NO158285B - CATALYST FOR GAS PHASE-OXIDATION OF SULFUR COMPOUNDS. - Google Patents

CATALYST FOR GAS PHASE-OXIDATION OF SULFUR COMPOUNDS. Download PDF

Info

Publication number
NO158285B
NO158285B NO85850292A NO850292A NO158285B NO 158285 B NO158285 B NO 158285B NO 85850292 A NO85850292 A NO 85850292A NO 850292 A NO850292 A NO 850292A NO 158285 B NO158285 B NO 158285B
Authority
NO
Norway
Prior art keywords
catalyst
oxidation
oxide
hydrogen sulphide
activity
Prior art date
Application number
NO85850292A
Other languages
Norwegian (no)
Other versions
NO158285C (en
NO850292L (en
Inventor
Tofik Gasan Ogly Alkhazov
Jury Vladimirovich Furmer
Albert Amazaspovich Vartanov
Nelli Sergeevna Amirgulian
Zakhir Kadim Ogly Kasymov
Rena Iskender Kyzy Mamedova
Tatyana Alexeevna Semenova
Alexandr Nikolaevich Radin
Original Assignee
Azerb I Nefti Khimii Im M Aziz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azerb I Nefti Khimii Im M Aziz filed Critical Azerb I Nefti Khimii Im M Aziz
Publication of NO850292L publication Critical patent/NO850292L/en
Publication of NO158285B publication Critical patent/NO158285B/en
Publication of NO158285C publication Critical patent/NO158285C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0465Catalyst compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Description

Foreliggende oppfinnelse vedrører feltet katalyse, mer spesielt vedrører det en katalysator for gassfase-oksydering av svovelforbindelser. The present invention relates to the field of catalysis, more particularly it relates to a catalyst for gas-phase oxidation of sulfur compounds.

Naturlig aktivert bauxitt som inneholder 50 - 70 vekt-% Naturally activated bauxite containing 50 - 70% by weight

Al203, 8-20 vekt-% Fe203, 2-8 vekt-% Si02, 0,5 - 5 vekt-% Ti02 benyttes som en katalysator for merkaptan-oksydering med oksygen til disulfider (U.S. patent nr. 2558221, 6. juni 1951, klasse 260-608). Al2O3, 8-20 wt% Fe2O3, 2-8 wt% SiO2, 0.5-5 wt% Ti02 is used as a catalyst for mercaptan oxidation with oxygen to disulfides (U.S. Patent No. 2558221, June 6, 1951 , class 260-608).

Denne katalysatoren sikrer ikke mer enn 50% overføring av merkaptan til disulfider og dessuten kan den benyttes bare ved en lav romhastighet for reagensråstoffet. På grunn av dette kan katalysatoren ikke anbefales for behandling av gasser for fjernelse av merkaptaner. This catalyst does not ensure more than 50% transfer of mercaptan to disulfides and furthermore it can only be used at a low space velocity for the reagent raw material. Because of this, the catalyst cannot be recommended for the treatment of gases for the removal of mercaptans.

En katalysator er også kjent for merkaptan-oksydering med oksygenholdig gass til disulfider, som f.eks. aktivert bauxitt, aktivert karbon, nikkeloksyd, jernoksyd og kobolt-oksyd (U.S. patent nr. 2589249, 4. november 1958, klasse 250-608). A catalyst is also known for mercaptan oxidation with oxygen-containing gas to disulfides, such as e.g. activated bauxite, activated carbon, nickel oxide, iron oxide and cobalt oxide (U.S. Patent No. 2589249, November 4, 1958, Class 250-608).

Overføringshastigheten for merkaptaner ved bruk av de ovenfor nevnte katalysatorer ved en temperatur på 170 - 270°C er ikke høyere enn 95% ved en romhastighet for reaksjons-blandingen på ~ 25 time _ i. Utilstrekkelig overførings-hastighet og lav aktivitet for katalysatoren gjør den uegnet for gassbehandling. The transfer rate of mercaptans using the above-mentioned catalysts at a temperature of 170 - 270°C is not higher than 95% at a space velocity of the reaction mixture of ~ 25 h _ i. Insufficient transfer rate and low activity of the catalyst make it unsuitable for gas treatment.

En katalysator er også kjent, som benyttes for merkaptan-oksydering med oksygenholdig gass til disulfider ved en temperatur på 150 - 220°C, som f.eks. kobber- og jern-oksyder båret på aktivert karbon eller andre bærere. A catalyst is also known, which is used for oxidizing mercaptan with oxygen-containing gas to disulfides at a temperature of 150 - 220°C, which e.g. copper and iron oxides supported on activated carbon or other supports.

(U.S. patent nr. 2979532, 11. april 1961, klasse 260-608). Denne katalysatoren har også en aktivitet som ikke overskrider 96%. (U.S. Patent No. 2979532, April 11, 1961, Class 260-608). This catalyst also has an activity that does not exceed 96%.

Man kjenner videre noen katalysatorer for hydrogensulfid-oksydering i gasser. F.eks. benyttes aktivert karbon for oksydering av hydrogensulfid til elementært svovel som deretter gjenvinnes i en kull-regenereringsprosess (Journal of Catalysis, 35, nr. 1 1974; Steijnt M., Mart P. "The Role of Sulfur Trapped in Micropores in Oxidation of Hydrogen Sulfide with Oxygen", side 11-17). Reaksjonen på kulloverflaten foregår ved en temperatur på 20 - 250°C. Svovel som dannes ved en temperatur på opp til 200°C av-settes imidlertid på kulloverflaten og reduserer derved katalysatorens aktivitet. Ved en temperatur høyere enn 200°C oksyderes svovel til SC>2 som resulterer i et tap av kull-selektivitet. Some catalysts for hydrogen sulphide oxidation in gases are also known. E.g. activated carbon is used to oxidize hydrogen sulfide to elemental sulfur which is then recovered in a coal regeneration process (Journal of Catalysis, 35, no. 1 1974; Steijnt M., Mart P. "The Role of Sulfur Trapped in Micropores in Oxidation of Hydrogen Sulfide with Oxygen", pages 11-17). The reaction on the coal surface takes place at a temperature of 20 - 250°C. However, sulphur, which is formed at a temperature of up to 200°C, is deposited on the coal surface and thereby reduces the activity of the catalyst. At a temperature higher than 200°C, sulfur is oxidized to SC>2, which results in a loss of coal selectivity.

