Family

ID=27469359

Family Applications (1)

Application Number Title Priority Date Filing Date
NO910445A NO170407C (en) 1987-04-27 1991-02-05 PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS

Country Status (1)

Country Link
NO (1) NO170407C (en)

Also Published As

Publication number Publication date
NO910445D0 (en) 1991-02-05
NO170407C (en) 1992-10-14
NO910445L (en) 1988-10-28

Similar Documents

Publication Publication Date Title
US4714530A (en) Method for producing high purity quaternary ammonium hydroxides
US4405417A (en) Process for the manufacture of cyclohexene derivatives
CN110616439A (en) Method for synthesizing 4-sulfonic acid substituted isoquinolone derivative through electrochemical oxidation
US4842775A (en) Reduction of carboxylic esters
NO170407B (en) PROCEDURE FOR PREPARING 6- (10-HYDROXYDECYL) -2,3-DIMETOXY-5-METHYL-1,4-BENZOQUINON AND ANALOGICAL COMPOUNDS
US4270994A (en) Electrochemical dehydrogenation of steroidal Δ3,5 enol ethers under basic conditions to provide steroidal Δ4,6 dienones
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
JPH0314909B2 (en)
GB2039892A (en) Production of narwedine-type derivatives
JPS6342713B2 (en)
FI90859B (en) Method for production of 6-(hydroxyalkyl)-2,3-dialkoxy-5- methyl-1,4-benzoquinone derivative
FR2582320A1 (en) ELECTROCHEMICAL PROCESS FOR PREPARING TRIFLUORO (OR CHLORODIFLUORO OR DICHLOROFLUORO) METHYL ORGANIC DERIVATIVES
JPS6342712B2 (en)
JPH03107489A (en) Production of xanthene dye by electrolysis
JP2902755B2 (en) Method for producing m-hydroxybenzyl alcohol
US4624757A (en) Electrocatalytic method for producing quinone methides
US3591469A (en) Production of linear-trans-quinacridones
AU614587B2 (en) Electrochemical synthesis of 2-aryl hydroquinones
KR880001313B1 (en) Preparation method for tetrahydro indol derivatives
JP3653590B2 (en) Process for producing bromo-substituted azetidinone compounds
JPH0277590A (en) Method for electrolytically reducing aromatic carboxylic acids
DD284673A5 (en) PROCESS FOR PREPARING 10- (HYDROXY-3,4-DIMETHOXY-6-METHYLPHENYL) DECAN 1-OL AND ITS ANALOG COMPOUNDS
CA1189017A (en) Electrochemical process for preparing thioformamide derivatives sulfoxides useful as therapeutic agents
JPS6347791B2 (en)
HU208104B (en) Process for producting 6-(10-hydroxydecyl)-2,3-dialkoxy-5-methyl-1,4-benzoquine compounds

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN OCTOBER 2003