NO152209B - PROCESS OF PUMPING AND DEGRADING WATER - Google Patents

PROCESS OF PUMPING AND DEGRADING WATER Download PDF

Info

Publication number
NO152209B
NO152209B NO831561A NO831561A NO152209B NO 152209 B NO152209 B NO 152209B NO 831561 A NO831561 A NO 831561A NO 831561 A NO831561 A NO 831561A NO 152209 B NO152209 B NO 152209B
Authority
NO
Norway
Prior art keywords
gas
water
oxygen
inert gas
hydrogen
Prior art date
Application number
NO831561A
Other languages
Norwegian (no)
Other versions
NO152209C (en
NO831561L (en
Inventor
Norolf Henriksen
Tor Christensen
Erik Fareid
Sven Arne Kjoelberg
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO823090A external-priority patent/NO151118C/en
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to NO831561A priority Critical patent/NO152209C/en
Priority to AU18621/83A priority patent/AU573534B2/en
Priority to PH29509A priority patent/PH18841A/en
Priority to BR8304891A priority patent/BR8304891A/en
Priority to CA000436415A priority patent/CA1222200A/en
Priority to GB08324157A priority patent/GB2127711B/en
Priority to DK412283A priority patent/DK412283A/en
Priority to EG565/83A priority patent/EG17112A/en
Priority to OA58098A priority patent/OA07529A/en
Publication of NO831561L publication Critical patent/NO831561L/en
Publication of NO152209B publication Critical patent/NO152209B/en
Publication of NO152209C publication Critical patent/NO152209C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Oppfinnelsen vedrører pumping og avgassing av vann, spesielt fjerning av oksygen fra sjøvann som skal injiseres i dyptliggende strukturer for å øke den utvinnbare andel av underjordiske hydrokarbonressurser.Dette oppnås ifølge oppfinnelsen ved at vannet pumpes opp og avgasses i et gaslift-system med inertgass som resirkuleres. Vannet skilles ut ferdig avgasset, mens inertgassen ledes gjennom en regenereringssone for rensing og regenerering i. gassfase, idet den oksygenholdige gass fra gaslift-sonen tilsettes hydrogen og den resulterende gassblanding føres gjennom en katalytisk forbrenningssone for forbrenning av hydrogen og oksygen til vann, hvoretter den rensede gass resirkuleres.The invention relates to the pumping and degassing of water, in particular the removal of oxygen from seawater to be injected into deep structures to increase the recoverable proportion of subterranean hydrocarbon resources. . The water is separated off the finished gas, while the inert gas is passed through a regeneration zone for purification and regeneration in the gas phase, the oxygen-containing gas from the gas lift zone being added to hydrogen and the resulting gas mixture being passed through a catalytic combustion zone purified gas is recycled.

Description

Denne oppfinnelse vedrører avgassing av vann, spesielt fjerning av oksygen fra sjøvann som skal injiseres i dyptliggende strukturer for å øke den utvinnbare andel av underjordiske hydrokarbonressurser. This invention relates to the degassing of water, in particular the removal of oxygen from seawater to be injected into deep-lying structures to increase the recoverable proportion of underground hydrocarbon resources.

Det er i denne forbindelse av vesentlig betydning å fjerne sjø-vannets innhold av oksygen for å redusere korrosjon og forhindre vekst av aerobe bakterier som blokkerer hydrokarbonstrømmen fra strukturen. Dette problem har vært kjent i lang tid, og det er foreslått flere ulike løsninger. De fleste bygger på ett av to hovedprinsipper, avgassing ved redusert trykk og gass-stripping eller en kombinasjon av disse. Når man tar i betraktning at det er meget store sjøvannmengder som skal injiseres samtidig som avgassingen hele tiden må være effektiv, idet friskt sjøvann normalt er mettet med oksygen og representerer en meget poten-siell korrosjonsfaktor, vil det forstås at dette stiller strenge krav til desoksyderingsprosessen og at det er nødvendig å bygge store og kostbare behandlingsanlegg. In this connection, it is of essential importance to remove the seawater's oxygen content in order to reduce corrosion and prevent the growth of aerobic bacteria that block the flow of hydrocarbons from the structure. This problem has been known for a long time, and several different solutions have been proposed. Most are based on one of two main principles, degassing at reduced pressure and gas stripping or a combination of these. When one takes into account that there are very large quantities of seawater to be injected at the same time that the degassing must be efficient at all times, as fresh seawater is normally saturated with oxygen and represents a very potential corrosion factor, it will be understood that this places strict demands on the deoxidation process and that it is necessary to build large and expensive treatment facilities.