Zeolitter kan benyttes som katalysatorer for oksydering av hydrogensulfid (Transaction of Mendeleev Moscow Chemical Engineering Institute, N 56, 1967, side 160-164: N.V. Kelt-sev, M.A. Adlivankina, N.S. Torocheshnikov, Ju.J. Shumja-tsky "Investigation of Incomplete Oxidation of Hydrogen Sulfide using Zeolites"). Zeolitter har en høy aktivitet for oksydering av lave konsentrasjoner av hydrogensulfid, aktiviteten avtar imidlertid med tiden. Dessuten oppnås høy aktivitet for zeolitter ved lave romhastigheter opptil 1000 timer ^ og ved temperatur høyere enn 3 00°C. Zeolites can be used as catalysts for the oxidation of hydrogen sulphide (Transaction of Mendeleev Moscow Chemical Engineering Institute, N 56, 1967, pages 160-164: N.V. Kelt-sev, M.A. Adlivankina, N.S. Torocheshnikov, Ju.J. Shumja-tsky "Investigation of Incomplete Oxidation of Hydrogen Sulfide using Zeolites"). Zeolites have a high activity for oxidizing low concentrations of hydrogen sulphide, but the activity decreases with time. Moreover, high activity is achieved for zeolites at low space velocities up to 1000 hours ^ and at temperatures higher than 300°C.

Bauxitt er kjent som en katalysator for oksydering av hydrogensulfid (U.S: patent nr. 3781445; Gasovaya Promy-schlennost N 8, 1966, side 42-44; Ju.N. Brodsky, V.J. Gerus, S.M. Goland, Ja.J. Frenkel "The Production of Sulfur at Pokhvistnevskaya Gas Compressor Station"). Den maksimale overføringen av hydrogensulfid ved stasjonen overskrider imidlertid ikke 93%. Dessuten mister bauxitten lett sin aktivitet i nærvær av vanndamp. Benyttelsen av bauxitt som en katalysator for oksydering av hydrogensulfid er forbundet med nødvendigheten av nøyaktig kontroll av forholdet mellom oksygen og hydrogensulfid fordi en økning av forholdet resulterer i avtagende katalysatorselektivitet ved dannelse av S02, og dette avtaket resulterer i nedbrytning av aktiviteten på grunn av restmengden av ureagert hydrogensulfid. Bauxite is known as a catalyst for the oxidation of hydrogen sulfide (U.S.: patent No. 3781445; Gasovaya Promy-schlennost N 8, 1966, pages 42-44; Ju.N. Brodsky, V.J. Gerus, S.M. Goland, Ja.J. Frenkel " The Production of Sulfur at Pokhvistnevskaya Gas Compressor Station"). However, the maximum transfer of hydrogen sulphide at the station does not exceed 93%. Furthermore, the bauxite easily loses its activity in the presence of water vapour. The use of bauxite as a catalyst for the oxidation of hydrogen sulphide is associated with the necessity of precise control of the ratio between oxygen and hydrogen sulphide because an increase in the ratio results in decreasing catalyst selectivity in the formation of SO 2 , and this decrease results in degradation of the activity due to the residual amount of unreacted hydrogen sulfide.

Aktivert aluminiumoksyd benyttes som en katalysator for oksydering av hydrogensulfid (Ingener-neftjanik N4, side 36-38, 1973: "Modern Processes for Purification, Drying and Processing of Hydrocarbon Gases"; Chimia i Pererabotka Uglevo-dorodov N10, side 54-60, 1978: P. Granshe "Progress in Claus Process Technology" Part II. "Improvement of Industrial Plants and Operation Methods"; Inzhener-Neftjanik No.2, side 104-111, 1973: M. Pirson, "Progress in the Developement of Catalyst for Claus Process") . , Katalysatoraktiviteten avtar imidlertid på grunn av sulfateringsreaksjoner på overflaten og nærvær av vann. Hydrogensulfidomvandlingen avtar 2 - Activated alumina is used as a catalyst for the oxidation of hydrogen sulphide (Ingener-neftjanik N4, pages 36-38, 1973: "Modern Processes for Purification, Drying and Processing of Hydrocarbon Gases"; Chimia i Pererabotka Uglevo-dorodov N10, pages 54-60, 1978: P. Granshe "Progress in Claus Process Technology" Part II. "Improvement of Industrial Plants and Operation Methods"; Inzhener-Neftjanik No.2, pages 104-111, 1973: M. Pirson, "Progress in the Developement of Catalyst for Claus Process"). , However, the catalyst activity decreases due to sulfation reactions on the surface and the presence of water. The hydrogen sulphide conversion decreases 2 -

2,5 ganger når vanninnholdet økes fra 5 til 35%. 2.5 times when the water content is increased from 5 to 35%.

Anvendelsen av jernoksyd-katalysator er også begrenset (USSR oppfinnersertifikat nr. 865777, klasse C 01 B 17/04, 1981). Som i det ovenfor nevnte tilfellet er det ved bruk av denne katalysatoren umulig å oppnå 100% selektivitet og aktivitet innen temperaturområdet 200 - 300°C og romhastigheter på 3000 - 15000 time<-1>. The use of iron oxide catalyst is also limited (USSR inventor's certificate no. 865777, class C 01 B 17/04, 1981). As in the case mentioned above, when using this catalyst it is impossible to achieve 100% selectivity and activity within the temperature range 200 - 300°C and space velocities of 3000 - 15000 hour<-1>.

En katalysator som inneholder 0,1 vekt-% jernoksyd og 9 9,9 vekt-% titanoksyd har høy aktivitet og selektivitet (USSR oppfinnersertifikat nr. 856974, klasse C 01 B 17/04, 1981). 99,5% omvandling av hydrogensulfid og 100% katalysatorselektivitet kan bare oppnås ved to-trinns-prosessen ved en relativt høy temperatur på 285 - 300°C og ved en lav romhastighet på 3000 time<-1>. A catalyst containing 0.1% by weight of iron oxide and 9.9% by weight of titanium oxide has high activity and selectivity (USSR inventor's certificate No. 856974, class C 01 B 17/04, 1981). 99.5% conversion of hydrogen sulphide and 100% catalyst selectivity can only be achieved by the two-stage process at a relatively high temperature of 285 - 300°C and at a low space velocity of 3000 hour<-1>.

