NO155973B - PROCEDURE TO AA REDUCE THE CORROSION EFFECT OF Aqueous SALT SOLUTION ON SURFACTURED METAL SURFACES. - Google Patents

PROCEDURE TO AA REDUCE THE CORROSION EFFECT OF Aqueous SALT SOLUTION ON SURFACTURED METAL SURFACES. Download PDF

Info

Publication number
NO155973B
NO155973B NO792606A NO792606A NO155973B NO 155973 B NO155973 B NO 155973B NO 792606 A NO792606 A NO 792606A NO 792606 A NO792606 A NO 792606A NO 155973 B NO155973 B NO 155973B
Authority
NO
Norway
Prior art keywords
salt
sulfur compound
quaternary
salt solution
compound
Prior art date
Application number
NO792606A
Other languages
Norwegian (no)
Other versions
NO792606L (en
NO155973C (en
Inventor
Michael Dewayne Coffey
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO792606L publication Critical patent/NO792606L/en
Publication of NO155973B publication Critical patent/NO155973B/en
Publication of NO155973C publication Critical patent/NO155973C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/16Sulfur-containing compounds
    • C23F11/162Thioaldehydes; Thioketones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Denne oppfinnelse angår inhibering av korrosjon This invention relates to the inhibition of corrosion

som vandige saltoppløsninger bevirker på jernholdige metaller. Ved en spesiell anvendelse for mineraloljeindustrien angår oppfinnelsen nedsettelse av korrosjon på kledninger og rør av jern og stål og andre undergrunns- eller underjordiske konstruksjonsdeler av jernholdig metall som utsettes for vandige saltoppløsninger som anvendes som kompletterings-, bearbeidnings- eller pakkvæsker. which aqueous salt solutions do to ferrous metals. In a special application for the mineral oil industry, the invention relates to the reduction of corrosion on linings and pipes of iron and steel and other underground or subterranean structural parts of ferrous metal that are exposed to aqueous salt solutions that are used as completion, processing or packing fluids.

Ved brønnbehandlingsoperasjoner benyttes salt-oppløsninger for forskjellige formål, spesielt hvor en relativt tung vandig væske er ønsket. Alkalimetallsalt-oppløsninger kan anvendes, men mer typisk anvendes kalsium-kloridoppløsninger, kalsiumbromidoppløsninger eller en blanding av disse, fordi oppløsninger med høyere spesifikk vekt kan oppnås. Slike saltoppløsninger er korroderende overfor metallgjenstander i borehullet, endog når oksygen praktisk talt ikke er tilstede. Denne korrosjon er relativt ubetydelig ved temperaturer på ca. 93°C, men blir ganske betydningsfull ved temperaturer over 120°C og særlig når temperaturen går over 150°C. In well treatment operations, salt solutions are used for various purposes, especially where a relatively heavy aqueous liquid is desired. Alkali metal salt solutions can be used, but more typically calcium chloride solutions, calcium bromide solutions or a mixture of these are used, because solutions with a higher specific gravity can be obtained. Such salt solutions are corrosive to metal objects in the borehole, even when oxygen is practically not present. This corrosion is relatively insignificant at temperatures of approx. 93°C, but becomes quite significant at temperatures above 120°C and especially when the temperature goes above 150°C.

Skjønt endel korrosjonsinhibitorer som er godt egnet til å inhibere HC1, kan finne en viss anvendelse når det gjelder å inhibere saltoppløsninger, så vil en saltsyre-inhibitor ikke nødvendigvis være en effektiv inhibitor i saltoppløsninger, i hvert fall ikke i praktisk brukbar grad. Although some corrosion inhibitors that are well suited to inhibiting HC1 may find some use when it comes to inhibiting salt solutions, a hydrochloric acid inhibitor will not necessarily be an effective inhibitor in salt solutions, at least not to a practically usable extent.

Kanadisk patent nr. 983 041 angir en vannoppløse-lig korrosjonsinhibitor for saltoppløsninger omfattende réaksjonsproduktet mellom mettede alifatiske karboksylsyrer og substituerte imidazoliner. Canadian Patent No. 983,041 discloses a water-soluble corrosion inhibitor for salt solutions comprising the reaction product between saturated aliphatic carboxylic acids and substituted imidazolines.

US-patent nr. 3 215 637 angir at en blanding av natriumsilikat og sinkklorid inhiberer korrosjon forårsaket av natriumklorid- og kalsiumklorid-oppløsninger. I patent-skriftet diskuteres også mangler ved andre kjente salt-oppløsning-inhibitorer såsom natriumnitrat, hydrazin, pyrogallol eller sulfitt. US Patent No. 3,215,637 states that a mixture of sodium silicate and zinc chloride inhibits corrosion caused by sodium chloride and calcium chloride solutions. The patent document also discusses shortcomings of other known salt dissolution inhibitors such as sodium nitrate, hydrazine, pyrogallol or sulphite.

