NO154648B - SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM. - Google Patents

SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM. Download PDF

Info

Publication number
NO154648B
NO154648B NO840812A NO840812A NO154648B NO 154648 B NO154648 B NO 154648B NO 840812 A NO840812 A NO 840812A NO 840812 A NO840812 A NO 840812A NO 154648 B NO154648 B NO 154648B
Authority
NO
Norway
Prior art keywords
sensor element
self
capacitor
heating cable
metal
Prior art date
Application number
NO840812A
Other languages
Norwegian (no)
Other versions
NO154648C (en
NO840812L (en
Inventor
Einar Gotaas
Original Assignee
Skand Instr As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skand Instr As filed Critical Skand Instr As
Priority to NO840812A priority Critical patent/NO154648C/en
Priority to PCT/NO1985/000012 priority patent/WO1985004008A1/en
Priority to EP19850901099 priority patent/EP0174333A1/en
Publication of NO840812L publication Critical patent/NO840812L/en
Publication of NO154648B publication Critical patent/NO154648B/en
Publication of NO154648C publication Critical patent/NO154648C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

Oppfinnelsen angår st forbedrer, sansorelemont til bruk i The invention relates to improving, sensor elements for use in

et. kaps.sit.lvt målesystem for nivået av en elektrisk ledende væskes grenseflata mot et ovenforliggende ikke-ledende fludium. 5om eksempel pa ledende væske kan nevnes vann, særlig sjøvann, og ikke-ledende fludium kan eksempelvis vare luft eller olje. a. kaps.sit.lvt measuring system for the level of an electrically conductive liquid's interface with an overlying non-conductive fluid. Examples of conductive fluids include water, especially seawater, and non-conductive fluids can be, for example, air or oil.

Vad de fleste kjente kapasitive nivåmålesystemer benytter man forskjellen i dielektrisitetskonstant mellom væsken og det ovenforliggende medium. Målesondon kan utføres på forskjellige måter. Ln kjent sonde har f.eks. form som to lange, elektrisk ladende rar, anordnet konsentrisk, idet hvert av rørene er en "plate" i en kondensator. In most known capacitive level measurement systems, the difference in dielectric constant between the liquid and the medium above is used. Measuring probes can be carried out in different ways. Ln known probe has e.g. form as two long, electrically charged tubes, arranged concentrically, each of the tubes being a "plate" in a capacitor.

i-.n annen type har form som ligner på. en antennefiatkabe!, i-.n other type has shape similar to. an antenna fiat cable!,

so tverrsnitt vist i fig. 1 . O' et elektriske feltet mellom de to "kondensatorplatene", som her er de to laderne i kabelen, strekker seg ut i det omgivende mediet, og kapasi-tanssn avhenger dermed av mediets dielektrisitetskonstant. so cross section shown in fig. 1. O' an electric field between the two "capacitor plates", which here are the two chargers in the cable, extends into the surrounding medium, and the capacitance thus depends on the dielectric constant of the medium.

<:>£t problam med dette måleprinsipp er imidlertid at dielektri-sitetskonstanten i væsken sjelden eller aldri er konstant. Dessuten er kapasitetsforandringen som måles med de kjente sonder av danne type svært liten, og vanskelig å nåle nøy-aktig. F.eks. gir to konsentriske rør en kapasitetsforand-ring av størrelsesorden IDO pF/m. Videre finnes problemer med nullpunktsdrift, p.g.a. at en vesentlig kspssitans også er tilstede når sondefi ikke er omgitt av væske. Sluttelig har det vist seg vanskelig å lage slike sonder som er mekanisk stabile med hensyn på tempsraturutvidelssr. The problem with this measuring principle, however, is that the dielectric constant in the liquid is rarely or never constant. Moreover, the change in capacity measured with the known probes of this type is very small, and difficult to pinpoint precisely. For example gives two concentric tubes a capacity change of the order of magnitude IDO pF/m. Furthermore, there are problems with zero-point operation, due to that a significant pressure is also present when the probe is not surrounded by liquid. Finally, it has proved difficult to make such probes which are mechanically stable with regard to temperature expansion.