Formålet med foreliggende oppfinnelsen er å tilveiebringe en slik katalysator for oksydering av sulfider som har høy stabil aktivitet, selektivitet og mekanisk styrke. The purpose of the present invention is to provide such a catalyst for the oxidation of sulphides which has high stable activity, selectivity and mechanical strength.

Dette formålet ble oppnådd ved å tilveiebringe en katalysator inneholdende jernoksyd for oksydering av sulfider, som ifølge oppfinnelsen er kjennetegnet ved at den også inneholder krom-, kobolt-, nikkel-, mangan-, kobber-, sink- og titanoksyd og har sammensetningen, uttrykt ved vekt-%: This purpose was achieved by providing a catalyst containing iron oxide for the oxidation of sulphides, which according to the invention is characterized in that it also contains chromium, cobalt, nickel, manganese, copper, zinc and titanium oxide and has the composition, expressed by weight %:

Katalysatoren har en høy aktivitet og selektivitet for oksydering av hydrogensulfid og merkaptaner. Ved en romhastighet for gassblandingen på 6000 time ^ og en konsentrasjon av hydrogensulfid og oksygen i gassblandingen på henholdsvis 3 og 4,5 volum-% ved 250°C, er omvandlingen av hydrogensulfid 97,6% og selektiviteten for oksydasjonen til svovel er ikke mindre enn 98%. Denne katalysatoren har en høy aktivitet og selektivitet også for oksydering av merkaptaner. The catalyst has a high activity and selectivity for oxidizing hydrogen sulphide and mercaptans. At a space velocity for the gas mixture of 6000 h^ and a concentration of hydrogen sulphide and oxygen in the gas mixture of 3 and 4.5% by volume respectively at 250°C, the conversion of hydrogen sulphide is 97.6% and the selectivity for the oxidation to sulfur is not less than 98%. This catalyst has a high activity and selectivity also for oxidizing mercaptans.

Nærværet av kobolt-, nikkel-, mangan-, kobber-, sink- og titanoksyd i katalysatoren bevirker en økning av katalysatorens aktivitet. En oksydasjonsprosess for hydrogensulfid ved bruk av en katalysator bestående av 28 vekt-% Fe^ O^, 17 vekt-% Cr„0-, 25 vekt-% ZnO gir 99,9% omvandling av hydrogensulfid The presence of cobalt, nickel, manganese, copper, zinc and titanium oxide in the catalyst causes an increase in the catalyst's activity. An oxidation process for hydrogen sulfide using a catalyst consisting of 28 wt% Fe^O^, 17 wt% Cr„0-, 25 wt% ZnO gives 99.9% conversion of hydrogen sulfide

-1 o ved en romhastighet på 6000 time og en temperatur på 220 C, og prosess-selektiviteten er 98,5%. Katalysatoren har også -1 o at a space velocity of 6000 hours and a temperature of 220 C, and the process selectivity is 98.5%. The catalytic converter also has

en høy aktivitet for merkaptanoksydering: Ved en romhastighet på 2000 time ^ og en temperatur på 140°C, er omvandlingen av merkaptan 100% ved en konsentrasjon i gassen på 1,5 volum-%. a high activity for mercaptan oxidation: At a space velocity of 2000 h^ and a temperature of 140°C, the conversion of mercaptan is 100% at a concentration in the gas of 1.5% by volume.

For oksydering av hydrogensulfid og merkaptan anbefales det It is recommended for the oxidation of hydrogen sulphide and mercaptan

å benytte en katalysator av følgende sammensetning, uttrykt i vekt-%: Fe20 , 20"30; Cr2°3' 25~50' Ti02' 10-25' Zn0' 20-25. Katalysatoren ifølge oppfinnelsen, har høy aktivitet både for hydrogensulfid- og merkaptan-oksydering, den er imidlertid mest effektiv for oksydering-av hydrogensulfid. to use a catalyst of the following composition, expressed in weight-%: Fe20 , 20"30; Cr2°3' 25~50' Ti02' 10-25' Zn0' 20-25. The catalyst according to the invention has high activity both for hydrogen sulphide - and mercaptan oxidation, it is, however, most effective for the oxidation of hydrogen sulphide.

Ved en romhastighet på 6000 time og en hydrogensulfid-konsentrasjon på 3 volum-% med oksygen i overskudd, er omvandlingen av hydrogensulfid ca. 100% ved praktisk talt 100% selektivitet for oksydasjonen til svovel. At a space velocity of 6000 hours and a hydrogen sulphide concentration of 3% by volume with oxygen in excess, the conversion of hydrogen sulphide is approx. 100% at practically 100% selectivity for the oxidation to sulphur.

Basert på det foregående følger det at katalysatoren sikrer høye verdier i prosessene for oksydering av hydrogensulfid og merkaptan ved høy romhastighet og høye konsentrasjoner av oksygen i gassblandingen. Based on the foregoing, it follows that the catalyst ensures high values in the processes for oxidizing hydrogen sulphide and mercaptan at high space velocity and high concentrations of oxygen in the gas mixture.