US-patent nr. 4 010 111 angir en korrosjons-inhiberende blanding for vandige saltoppløsninger, hvor inhibitoren inneholder et reaksjonsprodukt mellom en karbok-sylsyre og et polyamin, en alkohol og en alkylbenzensulfon-syre. US Patent No. 4,010,111 discloses a corrosion-inhibiting composition for aqueous salt solutions, where the inhibitor contains a reaction product between a carboxylic acid and a polyamine, an alcohol and an alkylbenzenesulfonic acid.

Da den foreliggende oppfinnelse ble gjort, var formentlig Baroid<R> Coat B-1400 og Corexit<R> 7720 blant de mest anvendte kommersielle inhibitorer for tunge saltopp-løsninger, idet minste i mineraloljeindustrien i USA. Analyse av en prøve av ovennevnte Baroid p-produkt viser at det inneholder ca. 14 vekt% av et flyktig amin, ca. 19 vekt% isopropyl-alkohol, ca. 45 vekt% vann, resten overveiende etoksylert amid med en liten mengde karboksylsyresalt. When the present invention was made, probably Baroid<R> Coat B-1400 and Corexit<R> 7720 were among the most widely used commercial inhibitors for heavy salt solutions, being the least in the mineral oil industry in the United States. Analysis of a sample of the above-mentioned Baroid p product shows that it contains approx. 14% by weight of a volatile amine, approx. 19% by weight isopropyl alcohol, approx. 45% by weight water, the remainder predominantly ethoxylated amide with a small amount of carboxylic acid salt.

Den foreliggende oppfinnelse er basert på den oppdagelse at jernmetaller iallfall delvis kan beskyttes mot korrosjon forårsaket av vandige saltoppløsninger ved at det til saltoppløsningen tilsettes en effektiv mengde av en svovelforbindelse i hvilken svovelets oksydasjonstilstand er 0 eller mindre, og som er jevnt dispergerbar i og fortrinnsvis oppløselig i saltoppløsningen, og som er i stand til å gjøre svovel tilgjengelig for reaksjon med det jern-metall som skal beskyttes, under dannelse av en beskyttende jernsulfidfilm på overflaten av det metall som eksponeres for den inhiberte saltoppløsning.I tillegg anvendes også i det minste ett kvaternært pyridinium-, kinolinium-eller isokinolinium-salt som er oppløselig i saltoppløsningen, som et inhibitor-hjelpemiddel. The present invention is based on the discovery that ferrous metals can at least be partially protected against corrosion caused by aqueous salt solutions by adding to the salt solution an effective amount of a sulfur compound in which the oxidation state of the sulfur is 0 or less, and which is uniformly dispersible in and preferably soluble in the salt solution, and which is capable of making sulfur available for reaction with the iron metal to be protected, forming a protective iron sulphide film on the surface of the metal exposed to the inhibited salt solution. In addition, at least one quaternary pyridinium, quinolinium or isoquinolinium salt which is soluble in the salt solution, as an inhibitor aid.

Oppfinnelsen angår en fremgangsmåte til å redusere korrosjonsvirkningen av vandig saltoppløsning på jernholdige metalloverflater som kommer i kontakt med saltoppløsningen. Fremgangsmåten ifølge oppfinnelsen med foretrukne utførelses-former er angitt i kravene, og det vises til disse. The invention relates to a method for reducing the corrosion effect of aqueous salt solution on ferrous metal surfaces that come into contact with the salt solution. The method according to the invention with preferred embodiments is stated in the claims, and reference is made to these.

Vandige oppløsninger av alkalimetallhalogenider kan korrosjonsinhiberes ved fremgangsmåten ifølge oppfinnelsen, skjønt den beste virkning oppnås når saltoppløsningen inneholder minst ett flerverdig metallhalogenidsalt, såsom kalsiumklorid, bromid eller -jodid, sinkklorid, -bromid eller -jodid, eller en blanding av slike salter. Slike saltoppløsninger er vanlig anvendt ved utvinning av mineral-olje, så vel som i andre industrier. Eksempelvis kan slike saltoppløsninger anvendes i separasjonsprosesser i hvilke faste stoffer av forskjellige densiteter skilles ved flotasjon. For uten korrosjonsinhibitoren kan saltoppløsningene inne-holde forskjellige funksjonelle additiver, om dette ønskes, såsom væske-tap-additiver ("fluid loss additives"), gelerings-midler, friksjonsnedsettende midler eller overflateaktive midler. Saltoppløsninger som kan inhiberes i henhold til den foreliggende oppfinnelse, innbefatter vandige oppløsninger av organiske syrer tilsatt et passende metallhalogenid' som øker oppløsningens spesifikke vekt, men i de fleste tilfelle vil oppløsninger behandlet i henhold til den foreliggende oppfinnelse normalt ha en svakt basisk pH og består i det vesentlige av vandige oppløsninger av kalsium- eller sink-halogenider eller blandinger derav. Aqueous solutions of alkali metal halides can be corrosion inhibited by the method according to the invention, although the best effect is achieved when the salt solution contains at least one polyvalent metal halide salt, such as calcium chloride, bromide or iodide, zinc chloride, bromide or iodide, or a mixture of such salts. Such salt solutions are commonly used in the extraction of mineral oil, as well as in other industries. For example, such salt solutions can be used in separation processes in which solid substances of different densities are separated by flotation. Because without the corrosion inhibitor, the salt solutions can contain various functional additives, if desired, such as fluid loss additives, gelling agents, friction reducing agents or surfactants. Salt solutions which can be inhibited according to the present invention include aqueous solutions of organic acids with the addition of a suitable metal halide which increases the specific gravity of the solution, but in most cases solutions treated according to the present invention will normally have a slightly basic pH and consist of essentially of aqueous solutions of calcium or zinc halides or mixtures thereof.

