NO154954B - FORTOEYNINGSKONSTRUKSJON. - Google Patents

FORTOEYNINGSKONSTRUKSJON. Download PDF

Info

Publication number
NO154954B
NO154954B NO823830A NO823830A NO154954B NO 154954 B NO154954 B NO 154954B NO 823830 A NO823830 A NO 823830A NO 823830 A NO823830 A NO 823830A NO 154954 B NO154954 B NO 154954B
Authority
NO
Norway
Prior art keywords
chlorate
solution
chloride
generator
alkali metal
Prior art date
Application number
NO823830A
Other languages
Norwegian (no)
Other versions
NO154954C (en
NO823830L (en
Inventor
Jacob De Baan
Original Assignee
Bluewater Terminal Systems Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8188163&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO154954(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bluewater Terminal Systems Nv filed Critical Bluewater Terminal Systems Nv
Publication of NO823830L publication Critical patent/NO823830L/en
Publication of NO154954B publication Critical patent/NO154954B/en
Publication of NO154954C publication Critical patent/NO154954C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/02Buoys specially adapted for mooring a vessel
    • B63B22/021Buoys specially adapted for mooring a vessel and for transferring fluids, e.g. liquids
    • B63B22/025Buoys specially adapted for mooring a vessel and for transferring fluids, e.g. liquids and comprising a restoring force in the mooring connection provided by means of weight, float or spring devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

Fremgangsmåte til fremstilling av klordioksyd. Process for the production of chlorine dioxide.

Foreliggende oppfinnelse angår fremstilling av klordioksyd. The present invention relates to the production of chlorine dioxide.

Klordioksyd er blitt fremstilt fra natriumklorat i sur opplosning ved hjelp av forskjellige fremgangsmåter hvis effekt er avhengig av fSigende reaksjoner: Chlorine dioxide has been produced from sodium chlorate in acidic solution by means of various methods, the effect of which depends on the following reactions:

Vanligvis er reaksjonen (2) fremherskende like overfor reaksjon (1) når konsentrasjonen av klorid er hoy med hensyn på kloratkonsen-trasjonen og dette resulterer i et lavt utbytte av klordioksyd. HC1 fremstilles ofte in situ fra natriumklorid og en uorganisk syre slik som svovelsyre. Generally, reaction (2) is predominantly similar to reaction (1) when the concentration of chloride is high with regard to the chlorate concentration and this results in a low yield of chlorine dioxide. HCl is often prepared in situ from sodium chloride and an inorganic acid such as sulfuric acid.

For å nedsette reaksjon (2) til et minimum har det vært praksis å regulere blandingen av klorat, klorid og uorganisk syre omhyggelig. I praksis krever dette en omhyggelig kontroll av tilsetningshastigheten for klorat, klorid og syre. - Videre når svovelsyre er den syre som anvendes, er det blitt funnet at den mengde syre som kreves, er hoy hvilket gjor fremgangsmåten kostbar når man ikke kan anvende brukt syre. In order to reduce reaction (2) to a minimum, it has been practice to regulate the mixture of chlorate, chloride and inorganic acid carefully. In practice, this requires careful control of the rate of addition of chlorate, chloride and acid. - Furthermore, when sulfuric acid is the acid used, it has been found that the amount of acid required is high, which makes the method expensive when you cannot use used acid.

En fremgangsmåte som er blitt foreslått for å regulere forholdet mellom klorat og klorid, er å koble sammen klordioksydanlegget med et elektrolyttisk kloratanlegg, hvilket omdanner metallkloridet til Horat i det forhold mellom klorat og klorid som kreves for reaksjonen. One method that has been proposed to regulate the ratio between chlorate and chloride is to connect the chlorine dioxide plant with an electrolytic chlorate plant, which converts the metal chloride to Horate in the ratio between chlorate and chloride required for the reaction.

Det er blitt foreslått å drive en reaktor med tilstrekkelig lav temperatur (under +10°C), for å fremkalle utfelling av natriumklorid som utskilles fra væsken i reaktoren. Den siste må da oppvarmes for å desorbere klordioksyd og klor. Denne fremgangsmåte lider av den ulempe at væsken forst må avkSles og deretter oppvarmes. It has been proposed to operate a reactor at a sufficiently low temperature (below +10°C) to induce precipitation of sodium chloride which is separated from the liquid in the reactor. The latter must then be heated to desorb chlorine dioxide and chlorine. This method suffers from the disadvantage that the liquid must first be cooled and then heated.