Et annet prinsipp er beskrevet i britisk patentskrift 1.31B.512. Dette prinsippet baserer seg på at ett av mediene, primært vasken nederst, er elektrisk ledende og sørger for kontakt fra en utenforliggende metallelektrode inn til et tynt isolasjonsbelegg som er festet på en innenforliggende, langstrakt "kcndensatorplate", som gjerne har sylindrisk form. jermed utgjøres altså den andre "kondensatorplaten" av selva den elektrisk ledende væsken, mens isolasjonsbelegget ar kondensatorens ciislektrikum. dåisd33 or det altså i hovedsak a realet (dvs.longrisn ) av "kondsnsatorpiatena" som sr den variabl» størrelsen. V od Another principle is described in British patent document 1.31B.512. This principle is based on the fact that one of the media, primarily the sink at the bottom, is electrically conductive and ensures contact from an external metal electrode to a thin insulating coating that is attached to an internal, elongated "condenser plate", which is usually cylindrical in shape. thus the second "capacitor plate" is made up of the electrically conductive liquid itself, while the insulating coating is the capacitor's dielectric. dåisd33 it is therefore mainly the real (i.e. longitudinal) of the "condensator piates" which is the variable size. V od

□ rak 11 s k b r u k av denne k j o n t o m å i e s o n d en o p p s t f. r .imi. ei .1 a r ii d problemer med manglende mekanisk stabilitet ved ternpsratur-svingnin<g>ar. Uette gir lav målenøyaktighet. Dessuten finnec et reelt problem med tilgroing av sonden. Bads biologisk tilgroing og uorganiske avleiringer kan forårsake feil-målinger og gi et upålitelig system. □ rak 11 s k b r u k of this k j o n t o m o i e s o n d an o p p s t f. r .imi. ei .1 a r ii d problems with a lack of mechanical stability during temperature fluctuations. Uette gives low measurement accuracy. In addition, there is a real problem with overgrowth of the probe. Bath biofouling and inorganic deposits can cause incorrect measurements and result in an unreliable system.

["led sansorelemsntst ifølge oppfinnelsen, som sr basert på sistnevnte måleprinsipp, oppnås at problemet, med kapasitansmålefeil p.g.a. temperatursvingninger er eliminert, samt. ["led sensor element according to the invention, which is based on the latter measurement principle, it is achieved that the problem with capacitance measurement errors due to temperature fluctuations is eliminated, as well as.

at levetiden for elementet økas vesentlig. Videre hindres i vesentlig grad tilgroing av sensorelemantst. that the lifespan of the element is significantly increased. Furthermore, growth of sensor elements is prevented to a significant extent.

elementet kan dessuten brukes i brann- og eksplosjonsfar]ige miljøer og er ekstremt motstandsdyktig overfor kjemiske på-virkninger. I forhold til de konvensjonelle forannevnte systemer oppnås også en kraftig okning av kapasitanssndring pr. meter væske, typisk over 500 pF'/m. the element can also be used in fire and explosive environments and is extremely resistant to chemical influences. In relation to the conventional systems mentioned above, a sharp increase in capacitance change per meter of liquid, typically over 500 pF'/m.

Dette oppnås ifølge oppfinnelsen ved at metall-elektroden This is achieved according to the invention by the metal electrode

i kondensatoren utgjøres av skjerman på en selvregulerando varmekabel. in the condenser is made up of the screen on a self-regulating heating cable.

rin nærmere beskrivelse av oppfinnelsen føTger, med henvis-ning til figurene, hvor fig. 1 viser en tidligere kjent kapasitiv,:isensorkabal i tverrsnitt, fig. 2 viser en sensorkabel ifølga oppfinnelsen, også i tverrsnitt, mens fig. 5 viser et enkelt elektrisk ekvivalentskjerna fer kabelen og væsken. A more detailed description of the invention follows, with reference to the figures, where fig. 1 shows a previously known capacitive sensor cable in cross-section, fig. 2 shows a sensor cable according to the invention, also in cross section, while fig. 5 shows a simple electrical equivalent core fer the cable and the liquid.