Korrosjonsinhibitorssystemet som anvendes The corrosion inhibitor system used

ifølge oppfinnelsen har gode inhiberende egenskaper, spesielt vil høyere temperaturer ved hvilke den korrosjon som for-årsakes av saltoppløsningene, ellers ville bli relativt alvorlig. Det er også forenlig med en lang rekke funksjonelle additiver. Videre virker spesielt de mest foretrukne utførelsesformer som et skumbrytende middel, hvorved fremgangsmåten ved fremstilling av blandingene forenkles. according to the invention has good inhibitory properties, especially higher temperatures at which the corrosion caused by the salt solutions would otherwise be relatively severe. It is also compatible with a wide range of functional additives. Furthermore, in particular, the most preferred embodiments act as a foam-breaking agent, whereby the method of preparing the mixtures is simplified.

Svovelforbindelsen er fortrinnsvis en vannopp-løselig tioforbindelse, eksempelvis et tiocyanat såsom et alkalimetalltiocyanat eller, mest foretrukket, ammoniumtiocyanat. Den kan også være et organisk tioamid og i prinsippet er hvilken som helst sådan forbindelse anvendbar. Denne klasse av forbindelser innbefatter tiourea, polytiourea, hydrokarbon-substituerte derivater derav eller et tioamid med formelen: The sulfur compound is preferably a water-soluble thio compound, for example a thiocyanate such as an alkali metal thiocyanate or, most preferably, ammonium thiocyanate. It can also be an organic thioamide and in principle any such compound is applicable. This class of compounds includes thiourea, polythiourea, hydrocarbon-substituted derivatives thereof or a thioamide of the formula:

hvor A er et hydrokarbonradikal med 1-12 karbonatomer eller where A is a hydrocarbon radical with 1-12 carbon atoms or

et pyridylradikal, og hver R" er et hydrogenatom eller et alkylradikal med 1-8 karbonatomer. Tioamider såsom tiourea, 1,2-dietyltiourea, propyltiourea, 1,1-difenyltiourea, tiokarbanilid, 1,2-dibutyltiourea, ditiobiurea, tioacetamid, tionikotinamid eller tiobenzenamid er typiske eksempler på forbindelser i denne klasse. Vannoppløselige sulfider, såsom ammoniumsulfid, alkalimetallsulfider eller tilsvarende hydrosulfider, herunder H2S, er andre anvendbare tio-forbindelser. Elementært svovel som er dispergerbart i salt-oppløsningene, er også anvendbart, skjønt de ovenfor nevnte oppløselige tioforbindelser foretrekkes. a pyridyl radical, and each R" is a hydrogen atom or an alkyl radical with 1-8 carbon atoms. Thioamides such as thiourea, 1,2-diethylthiourea, propylthiourea, 1,1-diphenylthiourea, thiocarbanilide, 1,2-dibutylthiourea, dithiobiurea, thioacetamide, thionicotinamide or thiobenzenamide are typical examples of compounds in this class. Water-soluble sulfides, such as ammonium sulfide, alkali metal sulfides, or corresponding hydrosulfides, including H2S, are other useful thio compounds. Elemental sulfur that is dispersible in the salt solutions is also useful, although the above-mentioned soluble thio compounds are preferred.

I inhibitorsystemet inngår også et kvaternært pyridinium- og/eller kinolinium- og/eller isokinolinium-salt som er stabilt i den vandige saltoppløsning. Det anvendes fortrinnsvis ett eller flere av følgende salter: The inhibitor system also includes a quaternary pyridinium and/or quinolinium and/or isoquinolinium salt which is stable in the aqueous salt solution. One or more of the following salts are preferably used:

hvor R er et alkylradikal med 1-20 karbonatomer, et benzylradikal eller et alkylert benzylradikal hvor den aromatiske ring har en eller flere alkylsubstituenter inneholdende ialt 1-20 karbonatomer, hver R' er et hydrogenatom eller alkyl-eller alkoksyradikal med 1-6 karbonatomer, og X er hvilket som helst hensiktsmessig anionisk radikal såsom halogenid, sulfat, acetat eller nitrat. Det vil være klart for fagfolk på området at de forskjellige parametere ikke bør velges slik at det dannes en forbindelse med et så høyt karboninn- where R is an alkyl radical with 1-20 carbon atoms, a benzyl radical or an alkylated benzyl radical where the aromatic ring has one or more alkyl substituents containing a total of 1-20 carbon atoms, each R' is a hydrogen atom or an alkyl or alkoxy radical with 1-6 carbon atoms, and X is any suitable anionic radical such as halide, sulfate, acetate or nitrate. It will be clear to those skilled in the art that the various parameters should not be chosen so as to form a compound with such a high carbon content

hold at forbindelsen ikke er oppløselig i saltoppløsningen i en effektiv konsentrasjon. Det kvaternære pyridiniumsalt og/eller kinoliniumsalt og/eller isokinoliniumsalt velges med henblikk på tilstrekkelig oppløselighet i saltoppløsningen, slik at en effektiv mengde kan oppløses i denne. I ovenstående generelle formler er X fortrinnsvis et bromatom eller kloratom, helst et bromatom. R er fortrinnsvis et høyere-alkyl-radikal med 6-16 karbonatomer. Videre er R' fortrinnsvis hydrogen. Pyridinium-salter foretrekkes i alminnelighet. Den mest foretrukne ut-førelsesform når både ytelse og oppløselighet tas i betraktning, er n-oktylpyridiniumbromid. Blandinger av slike salter kan anvendes om det ønskes. keep the compound insoluble in the salt solution at an effective concentration. The quaternary pyridinium salt and/or quinolinium salt and/or isoquinolinium salt is selected with a view to sufficient solubility in the salt solution, so that an effective amount can be dissolved therein. In the above general formulas, X is preferably a bromine atom or chlorine atom, most preferably a bromine atom. R is preferably a higher alkyl radical with 6-16 carbon atoms. Furthermore, R' is preferably hydrogen. Pyridinium salts are generally preferred. The most preferred embodiment when both performance and solubility are considered is n-octylpyridinium bromide. Mixtures of such salts can be used if desired.

Mens hvilken som helst betydelig mengde av svovelforbindelsen vil gi noen grad av korrosjonsinhibering, vil i alminnelighet minst 0,3 g av svovelforbindelsen pr. liter salt-oppløsning være påkrevet for oppnåelse av en i praksis brukbar beskyttelse. Konsentrasjoner så høye som 20 g av sovelforbin-delsen pr. liter er i de fleste tilfeller ikke skadelig. Mer enn 3 g pr. liter saltoppløsning gir imidlertid vanligvis liten eller ingen ytterligere beskyttelse og kan faktisk i noen tilfeller medføre mindre beskyttelse enn lavere mengder. Den samlede konsentrasjon av kvaternær forbindelse og svovelforbindelse overstiger fortrinnsvis ikke 3 g pr. liter; Aller helst er den samlede konsentrasjon av svovelforbindelse og kvaternært salt fra 0,5 til 2 g pr. liter saltoppløsning. While any significant amount of the sulfur compound will provide some degree of corrosion inhibition, generally at least 0.3 g of the sulfur compound per liter of salt solution be required to achieve a practically usable protection. Concentrations as high as 20 g of the sleeping compound per liter is not harmful in most cases. More than 3 g per however, liters of saline usually provide little or no additional protection and may actually in some cases provide less protection than lower amounts. The total concentration of quaternary compound and sulfur compound preferably does not exceed 3 g per liters; Most preferably, the total concentration of sulfur compound and quaternary salt is from 0.5 to 2 g per liter of saline solution.

Det kvaternære salt anvendes i systemet The quaternary salt is used in the system

i en mengde som er effektiv til å forbedre systemets inhibering sett under ett. Det optimale forhold mellom det kvatærnære salt og svovelforbindelsen vil variere noe fra system til system, men i alminnelighet oppnås fordeler når de to komponenter anvendes i et vektforhold fra 0,1:1 til 10:1, skjønt et forhold mellom 0,125:1 og 4:1 er mer foretrukket. Et forhold på 0,2:1 til 1:1 er mest foretrukket, særlig når konsentrasjonen av komponentene nærmer seg den øvre eller den nedre grense som anbefales i det foregående avsnitt. For et gitt saltoppløsningssystem og kombinasjon in an amount effective to improve the overall inhibition of the system. The optimum ratio between the quaternary salt and the sulfur compound will vary somewhat from system to system, but in general advantages are obtained when the two components are used in a weight ratio of from 0.1:1 to 10:1, although a ratio between 0.125:1 and 4 :1 is more preferred. A ratio of 0.2:1 to 1:1 is most preferred, especially when the concentration of the components approaches the upper or lower limit recommended in the preceding paragraph. For a given salt solution system and combination

av inhibitor-komponenter vil fagfolk på området være i stand til å komme frem til en optimal konsentrasjon og et optimalt forhold. of inhibitor components, professionals in the field will be able to arrive at an optimal concentration and an optimal ratio.

