NO155359B - PROCEDURE FOR COATING MECHANICAL SEALS. - Google Patents

PROCEDURE FOR COATING MECHANICAL SEALS. Download PDF

Info

Publication number
NO155359B
NO155359B NO812969A NO812969A NO155359B NO 155359 B NO155359 B NO 155359B NO 812969 A NO812969 A NO 812969A NO 812969 A NO812969 A NO 812969A NO 155359 B NO155359 B NO 155359B
Authority
NO
Norway
Prior art keywords
coating
seals
procedure
spraying
mechanical seals
Prior art date
Application number
NO812969A
Other languages
Norwegian (no)
Other versions
NO155359C (en
NO812969L (en
Inventor
Jaakko Tenkula
Bjarne Hellman
Jorma Majava
Original Assignee
Telatek Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telatek Oy filed Critical Telatek Oy
Publication of NO812969L publication Critical patent/NO812969L/en
Publication of NO155359B publication Critical patent/NO155359B/en
Publication of NO155359C publication Critical patent/NO155359C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Sealing Material Composition (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

Formålet for denne oppfinnelse er en fremgangsmåte for belegging av en mekanisk tetning, og mere spesielt for belegging The purpose of this invention is a method for coating a mechanical seal, and more particularly for coating

av en tetningsflate som roterer i forhold til en motstående flate især for belegging av pumpers tetningsflater innen den petrokjemiske og treforedlingsindustrien. of a sealing surface that rotates in relation to an opposite surface, especially for coating the sealing surfaces of pumps within the petrochemical and wood processing industries.

Hittil kjente metoder for fremstilling av mekaniske tetningers glideflater er f.eks. påsveising med stellitt, plasmabe-sprøyting med keramisk middel eller mekanisk befestigelse av en hardmetallring i anleggsflaten. Stellittsveisede glide-ringer er vanligvis driftssikre, men deres anvendelsestid blir i mange tilfeller meget kort. Keramiske belegg har på sin side som ulempe at de skades lett. Svært ofte skades de allerede i installasjonsfasen eller når den roterende dels oppstarting forårsaker for stor friksjonsvarmebelastning på glideflaten. Hitherto known methods for producing the sliding surfaces of mechanical seals are e.g. welding with stellite, plasma spraying with a ceramic agent or mechanical fastening of a hard metal ring in the contact surface. Stellite-welded slip rings are usually operationally reliable, but their useful life is in many cases very short. Ceramic coatings, on the other hand, have the disadvantage that they are easily damaged. Very often they are already damaged during the installation phase or when the rotating part's start-up causes excessive frictional heat load on the sliding surface.

Når man anvender en hardmetallring som er mekanisk festet på anleggsflaten, hender det ofte at hardmetallringen skades når det roterende stykke starter. Dette skyldes at der er en av-brytelse i varmeledningen mellom hardmetall- og glideringen fordi en tetning må anvendes mellom dem. På den annen side skades også tetningen ofte og forårsaker hermed lekkasje. When using a carbide ring that is mechanically fixed to the bearing surface, it often happens that the carbide ring is damaged when the rotating piece starts. This is because there is an interruption in the heat pipe between the hard metal and slip ring because a seal must be used between them. On the other hand, the seal is also often damaged and thus causes leakage.

Man har også gjort forsøk på å belegge mekaniske tetningers glideflater med plasmabesprøyting. Dette er f.eks. nevnt i publikasjonen "Plasmatechnologie Grundlagen und Anwendung, Deutscher Verband fur Schweisstechnik", år 197 0, sidene 148-151, likesom i US patentene 3 642 519 og 3 936 295. Som et belegg nevnes en blanding av wolframkarbid og kobolt, hvilken blanding også anvendes i denne oppfinnelse. Attempts have also been made to coat the sliding surfaces of mechanical seals with plasma spraying. This is e.g. mentioned in the publication "Plasmatechnologie Grundlagen und Anwendung, Deutscher Verband fur Schweisstechnik", year 1970, pages 148-151, as well as in US patents 3,642,519 and 3,936,295. As a coating, a mixture of tungsten carbide and cobalt is mentioned, which mixture also are used in this invention.

Det må dog konstateres at det i de kjente metoder har forelig-get problemer med å få belegget til å feste seg godt til underlaget samt å få dets indre styrke og varmeledning tilstrekkelig. På grunn av dette har man hittil i den petrokjemiske industris tillempninger anvendt andre metoder enn plasmabe-sprøyting, slik som ovenfor beskrevet. However, it must be noted that in the known methods there have been problems with getting the coating to stick well to the substrate and with getting its internal strength and heat conduction sufficient. Because of this, methods other than plasma spraying, as described above, have so far been used in the applications of the petrochemical industry.