En typisk, vanlig brukt sensorkabel for kapasitiv nivå-måling i væsken, basert på prinsippet om forskjellige di-elektrisitetskonstanter, er vist i tverrsnitt på fig. i. Kapasitcnsen måles mellom de to kooperlederne 1 som ar omsluttet i hele sin lengde av en plastisolasjon 2, og avhenger av det omgivende mediets 3 dielektrisitetskonstant, 'la dat elektriske feltet son antydet figuren også. gjennomtrenger mediet j>. I praksis, med kabalen strukket ned i et reservoar el].er en tank, vil nivået for overgangen mellom do to aktuelle mediene 1, f.eks. vann og luft, bestemme den totals kapasitansen for kabelen. A typical, commonly used sensor cable for capacitive level measurement in the liquid, based on the principle of different dielectric constants, is shown in cross-section in fig. i. The capacitance is measured between the two copper conductors 1, which are enclosed along their entire length by a plastic insulation 2, and depends on the dielectric constant of the surrounding medium 3, 'let the electric field as the figure also indicated. permeates the medium j>. In practice, with the solitaire stretched down into a reservoir or a tank, the level for the transition between the two relevant media 1, e.g. water and air, determine the total capacitance of the cable.

I fig. 2 vises et tverrsnitt av et sensorelement ifnlgo oppfinnelsen, som også i hovedsak er en kabal som strokkes ned i et reservoar eller en tank....'at nngivande medium <'■ In fig. 2 shows a cross-section of a sensor element according to the invention, which is also essentially a solitaire that is lowered into a reservoir or a tank...

sr en elektrisk ledende vaske, eksempelvis vann, evaniuoit st ikke-ledende fluidum, eksempelvis olje, avhengig av i hvilken høyde snittet ar lagt. in jord ingsoi ektrode r av bart metall er ført ned sammen mad kabelen, og er i eksempelet på fig. 2 vist med sylindrisk form. Formen ar dog ikke avgjørande, da elektrodene 5 hensikt bara er å gi alsktrisk kontakt til den ladende væsken. Den affektive kondensator dannes der den ledende væsken finnes, med selve denne væsken som "kondensatorplate" inntil et dielektrikum som utgjøres av en varmekabels ytra isolas jonsbel.egg 6. sr an electrically conductive wash, for example water, evaniuoit st non-conductive fluid, for example oil, depending on the height at which the cut is placed. in earth ingsoi ektrode r of bare metal is brought down together with the cable, and is in the example in fig. 2 shown with cylindrical shape. However, the shape is not decisive, as the purpose of the electrodes 5 is only to provide electrical contact to the charging liquid. The affective capacitor is formed where the conductive liquid is found, with this liquid itself as the "capacitor plate" next to a dielectric which is made up of a heating cable's outer insulation. Egg 6.

På innsiden av dielektrikumet 6 er kondensatorens andre "plate", nemlig varmekabelens metallskjerm 7. Kondensatorens kapasitans måles altså mellom varmekabelens skjerm 7 og den ledende væsken, som en får elektrisk kontakt med via jordingselektroden 5. On the inside of the dielectric 6 is the capacitor's second "plate", namely the heating cable's metal shield 7. The capacitor's capacitance is thus measured between the heating cable's shield 7 and the conductive liquid, with which one makes electrical contact via the grounding electrode 5.

Det ytre isolasjonsbelsgget 6 på varmekabelen er laget The outer insulation seal 6 on the heating cable is made

av en spesiell fluorpolymer med svært glatt overflate, hvilket motvirker tilgroing av både kjemisk og biologisk type. Det foretrukne materiale er en modifisert fluorpolymer med varemerket "Tefzei", som fremstilles av Du Pont de Nemours & Co., USmI Materialet er også særdeles motstandsdyktig overfor kjemisk angrep. of a special fluoropolymer with a very smooth surface, which counteracts fouling of both chemical and biological types. The preferred material is a modified fluoropolymer under the trademark "Tefzei" manufactured by Du Pont de Nemours & Co., USmI The material is also highly resistant to chemical attack.

Varmekabelen er innenfor skjermen 7 forsynt med et isola-sjonslag 8, fortrinsvis av fluorpolymermaterials. The heating cable is provided within the screen 7 with an insulation layer 8, preferably of fluoropolymer material.

Innenfor laget 3 befinner selve varmeelemantet seg, som er et halvledermateriale 9, som fyller opp kjernen i kabelen. To metall-ladere 10 ar innleiret i kjernen. I bruk er de to metall-lsderne 10 tilkoplet en spenningskilde, f.eks. 220 voltvskseispenning. Within layer 3 is the heating element itself, which is a semiconductor material 9, which fills up the core of the cable. Two metal chargers 10 ar embedded in the core. In use, the two metal sensors 10 are connected to a voltage source, e.g. 220 volts.