Tilsetning av en liten, men effektiv mengde - eksempelvis 0,05-0,5 g Co 2+ pr. liter saltoppløsning - av et vannoppløselig koboltsalt til systemet forbedrer også dettes effektivitet, men det er ikke nødvendig for en brukbar eller endog industrielt akseptabel ytelse. Selv om en noe forbedret virkning oppnås med kobolt, er det følgelig normalt ikke en foretrukken utførelsesform for rutinemessige anvendelser å anvende kobolt, fordi det medfører en noe øket giftighet Addition of a small but effective amount - for example 0.05-0.5 g Co 2+ per liters of salt solution - of a water-soluble cobalt salt to the system also improves its efficiency, but is not necessary for usable or even industrially acceptable performance. Therefore, although a somewhat improved effect is achieved with cobalt, it is not normally a preferred embodiment for routine applications to use cobalt, because it entails a somewhat increased toxicity

og miljømessige betenkeligheter. Hvis det anvendes, kan kobolt tilveiebringes i form av praktisk talt hvilken som helst kobolt(II)-forbindelse som er tilstrekkelig oppløselig i den vandige saltoppløsning til å gi den ønskede konsentrasjon av to-verdige koboltioner. Salter såsom CoC^, CoB^, CoSO^, Co(NO-j)2' kobolt (II)-acetat eller -benzoat er alle egnede kilder for to-verdig kobolt. Salter såsom acetatet, benzoatet eller bromidet foretrekkes spesielt. and environmental concerns. If used, cobalt may be provided in the form of virtually any cobalt(II) compound sufficiently soluble in the aqueous salt solution to provide the desired concentration of divalent cobalt ions. Salts such as CoC 2 , CoB 2 , CoSO 2 , Co(NO-j) 2 ' cobalt (II) acetate or benzoate are all suitable sources of divalent cobalt. Salts such as the acetate, benzoate or bromide are particularly preferred.

De følgende eksempler og sammenlikningsforsøk The following examples and comparison tests

vil ytterligere belyse oppfinnelsen. will further elucidate the invention.

Testmetode Test method

Til bruk ved de nedenfor beskrevne korrosjons-forsøk ble det tilberedt prøvestykker som ble kuttet av stålrør (N80) med en utvendig diameter på ca. 6 cm. Prøve-stykkene ble renset ved behandling i aluminiumoksydsand, hvoretter de ble behandlet i et ultrasonisk trikloretylen-bad, renset i aceton, tørket og lagret i en eksikator. Ved ut-førelsen av forsøkene ble prøvestykkene plassert i forsøks-oppløsningen i en autoklav, og forsøkstemperaturen og -trykket ble etablert så hurtig som praktisk mulig. De angitte forsøks-tider er de tider i hvilke forsøksstykkene ble behandlet i oppløsningen ved den angitte temperatur og trykk. Samtlige forsøk ble utført under statiske betingelser, dvs. uten agitering, ved 70,3 kg/cm 2. Etter at forsøksbadet var kjølt til ca. 65,5°C, ble prøvestykkene tatt ut fra badet, vasket i aceton og deretter vasket i inhibert 15% vandig HC1 i 3-4 minutter under agitering, hvorved jernsulfidfilmen som dannes under forsøket, oppløses. Prøvestykkene ble så vasket i vann, renset med en messingbørste og pimpsteinsåpe, oppvarmet i varmt vann for å fremskynde fordampning av aceton, renset i aceton, tørket, kjølt og veiet. For use in the corrosion tests described below, test pieces were prepared which were cut from steel pipe (N80) with an external diameter of approx. 6 cm. The test pieces were cleaned by treatment in aluminum oxide sand, after which they were treated in an ultrasonic trichlorethylene bath, cleaned in acetone, dried and stored in a desiccator. When performing the tests, the test pieces were placed in the test solution in an autoclave, and the test temperature and pressure were established as quickly as practically possible. The indicated test times are the times during which the test pieces were treated in the solution at the indicated temperature and pressure. All tests were carried out under static conditions, i.e. without agitation, at 70.3 kg/cm 2. After the test bath had cooled to approx. 65.5°C, the test pieces were taken out of the bath, washed in acetone and then washed in inhibited 15% aqueous HC1 for 3-4 minutes with agitation, whereby the iron sulphide film formed during the experiment is dissolved. The test pieces were then washed in water, cleaned with a brass brush and pumice soap, heated in hot water to accelerate evaporation of acetone, cleaned in acetone, dried, cooled and weighed.

I samtlige korrosjonsforsøk ble de forskjellige additiver tilsatt i de angitte mengder til 100 ml av salt-oppløsningen. I samtlige tabeller er "Korrosjonshastighet" uttrykt som gram pr. cm 2 x den angitte forsøkstid. In all corrosion tests, the various additives were added in the indicated quantities to 100 ml of the salt solution. In all tables, "Corrosion rate" is expressed as grams per cm 2 x the specified test time.