En av katalysator-utførelsene for hydrogensulfid- og merkaptan-oksydering er en katalysator av følgende sammensetning, uttrykt i vekt-%: Fe2C>3, 25-40; Cr2°3' 40-50 med en til-sats av sinkoksyd, 20-25. Katalysatoren har en høy aktivitet og selektivitet for hydrogensulfid-oksydering ved høy romhastighet av gassblandingen. Ved en romhastighet av gassblandingen på 9000 time og en temperatur på 230°C ved konsentrasjoner av hydrogensulfid og oksygen i utgangs-gassblandingen på henholdsvis 3 og 2,25 volum-% er omvandlingen av hydrogensulfid 98,7% og selektiviteten for oksydering til svovel er ikke mindre enn 99%. Katalysatoren har en høy aktivitet også for oksydering av merkaptaner: One of the catalyst designs for hydrogen sulphide and mercaptan oxidation is a catalyst of the following composition, expressed in weight %: Fe2C>3, 25-40; Cr2°3' 40-50 with an addition of zinc oxide, 20-25. The catalyst has a high activity and selectivity for hydrogen sulphide oxidation at high space velocity of the gas mixture. At a space velocity of the gas mixture of 9000 hours and a temperature of 230°C at concentrations of hydrogen sulphide and oxygen in the starting gas mixture of 3 and 2.25% by volume, respectively, the conversion of hydrogen sulphide is 98.7% and the selectivity for oxidation to sulfur is not less than 99%. The catalyst has a high activity also for oxidizing mercaptans:

Ved en romhastighet på 2000 time"^, en temperatur på 180°C At a space velocity of 2000 hour"^, a temperature of 180°C

og en konsentrasjon av merkaptaner i utgangsgassen på and a concentration of mercaptans in the outlet gas of

1,5 volum-% i nærvær av et overskudd av oksygen, gir katalysatoren praktisk talt 100% omvandling av merkaptan. 1.5% by volume in the presence of an excess of oxygen, the catalyst gives practically 100% conversion of mercaptan.

Et annet, bedre alternativ for katalysatoren er en katalysator som inneholder, uttrykt i vekt-%: Fe203, 20-25; Cr203, 25-50; Ti02' 1°-15; ZnO, 20-25. Katalysatoren har en høy aktivitet for oksydering av både hydrogensulfid og merkaptaner. Another, better alternative for the catalyst is a catalyst containing, expressed in weight %: Fe 2 O 3 , 20-25; Cr 2 O 3 , 25-50; TiO2' 1°-15; ZnO, 20-25. The catalyst has a high activity for oxidizing both hydrogen sulphide and mercaptans.

Ved en romhastighet på 6000 time ^ og en temperatur på 240°C med et innhold av hydrogensulfid og oksygen i utgangs-gassblandingen på henholdsvis 3 og 3 volum-%, sikrer katalysatoren 99,6% omvandling av hydrogensulfid ved praktisk talt 100% selektivitet for oksyderingen til elementært svovel. Oksydasjon av merkaptan i et stort overskudd av oksygen ved en merkaptan-konsentrasjon i utgangs-gassblandingen på 1,5 volum-% ved benyttelse av denne katalysatoren gir praktisk talt 100% omvandling ved 200°C og en romhastighet på 4000 t~<1>. At a space velocity of 6000 h^ and a temperature of 240°C with a content of hydrogen sulfide and oxygen in the starting gas mixture of 3 and 3% by volume respectively, the catalyst ensures 99.6% conversion of hydrogen sulfide with practically 100% selectivity for the oxidation to elemental sulphur. Oxidation of mercaptan in a large excess of oxygen at a mercaptan concentration in the starting gas mixture of 1.5% by volume using this catalyst gives practically 100% conversion at 200°C and a space velocity of 4000 t~<1> .

En av de viktigste fordelene ved katalysatoren ifølge oppfinnelsen er dens høye aktivitet og selektivitet ved høye romhastigheter opptil 5000 t _ i og i overskudd av oksygen. Katalysatoren har høy stabilitet ved oksydering av hydrogensulfid og merkaptaner. Ved undersøkelse av katalysatorens aktivitet i hydrogensulfidoksyderings-prosessen i nærvær av hydrokarboner fra naturgass ved en romhastighet pa 6000 t -1, hydrogensulfid og oksygenkonsentrasjoner på henholdsvis 3 og 2,25 volum-% ved 240°C var omvandlingen av hydrogensulfid, etter et tidsrom på 100 timer, 98,5% og selektiviteten var 98,9%. Katalysatoraktiviteten i merkaptanoksyderings-prosessen holdt seg høy i et tidsrom på 1000 timer ved en konsentrasjon av denne i gassen på 1,5 volum-% i et overskudd av oksygen ved en romhastighet på 2000 t<-1> og en temperatur på 200°C; omvandlingen av merkaptaner var praktisk talt 100%. Det bør bemerkes at katalysatoren i de nevnte prosessene ikke viser tendens til deaktivering. One of the most important advantages of the catalyst according to the invention is its high activity and selectivity at high space velocities up to 5000 t _ i and in excess of oxygen. The catalyst has high stability when oxidizing hydrogen sulphide and mercaptans. When examining the catalyst's activity in the hydrogen sulphide oxidation process in the presence of hydrocarbons from natural gas at a space velocity of 6000 t -1, hydrogen sulphide and oxygen concentrations of 3 and 2.25 volume-% respectively at 240°C, the conversion of hydrogen sulphide, after a period of 100 hours, 98.5% and the selectivity was 98.9%. The catalyst activity in the mercaptan oxidation process remained high for a period of 1000 hours at a concentration of this in the gas of 1.5% by volume in an excess of oxygen at a space velocity of 2000 t<-1> and a temperature of 200°C ; the conversion of mercaptans was practically 100%. It should be noted that the catalyst in the aforementioned processes does not show a tendency to deactivation.

En av de viktige fordeler med katalysatoren er dens høye aktivitet i nærvær av vanndamp, hydrogenklorid, karbondi-oksyd, metanol og mettede hydrokarboner som inneholder 1 - 3 og 6 karbonatomer. Innholdet av disse komponentene i gassblandingen påvirker ikke katalysatorens aktivitet og den selektive omvandlingen til elementært svovel uten dannelse av biprodukter, f.eks. svovelholdige anhydrider. One of the important advantages of the catalyst is its high activity in the presence of water vapor, hydrogen chloride, carbon dioxide, methanol and saturated hydrocarbons containing 1 - 3 and 6 carbon atoms. The content of these components in the gas mixture does not affect the activity of the catalyst and the selective conversion to elemental sulfur without the formation of by-products, e.g. sulfur-containing anhydrides.