Vakuum avgassing blir derfor lite hensiktsmessig, fordi man ved slike metoder må bruke meget komplisert og tungt utstyr. Når det gjelder oksygenfjerning ved stripping, har det hittil vært benyttet naturgass som i offshore-sammenheng er lett tilgjenge-lig i tilstrekkelig store mengder. Naturgassen vil ikke kunne utnyttes kommersielt etter strippeoperasjonen, men må kjøres til fakkel. Forurensninger i gassen som CO,, og H^S reduserer også kvaliteten på vannet. Vacuum degassing is therefore not appropriate, because such methods require the use of very complicated and heavy equipment. When it comes to oxygen removal during stripping, natural gas has so far been used, which in an offshore context is easily available in sufficiently large quantities. The natural gas will not be able to be used commercially after the stripping operation, but must be sent to flare. Pollutants in the gas such as CO,, and H^S also reduce the quality of the water.

Strippetårn som utnytter naturgass som strippegass, har derfor også ulemper. Gassforbruket er stort og volum og vekt nesten like høye som for vakuumtårn. Stripping towers that use natural gas as stripping gas therefore also have disadvantages. Gas consumption is high and volume and weight almost as high as for vacuum towers.

Et anlegg for stripping ved hjelp av resirkulert nitrogengass er beskrevet i US-patent nr. 4,0J7,276 (tilsvarende norsk patent nr. ]49.308). Ifølge patentet foretas oksygenfjerning i et strippetårn med nitrogengass og fjerning av oksygen fra strippegassen ved lav temperatur gassfraksjonering. Herved forbrukes ikke vesentlige mengder gass. Fraksjoneringsapparaturen blir imidlertid plasskrevende og kostbar, mens nedkjølingen er rela-tivt energikrevende. For å oppnå tilstrekkelig lave oksygen-verdier vil det også her kreves spesielle og fordyrende tiltak. Oksygeninnholdet i nitrogengass fremstilt ved gassfraksjonering ligger normalt i området JO-J 00 ppm og strippegassen bør derfor gjennomgå en ytterligere renseprosess før den resirkuleres. A plant for stripping using recycled nitrogen gas is described in US patent no. 4,0J7,276 (corresponding to Norwegian patent no. ]49,308). According to the patent, oxygen removal is carried out in a stripping tower with nitrogen gas and removal of oxygen from the stripping gas by low-temperature gas fractionation. In this way, significant quantities of gas are not consumed. However, the fractionation equipment takes up space and is expensive, while the cooling is relatively energy-intensive. In order to achieve sufficiently low oxygen values, special and expensive measures will also be required here. The oxygen content in nitrogen gas produced by gas fractionation is normally in the range JO-J 00 ppm and the stripping gas should therefore undergo a further cleaning process before it is recycled.

Sjøvann som skal benyttes for reinjisering, pumpes normalt opp ved hjelp av neddykkede sentrifugalpumper. Det er imidlertid også blitt foreslått å pumpe opp vannet ved hjelp av gaslift-prinsippet, som regnes for å ha større driftsikkerhet enn meka-nisk pumping og er et enkelt system som kan benyttes for store løftehøyder. Fordeling av gass inne i løfterøret vil da under bestemte forutsetninger gi en strippeeffekt som medfører at oksygen blir fjernet. Gasliftprinsippet er tidligere foreslått benyttet med naturgass som løftegass. En betydelig ulempe er imidlertid at prinsippet krever bruk av store mengder naturgass med et resulterende forbruk som er minst tre ganger større enn ved bruk av strippetårn. Videre overføres H?S og COp til vannet som derved forsures. Seawater to be used for re-injection is normally pumped up using submerged centrifugal pumps. However, it has also been proposed to pump up the water using the gas lift principle, which is considered to have greater operational reliability than mechanical pumping and is a simple system that can be used for large lifting heights. Distribution of gas inside the lift pipe will then, under certain conditions, produce a stripping effect which means that oxygen is removed. The gas lift principle has previously been proposed to be used with natural gas as lift gas. A significant disadvantage, however, is that the principle requires the use of large quantities of natural gas with a resulting consumption that is at least three times greater than when using a stripping tower. Furthermore, H?S and COp are transferred to the water, which is thereby acidified.

