NO156345B - SELF-ADJUSTING REGULATOR. - Google Patents
SELF-ADJUSTING REGULATOR. Download PDFInfo
- Publication number
- NO156345B NO156345B NO790576A NO790576A NO156345B NO 156345 B NO156345 B NO 156345B NO 790576 A NO790576 A NO 790576A NO 790576 A NO790576 A NO 790576A NO 156345 B NO156345 B NO 156345B
- Authority
- NO
- Norway
- Prior art keywords
- regulator
- sampling
- time
- self
- setting device
- Prior art date
Links
- 238000005070 sampling Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 description 10
- 230000006978 adaptation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- General Induction Heating (AREA)
Description
Oppfinnelsen angår en selvinnstillende regulator omfattende en lineær, digital regulator, for eksempel av PI-eller PID-karakter, hvor det i regulatoren også inngår et første beregnings- og innstillingsorgan for optimal innstilling av reguleringsparametrene, og et samplingsorgan for reguleringssignaler, og hvor det til regulatoren er tilkoplet et ytterligere beregnings- og innstillingsorgan for styring av samplingsorganet. The invention relates to a self-adjusting regulator comprising a linear, digital regulator, for example of PI or PID type, where the regulator also includes a first calculation and setting means for optimal setting of the regulation parameters, and a sampling means for regulation signals, and where to the regulator is connected to a further calculation and setting device for controlling the sampling device.
En sådan selvinnstillende regulator er kjent Such a self-tuning regulator is known
fra bl.a. Automatica, Vol. 11, pp 53 - 59, Pergamon Press, 1975. from i.a. Automatica, Vol. 11, pp 53 - 59, Pergamon Press, 1975.
Ved styring av en prosess, eksempelvis med trinn-respons av den type som er vist på fig. 1, er det viktig at den valgte, diskrete løpetid k og den valgte samplingstid T står i en sådan relasjon til dødtiden L at When controlling a process, for example with a step response of the type shown in fig. 1, it is important that the selected, discrete duration k and the selected sampling time T are in such a relation to the dead time L that
k • T > L og (k-1) T _< L. Med diskret løpetid forstås antall T inntil det samplede forløp starter. Fig. 1 viser et tillatt valg av T når k = 2. Det kan iblant være problematisk først å velge samplingstid T og fra regulatoren få frem en ønsket løpetid k for oppnåelse av stabil regulering. Det er ut fra et stabilitetssynspunkt farlig å gi k for små verdier. k • T > L and (k-1) T _< L. Discrete running time means the number of T until the sampled course starts. Fig. 1 shows a permitted selection of T when k = 2. It can sometimes be problematic to first select the sampling time T and obtain from the regulator a desired running time k to achieve stable regulation. From a stability point of view, it is dangerous to give k too small values.
Formålet med oppfinnelsen er å tilveiebringe The purpose of the invention is to provide
en løsning av disse og andre med disse sammenhengende problemer ved en selvinnstillende regulator, og ifølge oppfinnelsen er det som kjennetegner regulatoren, at det ytterligere beregnings- og innstillingsorgan er innrettet til å innstille en diskret løpetid k, hvoretter, når denne løpetid er innstilt, regulatoren er innrettet til automatisk å utvelge en for systemets stabilitet tilpasset samplingstid T, slik at k • T > L a solution to these and other related problems by a self-adjusting regulator, and according to the invention what characterizes the regulator is that the additional calculation and setting means is arranged to set a discrete duration k, after which, when this duration is set, the regulator is designed to automatically select a sampling time T adapted to the system's stability, so that k • T > L
og (k-1) • T _< L, hvor L er dødtiden. and (k-1) • T _< L, where L is the dead time.
Hensikten er altså å finne en passende samplingstid for en stabil regulering med utgangspunkt i en fiksert løpetid k, dvs. antallet av samplingsintervaller T, inntil systemet svarer. Man unngår på denne måte faren for et ustabilt system der løpetiden k er for liten. The purpose is therefore to find a suitable sampling time for a stable regulation based on a fixed duration k, i.e. the number of sampling intervals T, until the system responds. In this way, the danger of an unstable system where the running time k is too small is avoided.