I forbindelse med denne oppfinnelse er det imidlertid blitt konstatert at man med riktig besprøytningsfremgangsmåte, ma-terialblanding samt kornstørrelse kan oppnå ypperlige resul-tater sammenlignet med konvensjonell teknologi. Det er også viktig at man ikke etter plasmabesprøytningen foretar noen materialsintring, slik som det f.eks. foreslås i de foran nevnte amerikanske publikasjoner. Dersom f.eks. i den petrokjemiske industris pumpetetninger all porøsitet blir eliminert fra belegget, vil den hinne av det pumpede medium som oppstår på flaten ødelegges, og herved slites også belegget raskt. In connection with this invention, however, it has been established that with the correct spraying method, material mixture and grain size, excellent results can be achieved compared to conventional technology. It is also important that no sintering of the material is carried out after the plasma spraying, such as e.g. is proposed in the aforementioned American publications. If e.g. in the petrochemical industry's pump seals, all porosity is eliminated from the coating, the film of the pumped medium that occurs on the surface will be destroyed, and this also wears out the coating quickly.

Oppfinnelsens mål er å unngå de mangler som belaster den The aim of the invention is to avoid the defects which burden it

kjente teknikk. Målet er med andre ord å få i stand en mekanisk holdbar glideflate som ikke slites eller skades lett. known technique. In other words, the goal is to achieve a mechanically durable sliding surface that does not wear or damage easily.

Det karakteristiske ved oppfinnelsen er høy^energi plasmabe-sprøyting av tetningsflaten med en besprøytningsblanding som inneholder 80-94 vekt-% wolframkarbid samt 6-20 vekt-% The characteristic feature of the invention is high-energy plasma spraying of the sealing surface with a spraying mixture containing 80-94% by weight tungsten carbide and 6-20% by weight

kobolt, nikkel eller jern, og hvis kornstørrelse er 5^60 jam og etterfølgende kjøling av belegget uten ettersintring, cobalt, nickel or iron, and whose grain size is 5^60 jam and subsequent cooling of the coating without post-sintering,

slik at det blir en viss porøsitet i belegget. so that there is a certain porosity in the coating.

På vedføyede tegning er det i snitt vist en mekanisk tetning som er belagt ifølge oppfinnelsen og hvor belegget er angitt med henvisningstallet 1 og glideringens hoveddel med tallet 2. In the attached drawing, a mechanical seal is shown in section which is coated according to the invention and where the coating is indicated with the reference number 1 and the main part of the sliding ring with the number 2.

I praksis skjer beleggingen slik at man belegger glideringens frontflate som er fremstilt av syrefast stål, ved hjelp av plasmabesprøytning med høy-energi besprøytningsverdier og ved å anvende som besprøytningsmateriale en blanding av wolframkarbid og et jerngruppemetall. Blandingens vanlige sam-mensetning er slik at den inneholder 80-94% wolframkarbid og 6-20% kobolt, nikkel eller jern. Blandingens kornstørrelse er vanligvis 5-60 mikrometer. Som beleggtykkelse kan man anvende til og med under 0,2 mm. In practice, the coating takes place in such a way that the front surface of the sliding ring, which is made of acid-resistant steel, is coated by means of plasma spraying with high-energy spraying values and by using as spraying material a mixture of tungsten carbide and an iron group metal. The mixture's usual composition is such that it contains 80-94% tungsten carbide and 6-20% cobalt, nickel or iron. The mixture's grain size is usually 5-60 micrometres. The coating thickness can be used even under 0.2 mm.

Eksempel Example

For utførelse av forsøk i praksis ble en serie mekaniske tetninger belagt på deres tettende flater ved å anvende høy-en- To carry out trials in practice, a series of mechanical seals were coated on their sealing surfaces by applying high-a-

ergi plasmabesprøytning og en besprøytningsblanding som bestod av en blanding av wolframkarbid og kobolt i forholdet 83:17. Tetningenes beleggtykkelse ble målt til 0,20 mm. ergi plasma spraying and a spraying mixture which consisted of a mixture of tungsten carbide and cobalt in the ratio 83:17. The coating thickness of the seals was measured to be 0.20 mm.