Det er derfor et hovedformål med den foreliggende oppfinnelse It is therefore a main purpose of the present invention

å tilveiebringe en ny og forbedret fremgangsmåte som eliminerer forbruket av strippegass samtidig som det oppnås optimal oksy-genf jerning uten forsuring av vannet. to provide a new and improved method which eliminates the consumption of stripping gas while achieving optimal oxygen removal without acidifying the water.

Videre er det et formål med oppfinnelsen å nedsette utstyrets vekt og plassbehov. Furthermore, it is an aim of the invention to reduce the equipment's weight and space requirements.

Ovenstående og andre formål realiseres ved hjelp av den utførel-sesform av oppfinnelsen som er beskrevet nedenfor og som er be-skyttet ved de medfølgende patentkrav 1-6. Et vesentlig kjennetegn ved oppfinnelsen er at vannet pumpes og avgasses i et gaslift-system med sirkulerende inertgass. Hydrogen tilsettes og forbrennes med den oksygen som er opptatt i utgående inertgass fra gaslift-sonen i en katalysatorenhet anordnet i sirkulasjons-kretsløpet. The above and other purposes are realized by means of the embodiment of the invention which is described below and which is protected by the accompanying patent claims 1-6. An essential characteristic of the invention is that the water is pumped and degassed in a gas lift system with circulating inert gas. Hydrogen is added and combusted with the oxygen that is taken up in the outgoing inert gas from the gas lift zone in a catalyst unit arranged in the circulation circuit.

Andre formål og kjennetegn ved oppfinnelsen vil fremgå av den etterfølgende beskrivelse og de utførelsesformer som er vist på tegningen, hvor: Other purposes and characteristics of the invention will be apparent from the following description and the embodiments shown in the drawing, where:

Fig. 3 viser et skjematisk oppriss av systemet, Fig. 3 shows a schematic outline of the system,

Fig. ? viser et forstørret oppriss av bunnseksjonen Fig. ? shows an enlarged elevation of the bottom section

av gaslift-systemet, of the gaslift system,

Fig. 3 viser et snitt gjennom samme og Fig. 3 shows a section through the same and

Fig. 4 viser eksempler på ulike strømningstilstander. Fig. 4 shows examples of different flow states.

Fordelene ved "gaslift" med sirkulerende inertgass mot "gaslift" med engangsgjennomløp av naturgass, kan kort oppsummeres som følger: The advantages of "gas lift" with circulating inert gas versus "gas lift" with one-time flow of natural gas can be briefly summarized as follows:

- Tap av naturgass unngås - Loss of natural gas is avoided

- Forsuring med HpS, COp unngås og derved oppnås - Acidification with HpS, COp is avoided and thereby achieved

lavere oppholdstid ved Op-scavenging lower residence time for Op-scavenging

Naturgass løst i vann unngås Avoid natural gas dissolved in water

Fakkel og miljøforurensning reduseres betydelig Flares and environmental pollution are significantly reduced

Frihet i valg av gassmengde gir mulighet for Freedom in choosing the amount of gas allows for

bedre Op-fjerning og/eller pumpeeffekt better Op removal and/or pumping effect

Lavere mengde brennbar gass i systemet (kun små Lower amount of flammable gas in the system (only small

mengder H2) gir vesentlig større sikkerhet amounts of H2) provide significantly greater safety

Lavere korrosjon i gaslift-røret (unngår HpS og COp Lower corrosion in the gas lift pipe (avoids HpS and COp

sammen med Op) together with Op)

Reduserte muligheter for skumming Reduced possibilities of foaming

Sikrer konstant, kjent gasskvalitet, slik som molvekt, Ensures constant, known gas quality, such as molar weight,

sammensetning, sporstoffer, kondenserbare bestanddeler. composition, trace elements, condensable constituents.