"Prosent inhibering" er den følgende kvantitet: "Percent inhibition" is the following quantity:

Oppløsninger av forskjellige kvaternære salter ble fremstilt og anvendt som følger: Solutions of various quaternary salts were prepared and used as follows:

Prep. A: Decylkinolinumbromid (DQBr) Prep. A: Decylquinolinium bromide (DQBr)

Prep. B: Dedecylkinoliniumbromid (DodQBr) Prep. B: Dedecylquinolinium bromide (DodQBr)

Prep. C: Tetradecylpyridiniumbromid (TdPBr) Prep. C: Tetradecylpyridinium bromide (TdPBr)

Prep. D: Heksadecylpyridiniumbromid (HdPBr) Prep. D: Hexadecylpyridinium bromide (HdPBr)

Prep. E: Decylpyridiniumbromid (DPBr) Prep. E: Decylpyridinium bromide (DPBr)

Prep. F: Dodecylpyridiniumbromid (DodPBr) Prep. F: Dodecylpyridinium bromide (DodPBr)

Prep. G: Alkylsubstituert tetradecylpyridiniumbromid Prep. G: Alkyl substituted tetradecylpyridinium bromide

(AlkTdPB) (AlkTdPB)

Prep. H: Heksylpyridiniumbromid (HPBr) Prep. H: Hexylpyridinium bromide (HPBr)

Prep. I: Oktylpyridiniumbromid (OPBr) Prep. I: Octylpyridinium bromide (OPBr)

Prep. J: 0,4:1 OPBr:ammoniumtiocyanat Prep. J: 0.4:1 OPBr:ammonium thiocyanate

Prep. K: 0,26:1 OPBr:ammoniumtiocyanat Prep. K: 0.26:1 OPBr:ammonium thiocyanate

Det ble utført flere serier av korrosjonsforsøk, og disse er sammenfattet i de følgende tabeller. Several series of corrosion tests were carried out, and these are summarized in the following tables.

Claims (12)