Halvledermaterialets 9 egenskaper (dv/s . temperaturavhengig resistivitet) medfører at en viss temperatur holdes konstant langs hele kabelens lengde. For det første fjernes dermed problemet med kapasitansmålefeil tilknyttet temperaturvariasjoner, og for det andre medfører an konstant kabeitemperatur på f.eks. 80 gr.Celcius at biologisk tilgroing reduseres. Dette vil også hindre tilising og even-tuelle olje/voksbelegg på kabelen. The semiconductor material's 9 properties (dv/s . temperature-dependent resistivity) mean that a certain temperature is kept constant along the entire length of the cable. Firstly, the problem of capacitance measurement errors associated with temperature variations is thereby removed, and secondly, a constant cable temperature of e.g. 80 degrees Celsius that biological growth is reduced. This will also prevent icing and any oil/wax coating on the cable.

Formen og de relative dimensjoner i fig. 2 er tilfeldige. Kabelen har ikke nødvendigvis sirkulærsylindrisk form, The shape and relative dimensions in fig. 2 are random. The cable does not necessarily have a circular cylindrical shape,

men kan f.eks. likne på en flatkabal. but can e.g. similar to a flat solitaire.

En standard selvregulerende varmekabel som ved forsøk har vist seg å fungere utmerket som sentralelement i kondsn-satoranordningen ifølge oppfinnelsen, produseres av Raychem Corporation, USA under betegnelsen "Chemelex Auto-Trace QTV2-CT". Kabelen viser seg å være svært stabil A standard self-regulating heating cable which has been shown to function excellently as a central element in the condenser device according to the invention is manufactured by Raychem Corporation, USA under the designation "Chemelex Auto-Trace QTV2-CT". The cable proves to be very stable

både mekanisk, kjemisk og med hensyn til temperatur. both mechanically, chemically and with regard to temperature.

I fig. 3 er vist en elektrisk ekvivalentkrets til ytter-ligere belysning av sensorelementets virkemåte. Punktet 14 representerer jordingselektroden 5 i fig. 2. I realiteten må en regne med at den elektrisk ledende væsken har en viss resistans Rv. Heri inkluderes også en kontaktmotstand i grenseflaten mellom jordingselektroden og væsken. In fig. 3 shows an electrical equivalent circuit for further illumination of the sensor element's operation. The point 14 represents the grounding electrode 5 in fig. 2. In reality, one must assume that the electrically conductive liquid has a certain resistance Rv. This also includes a contact resistance in the interface between the grounding electrode and the liquid.

Forøvrig representeres den ledende væsken rfærmest kabelen som en kondensatorplate 15. Dielektrikumet 16 i kondensatoren tilsvarer isolasjonsbelegget 6, og kondensatorsiden 17 representerer metallskjermen 7. Det fremgår således at resistansen Ru, som må foruentes å være uariabel med niuået som måles og også over tid, vil influere på målingene. Den målebroen som konstrueres til kapasitans-målingen, kan imidlertid innrettes slik at variasjoner i Ru betyr lite for måleresultatet. Incidentally, the conducting liquid nearer the cable is represented as a capacitor plate 15. The dielectric 16 in the capacitor corresponds to the insulating coating 6, and the capacitor side 17 represents the metal screen 7. It thus appears that the resistance Ru, which must be assumed to be invariable with the current being measured and also over time, will influence the measurements. The measuring bridge that is constructed for the capacitance measurement can, however, be arranged so that variations in Ru mean little for the measurement result.

Claims (5)