Fig. 1 viser en prinsipiell utførelsesform av gaslift-systemet med sirkulerende inertgass i henhold til oppfinnelsen. Fig. 1 shows a principle embodiment of the gas lift system with circulating inert gas according to the invention.

Inertgass inneholdende avdrevet oksygen og små mengder hydrogen tilsatt fra en hydrogenkilde 8 komprimeres i en kompressor J. Inert gas containing stripped oxygen and small amounts of hydrogen added from a hydrogen source 8 is compressed in a compressor J.

I en deoxokatalysator ? forbrennes hydrogen og oksygen til vann. Inertgassen som er tilnærmet fri for oksygen, føres ned gjennom røret 3 og til bunnseksjonen 4 hvor gass og væske blandes. Gass-/væskeblandingen i røret vil heves til et nivå høyere enn vannoverflaten på grunn av at blandingen i røret har lavere tetthet enn væsken. Differansen mellom sjøvannets statiske trykk ved bunnseksjonen 4 og det statiske trykk av gass-/væskeblandingen, utgjør den drivende kraft. In a deoxocatalyst? hydrogen and oxygen are burned into water. The inert gas, which is almost free of oxygen, is led down through the pipe 3 and to the bottom section 4 where gas and liquid are mixed. The gas/liquid mixture in the pipe will rise to a level higher than the water surface because the mixture in the pipe has a lower density than the liquid. The difference between the static pressure of the seawater at the bottom section 4 and the static pressure of the gas/liquid mixture constitutes the driving force.

Blandingen stiger opp gjennom et rør 5 som utgjør selve "gaslift"en hvor oksygenfjerningen finner sted. The mixture rises through a pipe 5 which constitutes the actual "gas lift" where the oxygen removal takes place.

Væske-gassblandingen fra røret 5 skilles i en separator 6, f.eks. en syklon. Mesteparten av gjenværende væske i gassen kan fjernes i en ytterligere separator 9, f.eks. en demistor. The liquid-gas mixture from the pipe 5 is separated in a separator 6, e.g. a cyclone. Most of the remaining liquid in the gas can be removed in a further separator 9, e.g. a demister.

Oksygenet fjernes ved hjelp av ekstra tilsats av hydrogen 8 i en deoxo-enhet ?. Erstatningsgass, f.eks. i form av luft, tilsettes ved innløpet 7 for å opprettholde trykket i systemet. Videre kan istedenfor hydrogen eventuelt tilsettes en annen egnet reduk-sjonsgass. The oxygen is removed by additional addition of hydrogen 8 in a deoxo unit ?. Replacement gas, e.g. in the form of air, is added at inlet 7 to maintain the pressure in the system. Furthermore, instead of hydrogen, another suitable reducing gas can optionally be added.

Vann fra separatoren 6 går til eventuell viderebehandling JO (f.eks. tilsats av 0?-scavenger) og deretter til bruk. Kapa-siteten i gaslift-systemet kan enkelt lages tilstrekkelig stor til også å kunne dekke vannforbruk i tillegg til den vannmengde som skal injiseres, uten at det resulterer i øket gassforbruk. Water from the separator 6 goes to possible further treatment JO (e.g. addition of 0? scavenger) and then to use. The capacity in the gas lift system can easily be made large enough to cover water consumption in addition to the amount of water to be injected, without this resulting in increased gas consumption.

Den rene hydrogengass (99,9%) tilføres i avpassede støkio-metriske mengder eller i overskudd i forhold til oksygeninnholdet i inertgassen, fra en vannelektrolysør 8 eller en annen type hydrogengenerator, gjennom en ledning og blandes med gassen fra gasliftsystemet. Gassblandingen føres så ved hjelp av kom-pressoren inn i katalysatorkammeret som er fylt med tørr, par-tikkelformet katalysator bestående av aktivt palladium eller platina utfelt på aluminabase. Denne vil tenne den tørre gassblandingen spontant. Forbrenningen skjer ved det trykk som kreves for å drive gassen ned til bunnseksjonen 4. Hydrogen og oksygen forbrennes fullstendig under varmeutvikling som for-damper det dannede vann og varmer opp inertgassen. The pure hydrogen gas (99.9%) is supplied in suitable stoichiometric amounts or in excess in relation to the oxygen content of the inert gas, from a water electrolyser 8 or another type of hydrogen generator, through a line and mixed with the gas from the gas lift system. The gas mixture is then fed by means of the compressor into the catalyst chamber which is filled with dry, particulate catalyst consisting of active palladium or platinum precipitated on an alumina base. This will ignite the dry gas mixture spontaneously. Combustion takes place at the pressure required to drive the gas down to the bottom section 4. Hydrogen and oxygen are completely burned during heat development, which evaporates the water formed and heats up the inert gas.