Den ønskelige effekten oppnås ikke dersom ikke mengden av katalysatorkomponentene endres. En reduksjon av jernoksyd-innholdet i katalysatoren til mindre enn 20 vekt-% gir en reduksjon av katalysatoraktiviteten, og en økning av jernoksyd-innholdet til mer enn 75 vekt-% resulterer i at selektiviteten forringes. Reduksjon av kromoksyd-innholdet til mindre enn 25 vekt-% sikrer ikke noen ekstra effekt og en økning av innholdet av denne komponenten til mer enn 8 0 vekt-% nedbryter katalysatoraktiviteten. The desired effect is not achieved if the amount of the catalyst components is not changed. A reduction of the iron oxide content in the catalyst to less than 20% by weight results in a reduction of the catalyst activity, and an increase in the iron oxide content to more than 75% by weight results in a deterioration of the selectivity. Reducing the chromium oxide content to less than 25% by weight does not ensure any additional effect and an increase in the content of this component to more than 80% by weight degrades the catalyst activity.

En reduksjon av metalloksydadditivene i katalysatoren til mindre enn 1,5 vekt-% er ikke heldig fordi katalysatorens egenskaper derved forringes, og en økning i innholdet av additivene til mer enn 25 vekt-% resulterer i nedbrytning av katalysatorselektiviteten i tilfelle kobolt-, nikkel- A reduction of the metal oxide additives in the catalyst to less than 1.5% by weight is not fortunate because the properties of the catalyst thereby deteriorate, and an increase in the content of the additives to more than 25% by weight results in degradation of the catalyst selectivity in the case of cobalt, nickel-

og kobberoksyder; i nedbrytning av katalysatoraktiviteten i tilfelle mangan- og sinkoksyder, og i nedsatt levetid for katalysatoren i tilfelle titanoksyd-innhold. and copper oxides; in the breakdown of the catalyst activity in the case of manganese and zinc oxides, and in reduced lifetime of the catalyst in the case of titanium oxide content.

En viktig fordel ved katalysatoren ifølge oppfinnelsen er An important advantage of the catalyst according to the invention is

at den fremstilles fra billige og lett tilgjengelige rå-materialer ved hjelp av enkel teknologi. Vannløselige salter av jern, krom, titan og sink benyttes for fremstilling av katalysatoren. Foreskrevne mengder av de nevnte saltene opp-løses i destillert vann. that it is produced from cheap and easily available raw materials using simple technology. Water-soluble salts of iron, chromium, titanium and zinc are used to produce the catalyst. Prescribed amounts of the aforementioned salts are dissolved in distilled water.

Oppløsningene fremstilles i separate kar. Deretter utfelles de tilsvarende hydroksyder fullstendig fra saltoppløsningene ved bruk av en 3N-vandig oppløsning. Oppløsningens pH-verdi benyttes for å bestemme graden av utfelling. De resulterende utfellingene plasseres i et kar og omrøres grundig, deretter vaskes utfellingen med destillert vann inntil det oppnås The solutions are prepared in separate vessels. The corresponding hydroxides are then completely precipitated from the salt solutions using a 3N aqueous solution. The solution's pH value is used to determine the degree of precipitation. The resulting precipitates are placed in a vessel and stirred thoroughly, then the precipitate is washed with distilled water until obtaining

-2 -2

negativ reaksjon for klorioner eller SO^ . Den vaskede utfellingen filtreres, formes og tørkes i luft ved romtemperatur og kalsineres deretter ved 450 - 500°C i 4 timer. negative reaction for chlorine ions or SO^ . The washed precipitate is filtered, formed and dried in air at room temperature and then calcined at 450 - 500°C for 4 hours.

Den endelige katalysatoren har en sylindrisk form med en korn-diameter på 3-5 mm og en høyde på 8-12 mm. Katalysatorens spesifikke overflateareal er 35-4 5 m 2/g. Katalysatoren har høy styrke: Mekanisk abrasjonsresistans (residu) bestemt i en luftmølle av jet-typen er 85 - 90%. Katalysatoren er termisk stabil ved temperaturer opptil 950°C. The final catalyst has a cylindrical shape with a grain diameter of 3-5 mm and a height of 8-12 mm. The specific surface area of the catalyst is 35-45 m 2 /g. The catalyst has high strength: Mechanical abrasion resistance (residue) determined in a jet-type air mill is 85 - 90%. The catalyst is thermally stable at temperatures up to 950°C.

Som det fremgår av beskrivelsen er fremgangsmåten for fremstilling av katalysatoren enkel og krever ikke spesialutstyr eller dyre, og vanskelig tilgjengelige, reagenser. As can be seen from the description, the method for producing the catalyst is simple and does not require special equipment or expensive, and difficult to access, reagents.

For å gi en bedre forståelse av foreliggende oppfinnelse illustrerer følgende spesifikke eksempler fremstillingen og sammensetningen av katalysatoren. In order to provide a better understanding of the present invention, the following specific examples illustrate the preparation and composition of the catalyst.

Eksempel 1 Example 1

15 g jernsulfat oppløses i 550 ml destillert vann i et kar og 10 g kromsulfat oppløses i 360 ml destillert vann i et annet kar. Deretter tilsettes en 6% oppløsning av ammoniakk til oppløsningene under kontinuerlig omrøring inntil utfellingen av jern- og krom-hydroksyder er fullstendig. De resulterende suspensjonene plasseres i ett kar, omrøres grundig og får sedimentere i 12 timer; deretter vaskes utfellingen med destillert vann inntil det oppnås negativ reaksjon for SO^ -ioner, filtreres, formes, tørkes i 1,5 timer ved en temperatur på 120 C og kalsineres i 5 timer ved 450°C. Den resulterende katalysatoren har følgende sammensetning, uttrykt ved vekt-%: Fe^ O^, 60; Cr^O^, 40. Dissolve 15 g of iron sulphate in 550 ml of distilled water in a vessel and 10 g of chromium sulphate in 360 ml of distilled water in another vessel. A 6% solution of ammonia is then added to the solutions with continuous stirring until the precipitation of iron and chromium hydroxides is complete. The resulting suspensions are placed in a vessel, stirred thoroughly and allowed to settle for 12 hours; then the precipitate is washed with distilled water until a negative reaction for SO^ ions is obtained, filtered, shaped, dried for 1.5 hours at a temperature of 120°C and calcined for 5 hours at 450°C. The resulting catalyst has the following composition, expressed as wt%: Fe 2 O 2 , 60; Cr^O^, 40.