Oppfinnelsen skal beskrives nærmere i det følgende under henvisning til tegningen, der fig. 1 viser et diagram for illustrasjon av oppfinnelsens bakgrunn (se ovenfor), og fig. 2 viser et blokkskjema av en utførelse av en selvinnstillende regulator ifølge oppfinnelsen. The invention will be described in more detail below with reference to the drawing, where fig. 1 shows a diagram to illustrate the background of the invention (see above), and fig. 2 shows a block diagram of an embodiment of a self-adjusting regulator according to the invention.
Den prosess som skal styres ved hjelp av den selvinnstillende regulator ifølge oppfinnelsen, er vist ved 1 på fig. 2. Til prosessen tilføres en styreverdi 2. The process to be controlled using the self-adjusting regulator according to the invention is shown at 1 in fig. 2. A control value 2 is added to the process.
I anordningen inngår en lineær, digital regulator 3 av f.eks. PID-karakter, til hvilken det blant annet til-føres en referanseverdi 4. Regulatoren er innrettet til å styre prosessen, og for å gjøre regulatoren selvinnstillende er den tilkoplet til et beregnings- og innstillingsorgan 5 for optimal innstilling eller tilpasning av reguleringsparametrene. The device includes a linear, digital regulator 3 of e.g. PID character, to which, among other things, a reference value 4 is added. The regulator is designed to control the process, and to make the regulator self-adjusting, it is connected to a calculation and setting device 5 for optimal setting or adaptation of the control parameters.
Til regulatoren er også tilkoplet et ytterligere beregnings- og innstillingsorgan 6 for innstilling av passende samplingstid (T) ved et samplingsorgan 7 for inn- og utkopling av reguleringssignalene (via 8) (tilpasning av samplingstiden Also connected to the regulator is a further calculation and setting device 6 for setting the appropriate sampling time (T) by a sampling device 7 for switching on and off the regulation signals (via 8) (adaptation of the sampling time
T). T).
Utførelsesrekkefølgen er slik at regulatoren The order of execution is such that the regulator
3 innkoples ved hvert samplingstidspunkt, idet tilpasningen kan skje ifølge ett av de følgende tre alternativer: 3 is switched on at each sampling time, as the adaptation can take place according to one of the following three options:
(1) samme frekvens som regulatoren 3 (1) same frequency as regulator 3
(2) lavere frekvens enn regulatoren 3 (2) lower frequency than regulator 3
(3) ved installasjon eller bare ved inntruffet hendelse. (3) upon installation or merely upon the occurrence of an event.
Regulatoren ifølge oppfinnelsen er altså helt selvinnstillende, dvs. ingen parametere trenger å justeres manuelt ved tilkopling av regulatoren 3 til prosessen 1. The regulator according to the invention is therefore completely self-adjusting, i.e. no parameters need to be adjusted manually when connecting the regulator 3 to the process 1.
Regulatoren med dennes tilpasningsorganer 5 og The regulator with its adaptation organs 5 and
6 fungerer som et tidsdiskret system der målesignalene fra prosessen prøvetas eller samples (T) og samplingsverdiene tilpasses til en modell for prosessen, hensiktsmessig innebyg-get i regulatoren. Med utgangspunkt i modellen velges et opti-malt styresignal. 6 functions as a time-discrete system where the measurement signals from the process are sampled or sampled (T) and the sampling values are adapted to a model for the process, appropriately built into the regulator. Based on the model, an optimal control signal is selected.
Til forskjell fra tidligere kjente selvinnstillende regulatorer er det ved oppfinnelsen ikke nødvendig å tilpasse relasjonen mellom samplingstid T og diskret løpetid k til en modell for prosessen. In contrast to previously known self-adjusting regulators, with the invention it is not necessary to adapt the relationship between sampling time T and discrete running time k to a model for the process.
Ifølge en utførelsesform av oppfinnelsen kan man eksempelvis fiksere den diskrete løpetid k i prosessen til 2 eller mer (se fig. 1). De samplingstider som regulatoren velger mellom, kan illustreres ved følgende formel (rekursiv): According to one embodiment of the invention, one can for example fix the discrete running time k in the process to 2 or more (see Fig. 1). The sampling times that the regulator chooses between can be illustrated by the following formula (recursive):
Tq = minste samplingstid Tq = minimum sampling time
T\ er altså de forskjellige samplingstider. Man begynner med Tq og går oppover inntil man finner en passende T, hvilket jo skjer automatisk i regulatoren. T\ are thus the different sampling times. You start with Tq and go up until you find a suitable T, which happens automatically in the regulator.