Gjenværende inertgass vil nå være tilnærmet fullstendig renset for oksygen og kan umiddelbart resirkuleres i prosessen. Remaining inert gas will now be almost completely cleaned of oxygen and can be immediately recycled in the process.

Fig. 2 og 3 viser en mer detaljert utforming av gaslift-rørets bunnseksjon. Figs 2 and 3 show a more detailed design of the gas lift pipe's bottom section.

Selve teknikken bak gaslift-prinsippet anses som vel kjent, og utformingen av utstyret for øvrig vil ikke bli beskrevet i detalj og er heller ikke vist på tegningen. Sirkulerende inertgass innføres under trykk gjennom røret 3 til bunnseksjonen 4 som former en kappe 34' rundt selve løfterøret 5. Løfterøret 5 er forsynt med et antall små åpninger fordelt jevnt rundt om-kretsen. Hvis kjemikalieinnsats kreves, kan et ytterligere rør 3 3' anordnes nedenfor bunnseksjonen. I underkant av røret 5 er anordnet en silinnretning 3 2. The actual technique behind the gaslift principle is considered well known, and the design of the equipment in general will not be described in detail, nor is it shown in the drawing. Circulating inert gas is introduced under pressure through the pipe 3 to the bottom section 4 which forms a jacket 34' around the lift pipe 5 itself. The lift pipe 5 is provided with a number of small openings distributed evenly around the circumference. If chemical input is required, a further pipe 3 3' can be arranged below the bottom section. A sieve device 3 2 is arranged at the bottom of the pipe 5.

Fig. 4 viser eksempler på strømningsmønstre som dannes i gas-lif t-røret og som er avhengige av volumforhold gass/væske. Fig. 4 shows examples of flow patterns that form in the gas-lift pipe and which are dependent on the gas/liquid volume ratio.

I og med at man har økt frihet når det gjelder mengden av gjennomstrømmende inertgass, er det til enhver tid mulig,å velge den gassmengde som gir den beste kombinasjon av oksygenfjerning og pumpeeffektivitet. Et mulig strømningsbilde vises på Fig. 4 for en løftehøyde på 40 m over vannflaten, inntak 60 m under vannflaten og med en rørdiameter på 0,3 m. Avsnitt ]3 viser såkalt annular flow, avsnitt J4 viser såkalt wispy annular flow, avsnitt 15 viser såkalt churn flow og avsnitt 16 såkalt plug flow. As you have increased freedom in terms of the amount of inert gas flowing through, it is possible at all times to choose the amount of gas that provides the best combination of oxygen removal and pump efficiency. A possible flow picture is shown in Fig. 4 for a lift height of 40 m above the water surface, intake 60 m below the water surface and with a pipe diameter of 0.3 m. Section ]3 shows so-called annular flow, section J4 shows so-called wispy annular flow, section 15 shows so-called churn flow and section 16 so-called plug flow.

De spesielle og vesentlige poenger ved bruk av "gaslift" med sirkulerende inertgass i henhold til oppfinnelsen er: - Oksygen fjernes i selve pumpeoperasjonen - pumping og oksygenfjerning oppnås samtidig The special and essential points when using "gas lift" with circulating inert gas according to the invention are: - Oxygen is removed in the pumping operation itself - pumping and oxygen removal are achieved simultaneously

Lavt resulterende oksygeninnhold i vannet reduserer evt. The resulting low oxygen content in the water reduces any

behov for Op-scavenger need for Op scavenger

Ved forbrenningen av oksygen med hydrogen dannes vann When oxygen is burned with hydrogen, water is formed

som allerede finnes i systemet which already exists in the system

Driftssikkerhet, systemet består av få bevegelige deler Systemet er satt sammen av kjente elementer og kjent Operational safety, the system consists of few moving parts The system is composed of known elements and known

teknikk technique

Systemet er miljøvennlig, ingen forurensning av vann The system is environmentally friendly, no pollution of water

og luft and air

- Systemet krever lite vedlikehold - The system requires little maintenance

Operasjonsvekten er tilnærmet lik tomvekt The operating weight is approximately equal to the empty weight

og er vesentlig lavere enn ved bruk av vakuum og eller strippetårn. and is significantly lower than when using a vacuum and or stripping tower.