1. Sensorelement i et kapasitivt nivåmålesystem for en elektrisk ledende væskes grenseflate mot et ovenfor liggende ikke-ledende fludium, omfattende en langstrakt kondensatoranordning hvori den ene kondensatorside (15) utgjøres av selve den ledende væske,som igjen står i direkte elektrisk kontakt med en langstrakt jordingselektrode (5), og kondensatoranordningens dielektrikum (16) ut-gjøres av et tynt isolasjonsbelegg (6) anbrakt rundt en metallelektrode som utgjør kondensatoranordningens andre kondensatorside (17), karakterisert ved at metallelektroden utgjøres av skjermen (7) på en selvregulerende varmekabel.1. Sensor element in a capacitive level measurement system for an electrically conductive liquid's interface with an overlying non-conductive fluid, comprising an elongated capacitor device in which one capacitor side (15) is made up of the conductive liquid itself, which in turn is in direct electrical contact with an elongated grounding electrode (5), and the capacitor device's dielectric (16) consists of a thin insulating coating (6) placed around a metal electrode which forms the capacitor device's other capacitor side (17), characterized by that the metal electrode is made up of the shield (7) on a self-regulating heating cable. 2. Sensorelement ifølge krav 1, karakterisert ved at den selvregulerende varmekabelens skjerm (7) er tett omsluttet av et tynt belegg av en fluorpolymer med særlig glatt overflate og høy termisk og kjemisk og mekanisk stabilitet,hvilket tynne belegg (6) utgjør kondensatorens dielektrikum.2. Sensor element according to claim 1, characterized by that the self-regulating heating cable's screen (7) is tightly enclosed by a thin coating of a fluoropolymer with a particularly smooth surface and high thermal, chemical and mechanical stability, which thin coating (6) constitutes the capacitor's dielectric. 3. Sensorelement ifølge krav 1 eller 2 karakterisert ved at den selvregulerende varmekabelen på i og for seg kjent måte sentralt har anordnet to metall-ledere (10) som er innleiret i et halvledende materiale (9), som igjen omsluttes tett av et isolerende fluorpolymerlag (8) beliggende umiddelbart innenfor skjermen (7) .3. Sensor element according to claim 1 or 2 characterized by that the self-regulating heating cable, in a manner known per se, has centrally arranged two metal conductors (10) which are embedded in a semi-conducting material (9), which in turn is tightly enclosed by an insulating fluoropolymer layer (8) located immediately inside the screen (7) . 4. Sensorelement ifølge krav 3, karakterisert ved at den selvregulerende varmekabelens samtlige elementer, dvs. metall-ledere (10), halvledende materiale (9), isolerende lag (8), skjerm (7) og tynne belegg (6), er pakket fast og kompakt på i og for seg kjent måte, og at samtlige elementer (6-10) er av materialer med særlig lav kompressibilitet og høy strekkfasthet.4. Sensor element according to claim 3, characterized by that all elements of the self-regulating heating cable, i.e. metal conductors (10), semi-conducting material (9), insulating layer (8), screen (7) and thin coating (6), are packed firmly and compactly on known way, and that all elements (6-10) are of materials with particularly low compressibility and high tensile strength. 5. Anvendelse av en selvregulerende varmekabel som består av et sentralt anordnet elektrisk halvledende materiale (9) med to inn-leirede, langsgående elektriske ledere (10) av metall, hvilket materiale (9) er tett omsluttet av et elektrisk isolerende fluorpolymerlag (8) som igjen omsluttes av et skjermlag (7) av metall og et ytterste, elektrisk isolerende belegg (6) av fluorpolymer-materiale med særlig glatt overflate, som del av en langstrakt kondensatoranordning som er sensorelement i et kapasitivt nivåmålesystem for en elektrisk ledende væskes grenseflate mot et ovenfor liggende ikkeledende fluidum, f.eks. grenseflaten vann/ luft eller vann/olje, idet kondensatoranordningen videre innbe-fatter i det minste et tilliggende volum av den ledende væsken, som igjen er i direkte kontakt med en langstrakt jordingselektrode (5).5. Application of a self-regulating heating cable consisting of a centrally arranged electrical semi-conducting material (9) with two embedded, longitudinal electrical conductors (10) made of metal, which material (9) is tightly enclosed by an electrically insulating fluoropolymer layer (8) which in turn is enclosed by a shield layer (7) of metal and an outer, electrically insulating coating (6) of fluoropolymer material with a particularly smooth surface, as part of an elongated capacitor device which is a sensor element in a capacitive level measurement system for the interface of an electrically conductive liquid against an overlying non-conducting fluid, e.g. the interface water/air or water/oil, the capacitor device further including at least an additional volume of the conductive liquid, which is again in direct contact with an elongated grounding electrode (5).
NO840812A 1984-03-05 1984-03-05 SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM. NO154648C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO840812A NO154648C (en) 1984-03-05 1984-03-05 SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM.
PCT/NO1985/000012 WO1985004008A1 (en) 1984-03-05 1985-03-04 Sensing element for a capacitive level measuring system
EP19850901099 EP0174333A1 (en) 1984-03-05 1985-03-04 Sensing element for a capacitive level measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO840812A NO154648C (en) 1984-03-05 1984-03-05 SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM.