Det kan vises at det eksisterer nøyaktig én samplingstid av de som frembringes av formelen (1), som passer til prosessen. Dessuten frembringes et fåtall samplingstider for prøving. For k = 2, Tq = 20 ms, trenges bare 13 forskjellige samplingstider for å dekke området 20 ms - 82 s. It can be shown that there exists exactly one sampling time of those produced by formula (1), which fits the process. In addition, a small number of sampling times are produced for testing. For k = 2, Tq = 20 ms, only 13 different sampling times are needed to cover the range 20 ms - 82 s.
For å finne den riktige samplingstid av de frem-brakte samplingstider ifølge formelen (1) under innjusteringen, evaluerer regulatoren et tap a bestående av en avveid kvad-ratsum X av målesignalet y ved fortløpende samplingstidspunkter. In order to find the correct sampling time of the produced sampling times according to formula (1) during the adjustment, the regulator evaluates a loss a consisting of a weighted square sum X of the measurement signal y at successive sampling times.
Den riktige samplingstid T^ er den samplingstid for hvilken følgende gjelder: The correct sampling time T^ is the sampling time for which the following applies:
(A) 0" har lokalt minimum i (A) 0" has local minimum i
<T>R, dvs. CT(Tk) < min (C(Tk_1), C(Tk+1)), <T>R, i.e. CT(Tk) < min (C(Tk_1), C(Tk+1)),
der T^ frembringes av formelen (1). where T^ is produced by the formula (1).
(B) C er stasjonær, dvs. (B) C is stationary, i.e.
der p velges som en passende konstant: where p is chosen as a suitable constant:
fordeling, dersom det ønskes hypoteseprøving av "regulatoren optimal" med risikonivå ot) . distribution, if hypothesis testing of the "optimal regulator" with risk level ot) is desired.
°N^Tk^ bete9ner tapet evaluert under de N siste samplingstidspunkter . °N^Tk^ denotes the loss evaluated during the last N sampling times.
<y skal altså oppfylle disse to vilkår for at <y must therefore fulfill these two conditions so that
systemet skal være stabilt. Dersom f.eks. forholdet ifølge B faller utenfor (i, p) ved hypoteseprøvingen, blir systemet the system must be stable. If e.g. the relationship according to B falls outside (i, p) in the hypothesis test, the system becomes
p p
ustabilt. p unstable. p
Ifølge en annen utførelsesform fikseres på samme According to another embodiment, the same is fixed
måte som ovenfor den diskrete løpetid k til et vilkårlig helt tall k > 2. way as above the discrete maturity k to an arbitrary integer k > 2.
Samplingstiden tillates å endres i diskrete tids-punkter t^ ifølge nedenstående formler. The sampling time is allowed to change at discrete time points t^ according to the formulas below.
der m er et fast, vilkårlig helt tall ^ 1 og T er samplings- where m is a fixed, arbitrary integer ^ 1 and T is the sampling
tiden bestemt i tidspunktet tN>the time determined in time tN>
En filtrert måleverdi z(tN) dannes som funksjon A filtered measurement value z(tN) is formed as a function
av måleverdien i samplingstidspunktene *N_^f ^n-1 + T(t)''--'of the measured value at the sampling times *N_^f ^n-1 + T(t)''--'
tN som en avveid sum av følgende størrelser: tN as a weighted sum of the following quantities:
Tilpasningsanordningen 6 på fig. 2 utføres som en selvinnstillende regulator med samme beregningsmetodikk som i den adaptive regulator 3, 5 på fig. 2, bare med den forskjell at z(tN) betraktes som "måleverdi" og T(tN) (samplingstiden ved tidspunktet tN) som "styreverdi". The adaptation device 6 in fig. 2 is performed as a self-adjusting regulator with the same calculation methodology as in the adaptive regulator 3, 5 in fig. 2, only with the difference that z(tN) is regarded as "measured value" and T(tN) (the sampling time at time tN) as "control value".