Eksempel: Example:

Gaslift-systemet har vært kjørt i pilotanlegg: The Gaslift system has been run in pilot plants:

0,5 m^ sjøvann pr. time ble pumpet av gaslift-systemet og løftet fra 4 m dyp opp til 6 m over overflaten ved bruk av 2,5 Nm 3nitrogengass pr. time. 0.5 m^ seawater per hour was pumped by the gas lift system and lifted from 4 m deep up to 6 m above the surface using 2.5 Nm 3nitrogen gas per hour.

Den komprimerte og oksygenfrie nitrogengass ble tilført bunnen av et gaslift-rør som bestod av et enkeltrør med 2,J cm indre diameter. The compressed and oxygen-free nitrogen gas was supplied to the bottom of a gas lift tube which consisted of a single tube of 2.J cm internal diameter.

Den resulterende vann/gass-blanding strømmet opp gjennom gas-liftrørene samtidig som oksygen diffunderte fra væskefasen over i gassfasen. Oksygenmengden i vannet ble redusert med ca. 90%. The resulting water/gas mixture flowed up through the gas lift tubes while oxygen diffused from the liquid phase into the gas phase. The amount of oxygen in the water was reduced by approx. 90%.

I et separat pilotanlegg ble nitrogengass inneholdende over 3 000 ppm oksygen og støkiometriske mengder hydrogen tilført en Pd-katalysator. Etter katalysatoren var oksygenmengden redusert til under 3 ppm. Forsøket ble kjørt kontinuerlig over tre måne-der uten varig svekkelse av katalysatoren. In a separate pilot plant, nitrogen gas containing over 3,000 ppm oxygen and stoichiometric amounts of hydrogen was fed to a Pd catalyst. After the catalyst, the amount of oxygen was reduced to below 3 ppm. The experiment was run continuously over three months without permanent weakening of the catalyst.

Forsøkene viser at en direkte oppskalering av gaslift- og katalysator systemet etter kjente prinsipper vil resultere i et operativt system med tilfredsstillende virkningsgrad. The experiments show that a direct upscaling of the gas lift and catalyst system according to known principles will result in an operational system with a satisfactory degree of efficiency.

Sluttresultat: Final result:

Tilstrekkelige mengder sjøvann kan pumpes opp til f.eks. 40 m over overflaten og oksygeninnholdet reduseres til 0,3 ppm eller lavere i én og samme operasjon. Sufficient amounts of seawater can be pumped up to e.g. 40 m above the surface and the oxygen content is reduced to 0.3 ppm or lower in one and the same operation.

Den ovenfor beskrevne metode må kun anses som en foretrukket utførelsesform av oppfinnelsen. The method described above must only be considered a preferred embodiment of the invention.

Det er således mulig innenfor oppfinnelsens ramme å benytte annen katalytisk forbrenning enn den beskrevne Pd-baserte. Andre inertgasser enn nitrogen og andre måter å rense inertgassen på kan også være aktuelt. It is thus possible within the framework of the invention to use catalytic combustion other than the described Pd-based one. Inert gases other than nitrogen and other ways of purifying the inert gas may also be relevant.

Videre er det mulig å utforme gaslift-rørene og bunnseksjon på ulike måter. Både rørenes diameter, høyde og antall vil kunne Furthermore, it is possible to design the gas lift pipes and bottom section in different ways. Both the diameter, height and number of the pipes will be able to

varieres. Avhengig av de betingelser som kreves for å skape op-timale strømningsforhold og løftevirkning kombinert ved optimal oksygenfjerning, har man også frihet til å endre mengden av til-ført gass uten at dette vil medføre ekstra kostnader. is varied. Depending on the conditions required to create optimal flow conditions and lifting effect combined with optimal oxygen removal, you also have the freedom to change the amount of supplied gas without this entailing additional costs.