Publications (3)

Publication Number Publication Date
NO840812L NO840812L (en) 1985-09-06
NO154648B true NO154648B (en) 1986-08-11
NO154648C NO154648C (en) 1986-11-19

Family

ID=19887518

Family Applications (1)

Application Number Title Priority Date Filing Date
NO840812A NO154648C (en) 1984-03-05 1984-03-05 SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM.

Country Status (3)

Country Link
EP (1) EP0174333A1 (en)
NO (1) NO154648C (en)
WO (1) WO1985004008A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4131582A1 (en) * 1991-09-23 1993-03-25 Elektro Merseburg Gmbh I G Capacitive level measurement device for liquids or bulk material - uses measurement-, screening- and base-electrodes with intermediate insulation, and operates as capacitive potential divider
EP1677085A3 (en) * 2004-12-31 2007-08-01 Moonhaven LLC Capacitive level sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1318512A (en) * 1969-03-12 1973-05-31 Greater London Council Apparatus for detecting changes in the level of a pourable material
US3706980A (en) * 1970-04-27 1972-12-19 Drexelbrook Controls Rf system for measuring the level of materials
FR2129245A5 (en) * 1971-03-19 1972-10-27 Pennaneach Marcelle
US4064753A (en) * 1974-12-12 1977-12-27 Drexelbrook Controls, Inc. RF admittance measuring method and apparatus for determining the level of a conductive liquid
US4122718A (en) * 1975-07-16 1978-10-31 Gustafson Reuben V Liquid level sensor
US4242573A (en) * 1979-01-24 1980-12-30 Raychem Corporation Water immersible heater
US4301681A (en) * 1979-09-06 1981-11-24 Drexelbrook Controls, Inc. Method of using capacitor probe with a semiconductive electrode
US4412270A (en) * 1981-06-25 1983-10-25 Simmonds Precision Products, Inc. Electrode assembly for a capacitance type probe

Also Published As

Publication number Publication date
NO154648C (en) 1986-11-19
EP0174333A1 (en) 1986-03-19
NO840812L (en) 1985-09-06
WO1985004008A1 (en) 1985-09-12

Similar Documents

Publication Publication Date Title
CN106415252B (en) Probe for generating signal, measuring probe, and signal generating method
US6178818B1 (en) Capacitive filling level sensor
US3302101A (en) Electrode system having a potential electrode embedded within a current electrode for measuring the electrical resistivity of a porous rock sample
US2994219A (en) Corrosion test probe
US3376501A (en) Cell for determining the conductivity of liquids entrained in porous media
Jaworski et al. A capacitance probe for interface detection in oil and gas extraction plant
US3210655A (en) Electrolyte method and apparatus for detecting holidays in the internal coatings of pipes
US3358229A (en) Electrical corrosion probe having a plurality of test specimen segments
NO154648B (en) SENSOR ELEMENT FOR CAPACITY LEVEL MEASUREMENT SYSTEM.
US4885529A (en) Identification of fluids and an interface between fluids by measuring complex impedance
EP0144211A2 (en) Sensor cable
US3200312A (en) Capacitance probe for fluids
US3722281A (en) Liquid height gauge
WO2019115639A1 (en) Level probe and sensor
US1555803A (en) Electrode means for conductivity tests of liquids in oil wells or other bodies of liquid
US2316942A (en) Apparatus for measuring temperatures in boreholes
US2748379A (en) Long probe manometer
US3004232A (en) Corrosion test probe
CN1020803C (en) Probe for measuring negative offset of under ground pipe-line cathode protection protential and measuring method
US3098991A (en) Corrosion probe with cathodically protected compensating element
US3258966A (en) Depth pressure gauge
RU85641U1 (en) CAPACITIVE LIQUID METER
SU446013A1 (en) Well moisture meter
SU1089408A1 (en) Hydraulic device for measuring linear dimensions and displacements
RU2084836C1 (en) Device for measuring level of conducting liquid