Foreliggende oppfinnelse skaffer en fremgangsmåte til fremstilling av klordioksyd hvilken er lettere å regulere enn de kjente fremgangsmåter og kan anvendes med fordel på steder hvor det ikke finnes noe elektrolyttisk kloratanlegg og klorat forsendes i fast form og på steder hvor saltsyre er tilgjengelig som biprodukt. The present invention provides a method for producing chlorine dioxide which is easier to regulate than the known methods and can be used with advantage in places where there is no electrolytic chlorate plant and chlorate is shipped in solid form and in places where hydrochloric acid is available as a by-product.

Det er således tilveiebragt en fremgangsmåte til fremstilling av klordioksyd hvor en vandig opplosning av et alkalimetallklorat omsettes med saltsyre i en reaksjonssone for å danne klordioksyd, klor og alkalimetallklorid og hvor alkalimetallkloridet gjenvinnes, og oppløsningen i reaksjonssonen holdes umettet med alkalimetallklorid, kjennetegnet ved at minst en del av opplosningen fra reaksjonssonen fores til en an-rikningssone hvor det holdes friskt alkalimetallklorat, idet opplosningen fra reaksjonssonen fores gjennom det friske klorat som derved etterhvert erstattes med utfelt klorid, hvoretter opplosningen returneres til reaksjonssonen og det utfelte klorid gjenvinnes fra anrikningssonen. A process for the production of chlorine dioxide is thus provided where an aqueous solution of an alkali metal chlorate is reacted with hydrochloric acid in a reaction zone to form chlorine dioxide, chlorine and alkali metal chloride and where the alkali metal chloride is recovered, and the solution in the reaction zone is kept unsaturated with alkali metal chloride, characterized in that at least one part of the solution from the reaction zone is fed to an enrichment zone where fresh alkali metal chlorate is kept, the solution from the reaction zone being fed through the fresh chlorate which is thereby eventually replaced by precipitated chloride, after which the solution is returned to the reaction zone and the precipitated chloride is recovered from the enrichment zone.

Oppfinnelsen vil i det folgende beskrives ved hjelp av et eksempel også vist på figurene 1 og 2 på tegningen hvilke er skjematiske ut-forelsesformer for oppfinnelsen. In the following, the invention will be described using an example also shown in figures 1 and 2 of the drawing, which are schematic embodiments of the invention.

På fig.l er det vist en klordioksydgenerator 10 og et anriknings-kammer 11 idet disse deler er forbundet med ror 12 og 13, og i det siste er det anordnet en pumpe 14. Generatoren 10 er forsynt med et overlops-ror 15. Fig.1 shows a chlorine dioxide generator 10 and an enrichment chamber 11, these parts being connected by rudders 12 and 13, and in the latter a pump 14 is arranged. The generator 10 is provided with an overflow rudder 15.

Apparaturen som er vist på fig. 2, ligner den som er vist på fig. 1 med unntagelse av at overlopsroret 15 er utelatt, og det er anordnet en fordamper 16 i roret 13. The apparatus shown in fig. 2, is similar to that shown in fig. 1 with the exception that the overflow rudder 15 is omitted, and an evaporator 16 is arranged in the rudder 13.

Saltsyre i gassform eller i vandig opplosning settes til generatoren 10 ved 17 og reagerer med natriumklorat i vandig opplosning slik at det fremstilles klordioksyd, klor og natriumklorid. Klordioksydet som fremstilles på denne måte fjernes fra generatoren 10 ved 18 ved å boble en gass som er inert med hensyn på klordioksydet slik som luft eller klor gjennom opplosningen i generatoren. Klordioksyd og inert gass kan deretter skilles på velkjent måte i gass-separeringsanordninger ifolge vanlige fremgangsmåter. Hydrochloric acid in gaseous form or in aqueous solution is added to the generator 10 at 17 and reacts with sodium chlorate in aqueous solution so that chlorine dioxide, chlorine and sodium chloride are produced. The chlorine dioxide produced in this way is removed from the generator 10 at 18 by bubbling a gas which is inert with respect to the chlorine dioxide such as air or chlorine through the solution in the generator. Chlorine dioxide and inert gas can then be separated in a well-known manner in gas separation devices according to usual methods.

Driftsbetingelsene for generatoren 10 er slik at natriumklorid forblir i opplosning og utfelles ikke. The operating conditions for the generator 10 are such that sodium chloride remains in solution and does not precipitate.