Eksempel 2 Example 2

Katalysatoren fremstilles som beskrevet i eksempel 1, ved bruk av 7,5 g Fe2(S04)3; 12 g Cr2(S04>3; 4 g ZnS04. The catalyst is prepared as described in example 1, using 7.5 g of Fe2(SO4)3; 12 g Cr2(S04>3; 4 g ZnS04.

Den resulterende katalysatoren har sammensetningen, uttrykt i vekt-%: Fe203, 30 ; Cr2°3' 50; Zn0' 20• The resulting catalyst has the composition, expressed in wt%: Fe 2 O 3 , 30 ; Cr2°3' 50; Zn0' 20•

Eksempel 3 Example 3

Katalysatoren fremstilles som beskrevet i eksempel 1, ved bruk av 15 g Fe2(S04)3; 6,25 g Cr2(SC>4)3; 3 g CuS04. The catalyst is prepared as described in example 1, using 15 g of Fe2(SO4)3; 6.25 g of Cr2(SC>4)3; 3 g of CuSO 4 .

Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe203, 60; Cr2C>3, 25; CuO, 15. The resulting catalyst has the composition, expressed as wt%: Fe 2 O 3 , 60; Cr2C>3, 25; CuO, 15.

Eksempel 4 Example 4

Katalysatoren fremstilles som beskrevet i eksempel 1 , ved bruk av 15 g Fe2(S04)3; 9,6 g Cr2(S04>3, 4,5 g Ti(SC>4)2. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe203, 54; Cr203, 33; Ti02' 13' som anatas-modifikasjon. The catalyst is prepared as described in example 1, using 15 g of Fe2(SO4)3; 9.6 g Cr2(SO4>3, 4.5 g Ti(SC>4)2. The resulting catalyst has the composition, expressed as wt%: Fe2O3, 54; Cr2O3, 33; TiO2' 13' as anatase modification .

Eksempel 5 Example 5

Katalysatoren fremstilles som beskrevet i eksempel 1, ved bruk av 10 g <Fe>2(S04)3; 12,5 g Cr (S04)3; 2,1 g MnS04. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe2°3' 40'" Cr2°3' 50; Mn0' 10"The catalyst is prepared as described in example 1, using 10 g <Fe>2(SO4)3; 12.5 g of Cr(SO 4 ) 3 ; 2.1 g of MnSO 4 . The resulting catalyst has the composition, expressed as % by weight: Fe2°3' 40'" Cr2°3' 50; Mn0' 10"

Eksempel 6 Example 6

Katalysatoren fremstilles som beskrevet i eksempel 1, ved bruk av 12,5 g Fe2<S04)3; 12,6 Cr2(S04)3; 1,2 g CoS04. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe203> 50; Cr2°3' 45 > Co°' 5- The catalyst is prepared as described in example 1, using 12.5 g of Fe2<SO4)3; 12.6 Cr 2 (SO 4 ) 3 ; 1.2 g of CoSO 4 . The resulting catalyst has the composition, expressed as % by weight: Fe 2 O 3 > 50; Cr2°3' 45 > Co°' 5-

Eksempel 7 Example 7

Katalysatoren fremstilles som beskrevet i eksempel 1, ved bruk av 11,7 g Fe2(S04)3; 12,8 g Cr2(S04>3; 4 g NiS04. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe2°3' 40Cr2°3' 43' Ni0' 1 7 ' The catalyst is prepared as described in example 1, using 11.7 g of Fe2(SO4)3; 12.8 g Cr2(S04>3; 4 g NiS04. The resulting catalyst has the composition, expressed as % by weight: Fe2°3' 40Cr2°3' 43' Ni0' 1 7 '

Katalysatoren, ifølge eksemplene 1 - 7 ble undersøkt i merkaptanoksyderings-prosesser. Driftsbetingelsene og resultatene er gjengitt i tabell 1. Som det fremgår av tabellen er katalysatoren ifølge foreliggende oppfinnelse kjennetegnet ved høy selektivitet (høyere enn 98%) og en høy grad av merkaptan-omvandling (97 - 99,9%) som er langt overlegent de tidligere kjente katalysatorer benyttet for merkaptan-oksydering. The catalyst, according to examples 1 - 7, was investigated in mercaptan oxidation processes. The operating conditions and results are shown in table 1. As can be seen from the table, the catalyst according to the present invention is characterized by high selectivity (higher than 98%) and a high degree of mercaptan conversion (97 - 99.9%) which is far superior to the previously known catalysts used for mercaptan oxidation.

Eksempel 8 Example 8

For å fremstille katalysatoren oppløses det i separate kar: 25,5 g jernklorid i 943 ml destillert vann, 26,3 g kromklorid i'1000 ml vann, 17,8 g titanklorid i 940 ml vann, To prepare the catalyst, dissolve in separate vessels: 25.5 g of iron chloride in 943 ml of distilled water, 26.3 g of chromium chloride in 1000 ml of water, 17.8 g of titanium chloride in 940 ml of water,

12,5 g sinkklorid i 916 ml vann. En 3N vandig oppløsning av ammoniakk tilsettes til de resulterende oppløsninger under kontinuerlig omrøring inntil de tilsvarende hydroksyder er fullstendig utfelt. pH-verdien for oppløsningen benyttes for å bestemme graden av utfelling. De resulterende hydroksyd-utfellingene tilføres et kar og omrøres grundig og utfellingen vaskes med destillert vann inntil det oppnås negativ reaksjon på klorioner. Deretter filtreres utfellingen, formes, tørkes 12.5 g of zinc chloride in 916 ml of water. A 3N aqueous solution of ammonia is added to the resulting solutions with continuous stirring until the corresponding hydroxides are completely precipitated. The pH value of the solution is used to determine the degree of precipitation. The resulting hydroxide precipitates are added to a vessel and stirred thoroughly and the precipitate is washed with distilled water until a negative reaction to chlorine ions is obtained. Then the precipitate is filtered, shaped, dried

i luft ved romtemperatur og kalsineres ved en temperatur på 500°C i 4 timer.. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: 25 Fe203, 25 Cr203, 25Ti02, 25 ZnO. in air at room temperature and calcined at a temperature of 500°C for 4 hours. The resulting catalyst has the composition, expressed as % by weight: 25 Fe 2 O 3 , 25 Cr 2 O 3 , 25 TiO 2 , 25 ZnO.