De tetninger som på denne måte ble fremstilt, ble installert The seals produced in this way were installed

i et oljeraffineris fire benzenpumper (GA 17215-17218) i begynnelsen av januar 1980. I de nevnte pumper var det inntil da blitt anvendt stellittsveisede tetninger, hvis nedslit-ningstid hadde vært ca. 1-4 uker effektiv rotasjonstid. Kon-tinuerlig bytte av tetninger var for produksjonsanlegget en betydelig økonomisk belastning, på grunn av hyppige avbrytel-ser og også fordi det alltid måtte være personale tilstede for bytting av tetninger. in an oil refinery four benzene pumps (GA 17215-17218) at the beginning of January 1980. Until then, stellite-welded seals had been used in the aforementioned pumps, whose wear time had been approx. 1-4 weeks effective rotation time. Continuous replacement of seals was a significant financial burden for the production facility, due to frequent interruptions and also because personnel always had to be present to replace seals.

Da det ikke oppstod noen driftsforstyrrelser, ble samtlige foran nevnte pumper åpnet for kontroll av tetningenes til-stand i begynnelsen av februar 1981. Man fant at alle tetninger var i utmerket stand, hvorfor det da heller ikke var noen grunn til å bytte dem enda. Alle pumpers effektive ro-tas jonstid hadde da vært over fem måneder. As there were no operational disturbances, all the above-mentioned pumps were opened to check the condition of the seals at the beginning of February 1981. It was found that all seals were in excellent condition, which is why there was no reason to change them yet. The effective idle time of all pumps had then been over five months.

Som det fremgår av det ovenstående, var de ifølge oppfinnelsen fremstilte tetningers holdbarhetstid allerede da til og med tyve ganger så lang sammenlignet med stellittsveisede tilsvar-ende tetninger. Når driftsforsøk i forbindelse med bytting av tetninger en gang kan anses å være slutt, er den nevnte økning av holdbarheten naturligvis enda bedre enn tyve ganger. Foruten den overraskende oppdagede store forbedring av holdbarheten er oppfinnelsens tetning også for så vidt fordelak-tig at den anvendte beleggtykkelse er høyst 0,5 mm, men vanligvis ca. 0,2 mm, hvilket er mot standarden API 610. Ifølge API 610 må beleggtykkelsen nemlig være minst 0,7 6 mm, hvilket i normaltilfellet innebærer fire ganger større beleggmengde sammenlignet med belegget ifølge oppfinnelsen. Med andre ord er forbedringen av holdbarheten enda mere forbausende når man noterer at den oppnås ved å anvende en beleggtykkelse, med hvilken man prinsipielt ikke burde oppnå noen som helst holdbarhet. As can be seen from the above, the shelf life of the seals manufactured according to the invention was even then even twenty times as long compared to stellite-welded corresponding seals. When operational trials in connection with the replacement of seals can once be considered to be over, the aforementioned increase in durability is naturally even better than twenty times. Besides the surprisingly discovered great improvement in durability, the seal of the invention is also advantageous insofar as the coating thickness used is at most 0.5 mm, but usually approx. 0.2 mm, which is against the standard API 610. According to API 610, the coating thickness must be at least 0.7 6 mm, which in the normal case involves four times greater amount of coating compared to the coating according to the invention. In other words, the improvement in durability is even more surprising when you note that it is achieved by using a coating thickness with which, in principle, you should not achieve any durability whatsoever.

Når man belegger tetningens flater i overensstemmelse med oppfinnelsen, bearbeides glideringens frontflater som vist på fig. 1. Bearbeidelsen av frontflåtene har sin betydning for beleggets vedhefting til underlaget og dets fastholding der. Av formingen ifølge figuren har man dessuten den fordel at dannelsen av porer på beleggets perifere deler minsker og at de ytre flaters etterbearbeidelse på et stykke formet på denne måte er lett. When coating the surfaces of the seal in accordance with the invention, the front surfaces of the sliding ring are processed as shown in fig. 1. The processing of the front rafters is important for the adhesion of the coating to the substrate and its retention there. The shaping according to the figure also has the advantage that the formation of pores on the peripheral parts of the coating is reduced and that the finishing of the outer surfaces on a piece shaped in this way is easy.