En del av opplosningen i generatoren 10 pumpes ved hjelp av pumpen 14 gjennom roret 13 til anrikningskammeret 11 som inneholder et lag av fast natriumklorat som anriker kloratinnholdet i opplosningen som kommer fra generatoren. Part of the solution in the generator 10 is pumped by means of the pump 14 through the rudder 13 to the enrichment chamber 11 which contains a layer of solid sodium chlorate which enriches the chlorate content in the solution coming from the generator.

Samtidig på grunn av forskjellen mellom opploselighetene for natriumklorid og natriumklorat utfelles natriumklorid i anrikningskammeret 11 og fjernes ved 19. Natriumklorat i fast form settes til anrikningskammeret 11 ved 20. At the same time, due to the difference between the solubilities of sodium chloride and sodium chlorate, sodium chloride precipitates in the enrichment chamber 11 and is removed at 19. Sodium chlorate in solid form is added to the enrichment chamber 11 at 20.

Den anrikede opplosning returneres til generatoren 10 via roret 12 for reaksjon med saltsyre for å fremstille klordioksyd. The enriched solution is returned to the generator 10 via the rudder 12 for reaction with hydrochloric acid to produce chlorine dioxide.

På fig. 1 tillater overlopsroret 15 at den mengde av opplosningen fjernes fra generatoren 10 hvilken er ekvivalent med volumet av reaksjonsdeltagerne som mates til systemet. Overlopet fra generatoren er den vandige opplosning av saltsyre, natriumklorid og natriumklorat hvilket kan returneres til en elektrolyttisk fremgangsmåte for omdannel-se til natriumklorat. På fig. 2 finnes intet overlop fra generatoren 10 og en mengde vann som er ekvivalent med det vann som dannes ved å tilsettes til reaksjonsdeltagerne, fjernes fra opplosningen idet det passerer fra generatoren 10 til anrikningskammeret 11 ved hjelp av for-damperen l6. In fig. 1, the overflow pipe 15 allows the amount of solution to be removed from the generator 10 which is equivalent to the volume of the reactants fed to the system. The overflow from the generator is the aqueous solution of hydrochloric acid, sodium chloride and sodium chlorate which can be returned to an electrolytic process for conversion to sodium chlorate. In fig. 2 there is no overflow from the generator 10 and an amount of water equivalent to the water formed by adding to the reaction participants is removed from the solution as it passes from the generator 10 to the enrichment chamber 11 by means of the evaporator 16.

For den beste effekt er det onskelig at molarforholdet mellom C10^ og Cl i generatoren 10 holdes ved en verdi som er storre enn en. For the best effect, it is desirable that the molar ratio between C10^ and Cl in the generator 10 is kept at a value greater than one.

Det vil forståes at det kan anvendes et hvilket som helst alkalimetallklorat i fremgangsmåten ifolge oppfinnelsen og ikke bare natriumklorat . It will be understood that any alkali metal chlorate can be used in the method according to the invention and not just sodium chlorate.

Oppfinnelsen illustreres ved hjelp av folgende eksempler: Eksempel 1 The invention is illustrated using the following examples: Example 1

37$ vandig saltsyre ble matet inn i generatoren 10 mens reaksjons-opplosningen ble bragt til å sirkulere gjennom et lag av natriumklorat i anrikningskammeret 11 med en hastighet slik at opplosningen som for-' later generatoren 10 via roret 13 inneholdt 394 gram per liter natriumklorat, 151 gram per liter natriumklorid og 19 gram per liter hydrogenklorid og opplysningen som returneres til generatoren 10 via roret 12 inneholdt 532.5 gram per liter natriumklorat, 123 gram per liter natriumklorid og 14.6 gram per liter hydrogenklorid. Generatoren 10 og anrikningskammeret 11 ble holdt ved 40-5°C, og det sendtes en strom av luft gjennom generatoropplosningen for å fore bort det fremstilte klor- 37$ of aqueous hydrochloric acid was fed into the generator 10 while the reaction solution was circulated through a layer of sodium chlorate in the enrichment chamber 11 at a rate such that the solution leaving the generator 10 via the pipe 13 contained 394 grams per liter of sodium chlorate, 151 grams per liter of sodium chloride and 19 grams per liter of hydrogen chloride and the information returned to the generator 10 via the rudder 12 contained 532.5 grams per liter of sodium chlorate, 123 grams per liter of sodium chloride and 14.6 grams per liter of hydrogen chloride. The generator 10 and enrichment chamber 11 were maintained at 40-5°C, and a stream of air was passed through the generator solution to carry away the produced chlorine.

dioksyd. Fast natriumklorat blé satt til anrikningskammeret for å holde ' et lag av klorat. Effekten av omdannelsen av klorat til klordioksyd var 92. 3%. dioxide. Solid sodium chlorate was added to the enrichment chamber to maintain a layer of chlorate. The efficiency of the conversion of chlorate to chlorine dioxide was 92.3%.