1. Fremgangsmåte til å redusere korrosjonsvirkningen av en vandig saltoppløsning på jernholdige metalloverflater som kommer i kontakt med saltoppløsningen, særlig hvor saltoppløsningen inneholder ett eller flere av halogenidene kalsium-klorid, - bromid, -jodid, sink-klorid, -bromid, -jodid, karakterisert ved at det til saltoppløsningen settes minst 0,3 g pr. liter saltoppløsning av en svovelforbindelse i hvilken oksydasjonstilstanden av svovelet er 0 eller mindre, og at svovelforbindelsen er jevnt dispergerbar i saltoppløsningen, og et kvaternært pyridiniumsalt og/eller kinoliniumsalt og/eller isokinoliniumsalt, i en mengde på 0,1-10 vektdeler pr. vektdel au svovelforbindelsen, og eventuelt et vannløselig koboltsalt.1. Method for reducing the corrosion effect of an aqueous salt solution on ferrous metal surfaces that come into contact with the salt solution, in particular where the salt solution contains one or more of the halides calcium chloride, - bromide, - iodide, zinc chloride, - bromide, - iodide, characterized in that at least 0.3 g per liter salt solution of a sulfur compound in which the oxidation state of the sulfur is 0 or less, and that the sulfur compound is uniformly dispersible in the salt solution, and a quaternary pyridinium salt and/or quinolinium salt and/or isoquinolinium salt, in an amount of 0.1-10 parts by weight per part by weight of the sulfur compound, and optionally a water-soluble cobalt salt. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som svovelforbindelse anvendes et vannoppløselig tiocyanat eller tioamid.2. Method according to claim 1, characterized in that a water-soluble thiocyanate or thioamide is used as the sulfur compound. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det som samlet vekt av svovelforbindelsen pluss kvaternært salt anvendes en mengde som ikke overstiger 3 g pr. liter saltoppløsning.3. Method according to claim 1 or 2, characterized in that the total weight of the sulfur compound plus quaternary salt is used in an amount that does not exceed 3 g per liter of saline solution. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at det anvendes en samlet konsentrasjon av svovelforbindelsen og det kvaternære salt på 0,5-2 g pr. liter saltopp-løsning, og at vektforholdet mellom den kvaternære forbindelse og svovel er fra 0,125:1 til 4:1.4. Method according to claim 3, characterized in that a total concentration of the sulfur compound and the quaternary salt of 0.5-2 g per liter of salt solution, and that the weight ratio between the quaternary compound and sulfur is from 0.125:1 to 4:1. 5. Fremgangsmåte ifølge ett eller flere av de foregående krav, karakterisert ved at det som kvaternært salt anvendes ett eller flere av de følgende: hvor R er et alkylradikal med 1-20 karbonatomer, et benzylradikal eller et alkylert benzylradikal i hvilket den aromatiske ring har f.n eller flere alkylsubstituenter med til sammen 1-20 karbonatomer, hver R' er et hydrogenatom eller et alkyl- eller alkoksyradikal r;.ed 1-6 karbonatomer, og X er et anionisk radikal.5. Method according to one or more of the preceding claims, characterized in that one or more of the following are used as quaternary salt: where R is an alkyl radical with 1-20 carbon atoms, a benzyl radical or an alkylated benzyl radical in which the aromatic ring has f.n or more alkyl substituents with a total of 1-20 carbon atoms, each R' is a hydrogen atom or an alkyl or alkoxy radical r;. ed 1-6 carbon atoms, and X is an anionic radical. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at det som kvaternært salt anvendes ett eller flere salter Tred de i krav 6 angitte formler, hvor R er et alkylradikal med 6-16 karbonatomer.6. Method according to claim 5, characterized in that one or more salts of the formulas specified in claim 6 are used as quaternary salt, where R is an alkyl radical with 6-16 carbon atoms. 7. Fremgangsmåte ifølge krav 6, karakterisert v ed at det som kvaternært salt anvendes ett eller flere salter med de i krav 6 angitte formler, hvor X er brom.7. Method according to claim 6, characterized in that one or more salts with the formulas stated in claim 6 are used as quaternary salt, where X is bromine. 8. Fremgangsmåte ifølge krav 7, karakterisert v e d at det. som kvaternært salt anvendes ett eller flere salter med de i krav 6 angitte formler, hvor R' er hydrogen. 8. Method according to claim 7, characterized in that as quaternary salt, one or more salts with the formulas specified in claim 6 are used, where R' is hydrogen. Fremgangsmåte ifølge krav 8, karakterisert v e d at det som kvaternær forbindelse anvendes et pyridiniumsalt. ?> 0 . Method according to claim 8, characterized in that a pyridinium salt is used as a quaternary compound. ?> 0 . Fremgangsmåte ifølge krav 9, karakterisert v e d at det anvendes en samlet konsentrasjon av svovelforbindelsen og pyridiniumsaltet på 0,5-2 g pr. liter saltopp-løsning, og at vektforholdet mellom pyridiniumsaltet og svovelforbindelsen er fra 0,125:1 til 4:1. Method according to claim 9, characterized in that a total concentration of the sulfur compound and the pyridinium salt of 0.5-2 g per liter of salt solution, and that the weight ratio between the pyridinium salt and the sulfur compound is from 0.125:1 to 4:1. 11. Fremgangsmåte ifølge krav 10, karakterisert ved at det som pyridiniumsalt anvendes oktylpyridiniumbromid, og at det som svovelforbindelse anvendes et tiocyanat eller tioamid. 11. Method according to claim 10, characterized in that octylpyridinium bromide is used as the pyridinium salt, and that a thiocyanate or thioamide is used as the sulfur compound. 12. Fremgangsmåte ifølge krav 11, karakterisert ved at det i saltoppløsningen anvendes et vektforhold mellom pyridiniumsaltet og svovelforbindelsen fra 0,125:1 til 4:1, og at det som svovelforbindelse anvendes ammoniumtiocyanat eller tiourea.12. Method according to claim 11, characterized in that a weight ratio between the pyridinium salt and the sulfur compound from 0.125:1 to 4:1 is used in the salt solution, and that ammonium thiocyanate or thiourea is used as the sulfur compound.
NO792606A 1978-08-11 1979-08-10 PROCEDURE TO AA REDUCE THE CORROSION EFFECT OF Aqueous SALT SOLUTION ON SURFACTURED METAL SURFACES. NO155973C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US93296478A 1978-08-11 1978-08-11

Publications (3)

Publication Number Publication Date
NO792606L NO792606L (en) 1980-02-12
NO155973B true NO155973B (en) 1987-03-23
NO155973C NO155973C (en) 1987-07-01

Family

ID=25463220

Family Applications (1)

Application Number Title Priority Date Filing Date
NO792606A NO155973C (en) 1978-08-11 1979-08-10 PROCEDURE TO AA REDUCE THE CORROSION EFFECT OF Aqueous SALT SOLUTION ON SURFACTURED METAL SURFACES.

Country Status (5)