Eksempel 9 Example 9

For å fremstille katalysatoren oppløses 35 g jernklorid i 1128 ml destillert vann, 21 g kromklorid i 788 ml vann, To prepare the catalyst, dissolve 35 g of iron chloride in 1128 ml of distilled water, 21 g of chromium chloride in 788 ml of water,

21,5 g titanklorid i 1133 ml vann, 10 g sinkklorid i 734 ml vann. Deretter fremstilles katalysatoren ifølge fremgangsmåten beskrevet i eksempel 8. Den resulterende katalysatoren har sammensetningen, uttrykt i vekt-%: Fe203, 3 0; Cr203, 25; Ti02, 25; ZnO, 20. 21.5 g of titanium chloride in 1133 ml of water, 10 g of zinc chloride in 734 ml of water. The catalyst is then prepared according to the method described in example 8. The resulting catalyst has the composition, expressed in weight %: Fe 2 O 3 , 3 0; Cr 2 O 3 , 25; TiO2, 25; ZnO, 20.

Eksempel 10 Example 10

For å fremstille katalysatoren oppløses 20,3 g jernklorid i 750 ml destillert vann, 52,6 g kromklorid i 19 75 ml vann, To prepare the catalyst, dissolve 20.3 g of iron chloride in 750 ml of distilled water, 52.6 g of chromium chloride in 19 75 ml of water,

7,1 g titanklorid i 3 75 ml vann,10gsinkklorid i 735 ml vann. Deretter fremstilles katalysatoren ifølge fremgangsmåten beskrevet i eksempel 8. Den resulterende katalysatoren har sammensetningen, uttrykt ved vekt-%: Fe2°3' 20; Cr2°3' 50' Ti02, 10; ZnO, 20. 7.1 g titanium chloride in 3 75 ml water, 10 g zinc chloride in 735 ml water. Next, the catalyst is prepared according to the method described in example 8. The resulting catalyst has the composition, expressed as % by weight: Fe2°3' 20; Cr2°3' 50' TiO2, 10; ZnO, 20.

De oppnådde katalysatorprøvene innbefatter korn av sylindrisk form med en diameter på 3 - 5 mm og en høyde på 8 - 12 mm. Det spesifikke overflatearealet for katalysatoren er 35 - The catalyst samples obtained include grains of cylindrical shape with a diameter of 3 - 5 mm and a height of 8 - 12 mm. The specific surface area of the catalyst is 35 -

45 m 2/g. Den mekaniske abrasjonsresistansen (residu) er 45 m2/g. The mechanical abrasion resistance (residue) is

85 - 90%. Katalysatoren er termisk stabil ved temperaturer opptil 950°C. 85 - 90%. The catalyst is thermally stable at temperatures up to 950°C.

Resultatene fra undersøkelser av de oppnådde katalysator-prøvene ved hydrogensulfidoksyderings-prosessen under for-skjellige betingelser er gjengitt i tabell 2. The results from investigations of the obtained catalyst samples in the hydrogen sulphide oxidation process under different conditions are reproduced in table 2.

Som det fremgår av tabellen viser de oppnådde katalysatorer høy aktivitet (H2S-omvandlingen er ikke lavere enn 98,5%) As can be seen from the table, the obtained catalysts show high activity (the H2S conversion is not lower than 98.5%)

og selektiviteten for hydrogensulfid-oksydering til elementært svovel er ikke lavere enn 98,8% ved høye hastigheter opptil 15000 t~^ og overskudd-oksygen i gassblandingen. and the selectivity for hydrogen sulfide oxidation to elemental sulfur is not lower than 98.8% at high speeds up to 15,000 t~^ and excess oxygen in the gas mixture.

Katalysatoren ifølge oppfinnelsen kan finne anvendelse i gass- og petroleumsraffinerings-industrien for fjernelse av hydrogensulfid og merkaptaner fra gasser, såvel som rest-gasser fra Claus-prosesser og regenereringsgasser som oppnås i trinnet for adsorptiv renselse av naturgass ved fremstilling av ammoniakk. The catalyst according to the invention can be used in the gas and petroleum refining industry for the removal of hydrogen sulphide and mercaptans from gases, as well as residual gases from Claus processes and regeneration gases which are obtained in the step for adsorptive purification of natural gas in the production of ammonia.

Claims (2)

1. Katalysator inneholdende jernoksyd for gassfase-oksydering av svovelforbindelser, karakterisert ved at den også inneholder krom-, kobolt-, nikkel-, mangan-, kobber-, sink- og titanoksyd og har sammensetningen, uttrykt ved vekt-%:Jernoksyd, Fe203, 20-60;Kromoksyd, Cr203, 25-50; Kobolt-, nikkel-, mangan-, kobber-, sink-, titanoksyd, 1,5-25.1. Catalyst containing iron oxide for gas-phase oxidation of sulfur compounds, characterized in that it also contains chromium, cobalt, nickel, manganese, copper, zinc and titanium oxide and has the composition, expressed by weight %: Iron oxide, Fe203 , 20-60; Chromium oxide, Cr203, 25-50; Cobalt, nickel, manganese, copper, zinc, titanium oxide, 1.5-25. 2. Katalysator ifølge krav 1,karakterisert ved at den inneholder jern-, krom-, titan- og sinkoksyd og har følgende sammensetning, uttrykt ved vekt-%: Jernoksyd, 25-30;Kromoksyd, 2 5-50; Titanoksyd, 10-30; Sinkoksyd, 20-25.2. Catalyst according to claim 1, characterized in that it contains iron, chromium, titanium and zinc oxide and has the following composition, expressed as % by weight: Iron oxide, 25-30; Chromium oxide, 2 5-50; Titanium oxide, 10-30; Zinc oxide, 20-25.
NO85850292A 1983-05-26 1985-01-24 CATALYST FOR GAS PHASE-OXIDATION OF SULFUR COMPOUNDS. NO158285C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SU833591259A SU1219134A1 (en) 1983-05-26 1983-05-26 Catalyst for gas-phase oxidation of hydrogen sulphide to sulphur
PCT/SU1983/000015 WO1984004699A1 (en) 1983-05-26 1983-06-07 Catalyst for the gaseous phase oxidation of sulphurous compounds

Publications (3)

Publication Number Publication Date
NO850292L NO850292L (en) 1985-01-24
NO158285B true NO158285B (en) 1988-05-09
NO158285C NO158285C (en) 1988-08-17

Family

ID=21063443

Family Applications (1)

Application Number Title Priority Date Filing Date
NO85850292A NO158285C (en) 1983-05-26 1985-01-24 CATALYST FOR GAS PHASE-OXIDATION OF SULFUR COMPOUNDS.