Claims (2)

1. Fremgangsmåte for belegging av en tetningsflate som roterer i forhold til en motstående flate, og spesielt for belegging av pumpers tetningsflater innen den petrokjemiske og treforedlingsindustrien, karakterisert ved høy-energi plasmabesprøyting av tetningsflaten med en besprøytningsblanding som inneholder 80-94 vekt-% wolframkarbid samt 6-20 vekt-% kobolt, nikkel eller jern, og hvis kornstørrelse er 5-60 pm og etterfølgende kjølning av belegget uten ettersintring, slik at det blir en viss porøsitet i belegget.1. Method for coating a sealing surface that rotates in relation to an opposing surface, and in particular for coating the sealing surfaces of pumps within the petrochemical and wood processing industries, characterized by high-energy plasma spraying of the sealing surface with a spraying mixture containing 80-94% by weight of tungsten carbide as well as 6-20% by weight of cobalt, nickel or iron, and whose grain size is 5-60 pm and subsequent cooling of the coating without post-sintering, so that there is a certain porosity in the coating. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at flaten påsprøytes et belegg, hvis tykkelse er under 1,2 mm, fortrinnsvis under ca. 0,2 mm.2. Method according to claim 1, characterized in that the surface is sprayed with a coating, the thickness of which is below 1.2 mm, preferably below approx. 0.2 mm.
NO812969A 1980-09-02 1981-09-01 PROCEDURE FOR COATING MECHANICAL SEALS. NO155359C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI802753A FI802753A (en) 1980-09-02 1980-09-02 PROCEDURE FOR MECHANICAL TRAINING

Publications (3)

Publication Number Publication Date
NO812969L NO812969L (en) 1982-03-03
NO155359B true NO155359B (en) 1986-12-08
NO155359C NO155359C (en) 1987-03-18

Family

ID=8513730

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812969A NO155359C (en) 1980-09-02 1981-09-01 PROCEDURE FOR COATING MECHANICAL SEALS.

Country Status (6)

Country Link
DE (1) DE3133561A1 (en)
FI (1) FI802753A (en)
GB (1) GB2083079A (en)
NL (1) NL8104062A (en)
NO (1) NO155359C (en)
SE (1) SE8105024L (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671382B1 (en) * 1991-01-07 1994-12-23 Jaeger MECHANICAL SEALING FOR WATER PUMP ROTATING SHAFT FOR AUTOMOBILE.
US5498142A (en) * 1995-05-30 1996-03-12 Kudu Industries, Inc. Hardfacing for progressing cavity pump rotors
DE19947007A1 (en) 1999-09-30 2001-07-26 Zexel Valeo Compressor Europe Shaft sealing, especially for axial piston compressors

Also Published As

Publication number Publication date
FI802753A (en) 1982-03-03
DE3133561A1 (en) 1982-06-24
SE8105024L (en) 1982-03-03
NO155359C (en) 1987-03-18
NO812969L (en) 1982-03-03
GB2083079A (en) 1982-03-17
NL8104062A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
US5952110A (en) Abrasive ceramic matrix turbine blade tip and method for forming
US4566700A (en) Abrasive/abradable gas path seal system
US3339933A (en) Rotary seal
KR102630007B1 (en) Turbine gap control coatings and methods
EP0187612B1 (en) Abradable seal having particulate erosion resistance
US4005914A (en) Surface coating for machine elements having rubbing surfaces
US5356545A (en) Curable dry film lubricant for titanium alloys
KR20070093815A (en) Wear-resistant coating
US9052017B2 (en) Flexible flow control bushing
JP2007298035A (en) Coating for gas turbine engine component, seal assembly, and coating method
SE434772B (en) PISTON RING
US5017402A (en) Method of coating abradable seal assembly
US2905376A (en) Light metal vane for rotary compressor
NO155359B (en) PROCEDURE FOR COATING MECHANICAL SEALS.
JP2007521421A (en) Tool with an edge and method for manufacturing the same
JPH07269342A (en) Seal assembly for mechanical seal of internal combustion engine coolant pump and manufacture thereof
JPH0316970A (en) Cover applied to piston rod of liquid pressure cylinder
JPS60153456A (en) Steel piston ring
JP2016169613A (en) Impeller, compressor and method of manufacturing impeller
US6609953B2 (en) Seal rings with improved friction and wear properties
Cooper et al. Selection of wear resistant materials for the petrochemical industry
EP3611350B1 (en) Turbine abrasive blade tips with improved resistance to oxidation
WO1983004293A1 (en) Improvements in mechanical seal structures
JP4119276B2 (en) End contact type mechanical seal
JP4184695B2 (en) Water supply pump