Claims (6)

J. Fremgangsmåte for samtidig pumping og avgassing av vann under anvendelse av et gaslift-system, karakterisert ved at vannet samtidig pumpes og avgasses i et system med sirkulerende inertgass, at inertgassen renses og regenereres i gassfase, ved at forurenset inertgass, eventuelt sammen med tilført ny gass til erstatning for den som absorberes av vannet, tilsettes hydrogen, og den resulterende gassblanding føres gjennom en katalytisk reaksjonssone, og at den rensede inertgass tilbakeføres til systemet. J. Procedure for simultaneous pumping and degassing of water using a gas lift system, characterized in that the water is simultaneously pumped and degassed in a system with circulating inert gas, that the inert gas is cleaned and regenerated in the gas phase, by contaminated inert gas, possibly together with supplied new gas to replace that absorbed by the water, hydrogen is added, and the resulting gas mixture is passed through a catalytic reaction zone, and that the purified inert gas is returned to the system. 2. Fremgangsmåte ifølge krav ],2. Procedure according to claim ], karakterisert ved at den sirkulerende gass er ren nitrogengass. characterized in that the circulating gas is pure nitrogen gas. 3. Fremgangsmåte ifølge krav 2,3. Method according to claim 2, karakterisert ved at tilført hydrogen forbrennes støkiometrisk med oksygen ved atmosfæretrykk i nærvær av en katalysator. characterized in that added hydrogen is combusted stoichiometrically with oxygen at atmospheric pressure in the presence of a catalyst. 4. Fremgangsmåte ifølge krav 3,4. Method according to claim 3, karakterisert ved at tilnærmet ren hydrogen tilføres fra en egen elektro-lysør eller hydrogengenerator som står tilkoplet systemet. characterized in that almost pure hydrogen is supplied from a separate electrolyser or hydrogen generator which is connected to the system. 5. Fremgangsmåte ifølge et hvilket som helst av kravene 1-4,5. Method according to any one of claims 1-4, karakterisert ved at ny inertgass til erstatning for den gass som forbrukes, tilføres foran gassblandingens forbrenningssone. characterized in that new inert gas to replace the gas that is consumed is supplied in front of the gas mixture's combustion zone. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at inertgassen tilføres gjennom inntak av luft.6. Method according to claim 5, characterized in that the inert gas is supplied through intake of air.
NO831561A 1982-09-13 1983-05-03 PROCESS OF PUMPING AND DEGRADING WATER NO152209C (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NO831561A NO152209C (en) 1982-09-13 1983-05-03 PROCESS OF PUMPING AND DEGRADING WATER
AU18621/83A AU573534B2 (en) 1982-09-13 1983-09-01 Deaeration of water
PH29509A PH18841A (en) 1982-09-13 1983-09-07 Deaeration of water
BR8304891A BR8304891A (en) 1982-09-13 1983-09-08 PROCESS FOR SIMULTANEOUS WATER DEGASIFICATION USING INERT GAS THAT IS INTIMALLY MIXED WITH WATER
GB08324157A GB2127711B (en) 1982-09-13 1983-09-09 Degassing of water using inert gas
CA000436415A CA1222200A (en) 1982-09-13 1983-09-09 Deaeration of water
DK412283A DK412283A (en) 1982-09-13 1983-09-12 PROCEDURE FOR DRAINING WATER
EG565/83A EG17112A (en) 1982-09-13 1983-09-13 Pumping and daeration of water
OA58098A OA07529A (en) 1982-09-13 1983-09-14 Deaeration of water.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO823090A NO151118C (en) 1982-09-13 1982-09-13 PROCEDURE FOR WATER DISSOXIDATION
NO831561A NO152209C (en) 1982-09-13 1983-05-03 PROCESS OF PUMPING AND DEGRADING WATER

Publications (3)

Publication Number Publication Date
NO831561L NO831561L (en) 1984-04-06
NO152209B true NO152209B (en) 1985-05-13
NO152209C NO152209C (en) 1985-08-28

Family

ID=26647815

Family Applications (1)