Country Status (7)

Country Link
JP (2) JPS62500083A (en)
DE (1) DE3390492T1 (en)
GB (1) GB2164867B (en)
NL (1) NL8320198A (en)
NO (1) NO158285C (en)
SU (1) SU1219134A1 (en)
WO (1) WO1984004699A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004700A1 (en) * 1983-05-26 1984-12-06 Azerb I Nefti Khimii Im M Aziz Method for purifying gas from sulphurous compounds
US4895824A (en) * 1987-09-08 1990-01-23 W. R. Grace & Co.-Conn. Add-on hydrogen sulfide trap
US5891415A (en) * 1995-05-17 1999-04-06 Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya Process for selective oxidation of hydrogen sulfide to elemental sulfur
US5603913A (en) * 1995-05-17 1997-02-18 Azerbaidzhanskaya Gosudarstvennaya Neftianaya Academiya Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
NL1002524C2 (en) * 1996-03-04 1997-09-05 Gastec Nv Catalyst for the selective oxidation of sulfur compounds to elemental sulfur, process for the preparation of such a catalyst and method for the selective oxidation of sulfur compounds elemental sulfur.
DE10128130B4 (en) * 2001-06-09 2007-07-05 Mol Katalysatortechnik Gmbh Process for the oxidative purification of gaseous media and full metal catalyst
JP2013022498A (en) * 2011-07-20 2013-02-04 Ube Industries Ltd Detoxifying method of hydrogen sulfide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2144148A5 (en) * 1971-07-01 1973-02-09 Inst Francais Du Petrole
DE2627454C3 (en) * 1976-06-18 1982-04-22 Robert Bosch Gmbh, 7000 Stuttgart Catalyst for exhaust gas purification, in particular for internal combustion engines
SU856974A1 (en) * 1979-06-13 1981-08-23 Азербайджанский Институт Нефти И Химии Им.М.Азизбекова Method of producing elemental sulphur
FR2481254A1 (en) * 1980-04-23 1981-10-30 Elf Aquitaine PROCESS FOR THE CATALYTIC INCINERATION OF WASTE GASES CONTAINING LOW CONCENTRATION AT LEAST ONE COMPOUND OF SULFUR SELECTED AMONG COS, CS2, AND MERCAPTANS AND POSSIBLY AT LEAST ONE MEMBER OF THE GROUP FORMED BY H2S, SO2, SULFUR AND / OR VESICULAR SULFUR

Also Published As

Publication number Publication date
NL8320198A (en) 1985-04-01
JPS62500083A (en) 1987-01-16
NO158285C (en) 1988-08-17
JPH0357805B2 (en) 1991-09-03
JPS62500084A (en) 1987-01-16
WO1984004699A1 (en) 1984-12-06
GB2164867B (en) 1987-10-14
NO850292L (en) 1985-01-24
DE3390492T1 (en) 1985-06-13
GB8500162D0 (en) 1985-02-13
GB2164867A (en) 1986-04-03
SU1219134A1 (en) 1986-03-23
DE3390492C2 (en) 1989-08-03

Similar Documents

Publication Publication Date Title
CA2318734C (en) Catalysts for the selective oxidation of hydrogen sulfide to sulfur
JP2637898B2 (en) Process for selectively producing aqueous streams containing water-soluble inorganic sulfides to the corresponding sulfates
US7754471B2 (en) Process for the high recovery efficiency of sulfur from an acid gas stream
US4576925A (en) Catalyst for purifying gases from hydrogen sulphide
US5389240A (en) Naphthenic acid removal as an adjunct to liquid hydrocarbon sweetening
US20160325226A1 (en) Desulfurizer For Conversion And Absorption Of High-Concentration Carbonyl Sulfide And A Desulfurizer For Catalytic Conversion And Absorption Of Carbon Disulfide And Their Preparation Methods
WO2013015889A1 (en) Catalytic compositions useful in removal of sulfur compounds from gaseous hydrocarbons, processes for making these and uses thereof
US5603913A (en) Catalysts and process for selective oxidation of hydrogen sulfide to elemental sulfur
US5653953A (en) Process for recovering elemental sulfur by selective oxidation of hydrogen sulfide
AU2018310678A1 (en) Process for the production of copper sulfide
US5597546A (en) Selective oxidation of hydrogen sulfide in the presence of bismuth-based catalysts
KR20150105905A (en) Targeted desulfurization process and apparatus integrating gas phase oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds
NO158285B (en) CATALYST FOR GAS PHASE-OXIDATION OF SULFUR COMPOUNDS.
CN110841641A (en) Catalyst for preparing sulfur by selective oxidation of hydrogen sulfide and preparation method thereof
CN113368865B (en) Denitration catalyst, preparation method thereof and waste gas denitration method
WO2018013009A1 (en) Catalyst for the selective oxidation of hydrogen sulphide (variants) and processes using same
US4036785A (en) Catalyst for reduction of nitrogen oxides in presence of ammonia
SU784739A3 (en) Catalyst for gas purification from hydrogen and carbon sulfuric compounds
CN111056612B (en) Treatment method and application of sulfur-containing wastewater
CN106609166A (en) Desulfurizing agent and preparing method thereof
RU2632014C1 (en) Process of oxidating hydrogen sulfide
RU2766555C1 (en) Catalyst for selective oxidation of hydrogen sulfide and method of its use
CN115672255B (en) Thiol remover and aviation kerosene deodorization method
CN111068611B (en) Low-carbon olefin desulfurizing agent and preparation method and application thereof
CN115678629A (en) Method for producing liquefied gas with ultra-low sulfur content