Country Link
CA (1) CA1113235A (en)
DE (1) DE2932560A1 (en)
GB (1) GB2027686B (en)
NL (1) NL7906139A (en)
NO (1) NO155973C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68362A0 (en) * 1982-06-08 1983-07-31 Great Lakes Chemical Corp Corrosion inhibited high-density fluid composition
AT382893B (en) * 1983-06-30 1987-04-27 Nl Industries Inc METHOD AND MEANS FOR REDUCING THE CORROSIVE EFFECT OF AQUEOUS SALT SOLUTIONS
US4536302A (en) * 1983-06-30 1985-08-20 Nl Industries Inc Corrosion inhibition of aqueous brines
US4539122A (en) * 1984-02-21 1985-09-03 Halliburton Company Corrosion inhibitor for heavy brines
US4728446A (en) * 1984-07-31 1988-03-01 The Dow Chemical Company Corrosion inhibitor for brines
IL75307A (en) * 1984-07-31 1988-11-15 Dow Chemical Co Corrosion inhibitor for brines
BR8605131A (en) * 1985-02-04 1987-05-05 Dow Chemical Co CORROSION INHIBITOR FOR HIGH DENSITY PICKLES
DE3523088A1 (en) * 1985-06-28 1987-01-08 Hoechst Ag METHOD FOR AVOIDING CORROSION OF METAL MATERIALS
US4836941A (en) * 1986-01-29 1989-06-06 The Dow Chemical Company Clear brine fluids
EP0275304B1 (en) * 1986-07-30 1991-01-16 Great Lakes Chemical Corporation Calcium-free clear high density fluids
US4784778A (en) * 1986-09-30 1988-11-15 Great Lakes Chemical Corp. Corrosion inhibiting composition for zinc halide-based clear, high density fluids
US4784779A (en) * 1986-09-30 1988-11-15 Great Lakes Chemical Corp. Corrosion inhibitors for clear, calcium-free high density fluids
US4980074A (en) * 1986-10-22 1990-12-25 The Dow Chemical Company Corrosion inhibitors for aqueous brines
IL173706A (en) 2006-02-13 2013-09-30 Bromine Compounds Ltd Antimony- based corrosion inhibitors for high density brine and a method for inhibiting corrosion by using them
US8007689B2 (en) * 2006-02-13 2011-08-30 Bromine Compounds Ltd. Liquid composition suitable for use as a corrosion inhibitor and a method for its preparation
US8765020B2 (en) * 2009-05-26 2014-07-01 Baker Hughes Incorporated Method for reducing metal corrosion
GB2496898B (en) 2011-11-25 2020-10-28 Petroliam Nasional Berhad Petronas Corrosion inhibition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126950A (en) * 1964-03-31 Steel coupons in
US2602779A (en) * 1947-09-11 1952-07-08 Cities Service Oil Co Method of inhibiting hydrogen sulfide corrosion of metals
US2574576A (en) * 1949-10-12 1951-11-13 Pure Oil Co Prevention of corrosion of steel by brine containing dissolved oxygen
US4057390A (en) * 1976-05-24 1977-11-08 Petrolite Corporation Sulfur-containing bis-quaternaries
US4100100A (en) * 1977-03-28 1978-07-11 The Dow Chemical Company Cobalt-containing inhibitor for sour gas conditioning solutions
US4102804A (en) * 1977-03-28 1978-07-25 The Dow Chemical Company Inhibitor for gas conditioning solutions

Also Published As

Publication number Publication date
DE2932560A1 (en) 1980-02-14
NL7906139A (en) 1980-02-13
CA1113235A (en) 1981-12-01
NO792606L (en) 1980-02-12
GB2027686B (en) 1982-11-24
GB2027686A (en) 1980-02-27
NO155973C (en) 1987-07-01

Similar Documents

Publication Publication Date Title
NO155973B (en) PROCEDURE TO AA REDUCE THE CORROSION EFFECT OF Aqueous SALT SOLUTION ON SURFACTURED METAL SURFACES.
Schmitt Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors
CA1259481A (en) Process and composition for inhibiting iron and steel corrosion
CA2348468C (en) Mercaptoalcohol corrosion inhibitors
CA2720382C (en) Organic corrosion inhibitor package for organic acids
CA1213136A (en) Corrosion inhibition of aqueous brines
NO147446B (en) PROCEDURE FOR DEHYDRATING CYCLIZATION OF ALIFATIC HYDROCARBONES OVER PLATINABLE ZEOLITE CATALYSTS IN ALKALIFORM
US4784778A (en) Corrosion inhibiting composition for zinc halide-based clear, high density fluids
EP0290486A1 (en) Corrosion inhibitors for clear, calcium-free high density fluids.
US4728446A (en) Corrosion inhibitor for brines
US4640786A (en) Phosphonium salt-containing corrosion inhibitors for high density brines
US5512212A (en) Corrosion inhibitor composition and method of use
DK165699B (en) SALTY BASKET WITH HIGH WEIGHTS AND USE THEREOF WHEN USING Boreholes
AU576061B2 (en) Corrosion inhibitor for high density brines
US2799648A (en) Inhibition of corrosion
JPH0718029B2 (en) High density brine corrosion inhibitor
CA1256688A (en) Corrosion inhibitor for brines
US20200017752A1 (en) Use Of A Composition Containing At Least One Biodegradable Sugar-Amide-Compound In Combination With At Least One Sulfur-Based Synergist For Corrosion Inhibition Of A Metallic Equipment In Oilfield Applications
NO871926L (en) PROCEDURE FOR AA PREVENTING ATTACK OF CORROSIVE FLUIDS POWDER METALS, AND PREPARATION FOR CARRYING OUT THE PROCEDURE.