Videre eksempler på fremgangsmåter som ble utfort på samme måte som fremgangsmåten som er angitt i eksempel 1 er angitt i tabell i det fSigende: Further examples of methods which were carried out in the same way as the method set out in example 1 are set out in the following table:

Selv om det foretrekkes å utfore fremgangsmåten ifolge foreliggende oppfinnelse på en kontinuerlig måte, kan den utfores som porsjonsprosess. Although it is preferred to carry out the method according to the present invention in a continuous manner, it can be carried out as a batch process.

Claims (1)

Fremgangsmåte til fremstilling av klordioksyd hvor en vandig opplosning av et alkalimetallklorat omsettes med saltsyre i en reaksjonssone for å danne klordioksyd, klor, og alkalimetallklorid og hvor alkalimetallkloridet gjenvinnes, og opplosningen i reaksjonssonen holdes umettet med alkalimetallklorid, karakterisert ved at minst en del av. opplosningen fra reaksjonssonen fores til en anriknings-sone hvor det holdes friskt alkalimetallklorat, idet opplosningen fra reaksjonssonen fores gjennom det friske klorat som derved e^terhvért erstattes med utfelt klorid, hvoretter opplosningen returneres tilProcess for the production of chlorine dioxide where an aqueous solution of an alkali metal chlorate is reacted with hydrochloric acid in a reaction zone to form chlorine dioxide, chlorine and alkali metal chloride and where the alkali metal chloride is recovered, and the solution in the reaction zone is kept unsaturated with alkali metal chloride, characterized in that at least part of. the solution from the reaction zone is fed to an enrichment zone where fresh alkali metal chlorate is kept, the solution from the reaction zone being fed through the fresh chlorate which is thereby alternately replaced with precipitated chloride, after which the solution is returned to . reaksjonssonen og det utfelte klorid gjenvinnes fra anrikningssonen.. the reaction zone and the precipitated chloride are recovered from the enrichment zone.
NO823830A 1981-11-17 1982-11-16 FORTOEYNINGSKONSTRUKSJON. NO154954C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP81201274A EP0079404B2 (en) 1981-11-17 1981-11-17 A single point mooring buoy with rigid arm

Publications (3)

Publication Number Publication Date
NO823830L NO823830L (en) 1983-05-18
NO154954B true NO154954B (en) 1986-10-13
NO154954C NO154954C (en) 1987-01-21

Family

ID=8188163

Family Applications (1)

Application Number Title Priority Date Filing Date
NO823830A NO154954C (en) 1981-11-17 1982-11-16 FORTOEYNINGSKONSTRUKSJON.

Country Status (10)