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7802097A SE442921B (en) | 1978-02-23 | 1978-02-23 | SELF-ADJUSTING REGULATOR |
Publications (3)
Publication Number | Publication Date |
---|---|
NO790576L NO790576L (en) | 1979-08-24 |
NO156345B true NO156345B (en) | 1987-05-25 |
NO156345C NO156345C (en) | 1987-09-02 |
Family
ID=20334083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO790576A NO156345C (en) | 1978-02-23 | 1979-02-21 | SELF-ADJUSTING REGULATOR. |
Country Status (7)
Country | Link |
---|---|
CA (1) | CA1142590A (en) |
DE (1) | DE2905525A1 (en) |
DK (1) | DK148853C (en) |
FI (1) | FI72215C (en) |
GB (1) | GB2015771B (en) |
NO (1) | NO156345C (en) |
SE (1) | SE442921B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57199004A (en) * | 1981-06-01 | 1982-12-06 | Toshiba Corp | Sample value adaptive process controller |
US4492336A (en) * | 1982-03-17 | 1985-01-08 | Matsushita Electric Industrial Co., Ltd. | Cooker with heating control system |
DE3921158A1 (en) * | 1989-06-28 | 1991-01-10 | Pintsch Bamag Ag | Automatic double-panel door opening and closure drive - has constant closing force with set-point control such that obstruction reduces armature current and torque |
DE19516627A1 (en) * | 1995-05-05 | 1996-11-07 | Ranco Inc | Method and device for controlling a process |
DE19519378B4 (en) * | 1995-05-26 | 2011-06-30 | Bayerische Motoren Werke Aktiengesellschaft, 80809 | Cooling system with electrically adjustable actuator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2335788C2 (en) * | 1972-07-21 | 1987-02-26 | ASEA AB, Västerås | Self-adjusting regulator |
-
1978
- 1978-02-23 SE SE7802097A patent/SE442921B/en not_active IP Right Cessation
-
1979
- 1979-02-14 DE DE19792905525 patent/DE2905525A1/en active Granted
- 1979-02-16 DK DK68679A patent/DK148853C/en not_active IP Right Cessation
- 1979-02-20 FI FI790565A patent/FI72215C/en not_active IP Right Cessation
- 1979-02-21 NO NO790576A patent/NO156345C/en unknown
- 1979-02-22 GB GB7906252A patent/GB2015771B/en not_active Expired
- 1979-02-22 CA CA000322167A patent/CA1142590A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2015771B (en) | 1982-08-18 |
DK148853B (en) | 1985-10-28 |
CA1142590A (en) | 1983-03-08 |
DE2905525C2 (en) | 1991-02-28 |
SE7802097L (en) | 1979-08-24 |
NO790576L (en) | 1979-08-24 |
GB2015771A (en) | 1979-09-12 |
NO156345C (en) | 1987-09-02 |
DK68679A (en) | 1979-08-24 |
SE442921B (en) | 1986-02-03 |
DE2905525A1 (en) | 1979-09-06 |
FI72215C (en) | 1987-04-13 |
FI790565A (en) | 1979-08-24 |
FI72215B (en) | 1986-12-31 |
DK148853C (en) | 1986-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4791548A (en) | Discrete time control apparatus | |
SE427508B (en) | PROCEDURE FOR SETTING A PID REGULATOR FOR A PROCESS | |
EP0139243B1 (en) | Process control apparatus | |
US4758943A (en) | Method and an apparatus for automatically tuning a process regulator | |
US4858161A (en) | Method for the automatic calibration of a high-resolution electronic balance | |
US7630779B2 (en) | Self compensating closed loop adaptive control system | |
KR970707485A (en) | DIGITAL TRIMMING OF ON-CHIP ANALOG COMPONENTS | |
Bi et al. | Relay-based estimation of multiple points on process frequency response | |
NO156345B (en) | SELF-ADJUSTING REGULATOR. | |
KR890015122A (en) | Process Controls and Methods | |
CN108037350A (en) | A kind of parameter identification method of voltage waveform, system | |
Fahmy et al. | Use of the design freedom of time-optimal control | |
Dumont et al. | Automatic tuning of industrial PID controllers | |
Breddermann | Realization and application of a self-tuning on-off controller | |
EP0610189A1 (en) | An improved self-tuning controller | |
WO1993009481A1 (en) | An improved self-tuning controller | |
Niedzwiecki et al. | Self-optimizing adaptive vibration controller | |
JPS5990103A (en) | Automatic tuner | |
Minter et al. | A comparison of adaptive controllers: academic vs industrial | |
Nishikawa et al. | A method for auto-tuning of PID control parameters | |
JPS5563401A (en) | Process regulator | |
Chalupa et al. | Application of simple self-tuning controllers in decentralized control | |
SU1673591A1 (en) | Unit for automatic control of benzene production process | |
SU1339170A1 (en) | Program control device for electroplating line transfer arms | |
Vrána et al. | PID contoller autotuning based on nonlinear tuning rules |