Country Link
EP (1) EP0079404B2 (en)
JP (1) JPS5897585A (en)
BR (1) BR8206620A (en)
DE (1) DE3174847D1 (en)
DK (1) DK154335C (en)
ES (1) ES268488Y (en)
NO (1) NO154954C (en)
OA (1) OA07247A (en)
PH (1) PH21279A (en)
SG (1) SG31388G (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547789B1 (en) * 1983-06-21 1988-06-24 Emh LOCKING SYSTEM FOR A BODY FLOATING LARGE DIMENSIONS ESPECIALLY AT SEA
FR2551721B2 (en) * 1983-09-14 1988-12-09 Emh LOCKING SYSTEM FOR A BODY FLOATING LARGE DIMENSIONS ESPECIALLY AT SEA
DE3344117C2 (en) * 1983-12-07 1985-10-31 Blohm + Voss Ag, 2000 Hamburg Permanent one-point anchoring of floating structures on the high seas
JPS61163083A (en) * 1985-01-14 1986-07-23 Mitsubishi Heavy Ind Ltd Single point mooring apparatus
GB2198407B (en) * 1986-06-19 1990-01-17 Peter William George Burridge Bearing assembly
NL191731C (en) * 1987-06-15 1996-05-03 Single Buoy Moorings Mooring system.
NL8800927A (en) * 1988-04-11 1989-11-01 Single Buoy Moorings MOORING SYSTEM WITH QUICK COUPLING.
EP1308384B1 (en) * 2001-08-06 2006-01-11 Single Buoy Moorings Inc. Hydrocarbon fluid transfer system
BRPI0620174A2 (en) * 2005-12-22 2011-11-01 Bluewater Energy Services Bv mooring system
US9803787B2 (en) 2012-09-14 2017-10-31 The United States Of America, As Represented By The Secretary Of The Navy Magnetically attracted fluid transfer system
CN110203331A (en) * 2019-06-14 2019-09-06 上海外高桥造船有限公司 A kind of hawser shoe for rigging hatch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155069A (en) * 1962-08-17 1964-11-03 B P Tanker Company Ltd Mooring arrangements for ships
US3556170A (en) * 1964-01-10 1971-01-19 Fmc Corp Mooring and fluid-transferring method
US3442245A (en) * 1968-04-08 1969-05-06 Us Army Rigid arm mooring means
FR2133307A5 (en) * 1971-04-16 1972-11-24 Elf Entr Rech Activit
US4176615A (en) * 1977-11-21 1979-12-04 Amtel, Inc. Mooring attachment for single point mooring terminals
IT1122786B (en) * 1979-08-17 1986-04-23 Magnanini Umberto TEMPORARY OR PERMANENT ROTATING MOORING STRUCTURE FOR SHIPS OR VESSELS

Also Published As

Publication number Publication date
EP0079404B2 (en) 1992-03-25
ES268488U (en) 1983-05-16
PH21279A (en) 1987-09-28
DK154335B (en) 1988-11-07
DK154335C (en) 1989-06-12
SG31388G (en) 1993-01-29
DK507682A (en) 1983-05-18
NO154954C (en) 1987-01-21
EP0079404B1 (en) 1986-06-18
BR8206620A (en) 1983-10-04
NO823830L (en) 1983-05-18
DE3174847D1 (en) 1986-07-24
EP0079404A1 (en) 1983-05-25
OA07247A (en) 1984-08-31
JPS5897585A (en) 1983-06-10
ES268488Y (en) 1983-12-01

Similar Documents

Publication Publication Date Title
NO154954B (en) FORTOEYNINGSKONSTRUKSJON.
US5324497A (en) Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor
KR20070061894A (en) A process for the production of chlorine dioxide
US4747917A (en) Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity
US3341288A (en) Production of chlorine dioxide
US2863722A (en) Chlorine dioxide production
US5514359A (en) Process for making anhydrous magnesium chloride
US4393036A (en) Production of mixed sulfuric and hydrochloric acid feed and chlorine dioxide generation therewith
US5028302A (en) Purification of chlor-alkali membrane cell brine
US3341287A (en) Process for the production of chlorine dioxide
US2280938A (en) Preparation of chlorine dioxide, cio
US3607027A (en) Process for preparing chlorine dioxide
SE448864B (en) SET TO PREPARE A WATER SOLUTION SUITABLE FOR PREPARATION OF CHLORIDE Dioxide AND SIMILAR REDUCTION OF CHLORINE CONTENT IN A GAS SHELLED CHLORO Dioxide stream
FI71290C (en) FREQUENCY REQUIREMENTS FOR CONTAINER FRAMSTERING WITH CHLORIOXIDES
CA1105877A (en) Process for producing chlorine dioxide
SE504562C2 (en) Process for removing sulfate from an aqueous solution of alkali metal chlorate
US3933987A (en) Simultaneous production of chlorine dioxide and a salt of a strong acid
US3864457A (en) Process for the production of chlorine dioxide
US2861871A (en) Process for the manufacture of chlorine dioxide
US3446584A (en) Method of production of chlorine dioxide and sodium sulfate
US3950500A (en) Method of producing chlorine dioxide
US2134249A (en) Production of water enriched with heavy water
US2977190A (en) Production of alkali metal phosphates and carbon dioxide
US3407128A (en) Process for the manufacture of chlorine, sodium hydroxide and hydrogen by the electrolysis of sodium chloride in mercury cells
JP2755542B2 (en) Method for producing alkali metal hydroxide

Legal Events

Date Code Title Description
MK1K Patent expired

Free format text: EXPIRED IN NOVEMBER 2002