Application Number Title Priority Date Filing Date
NO831561A NO152209C (en) 1982-09-13 1983-05-03 PROCESS OF PUMPING AND DEGRADING WATER

Country Status (9)

Country Link
AU (1) AU573534B2 (en)
BR (1) BR8304891A (en)
CA (1) CA1222200A (en)
DK (1) DK412283A (en)
EG (1) EG17112A (en)
GB (1) GB2127711B (en)
NO (1) NO152209C (en)
OA (1) OA07529A (en)
PH (1) PH18841A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2565576B1 (en) * 1984-06-06 1989-12-22 Petroles Cie Francaise WATER DEAERATION PROCESS
US4755195A (en) * 1985-11-12 1988-07-05 Pennwalt Corporation Method of continuously degassifying water
US4861352A (en) * 1987-12-30 1989-08-29 Union Carbide Corporation Method of separating a gas and/or particulate matter from a liquid
CH675996A5 (en) * 1988-01-28 1990-11-30 Sulzer Ag
GB2223960A (en) * 1988-09-06 1990-04-25 British Steel Plc De-oxygenating water
DE59000138D1 (en) * 1989-04-05 1992-07-09 Sulzer Ag METHOD FOR STARTING A PROCESS FOR DEOXIDATING WATER, IN PARTICULAR SEA WATER.
FR2650962B1 (en) * 1989-08-16 1992-02-28 Air Liquide PROCESS AND INSTALLATION OF THE GASEOUS TREATMENT OF A PRODUCT IN A CONFINED TREATMENT AREA, APPLICATION TO THE DEOXYGENATION OF FOOD LIQUID
US5451320A (en) * 1990-07-10 1995-09-19 International Environmental Systems, Inc., Usa Biological process for groundwater and wastewater treatment
US5122165A (en) * 1990-07-10 1992-06-16 International Environmental Systems, Inc. Removal of volatile compounds and surfactants from liquid
US5122166A (en) * 1990-07-10 1992-06-16 International Environmental Systems, Inc. Removal of volatile compounds and surfactants from liquid
US5399267A (en) * 1990-07-10 1995-03-21 International Environmental Systems, Inc., Usa Liquid treatment system with air emission control
NL1000631C2 (en) * 1995-06-22 1996-12-24 Tno Purificn. of water contg. volatile organic cpds.
WO2006063026A1 (en) 2004-12-07 2006-06-15 Westlake Petrochemicals L.P. Boiler feed water deaerator method and apparatus
GB0605232D0 (en) 2006-03-16 2006-04-26 Johnson Matthey Plc Oxygen removal
GB0612092D0 (en) 2006-06-20 2006-07-26 Johnson Matthey Plc Oxygen removal
EP2349522B1 (en) 2008-09-25 2015-02-25 Veolia Water Solutions & Technologies Support Method for treating sea water with a view to producing injection water for undersea petroleum drilling, and corresponding equipment
CN103112913A (en) * 2012-11-11 2013-05-22 安徽金禾实业股份有限公司 Method for removing dissolved oxygen in boiler water supply
US9687773B2 (en) 2014-04-30 2017-06-27 Honeywell International Inc. Fuel deoxygenation and fuel tank inerting system and method
US9656187B2 (en) 2014-11-12 2017-05-23 Honeywell International Inc. Fuel deoxygenation system contactor-separator
US9834315B2 (en) 2014-12-15 2017-12-05 Honeywell International Inc. Aircraft fuel deoxygenation system
NO20160356A1 (en) 2016-03-02 2017-06-12 Minox Tech As Method and apparatus for removal of oxygen from seawater
NO345441B1 (en) 2019-06-25 2021-02-01 Minox Tech As System and method for removal of oxygen from water
CN111603932A (en) * 2020-06-17 2020-09-01 布劳恩惰性气体系统有限公司 Purification system for self-supplied regenerated gas and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017276A (en) * 1976-06-22 1977-04-12 The Lummus Company Deoxygenation of water

Also Published As

Publication number Publication date
AU1862183A (en) 1984-03-22
GB2127711B (en) 1987-02-11
NO152209C (en) 1985-08-28
AU573534B2 (en) 1988-06-16
DK412283A (en) 1984-03-14
OA07529A (en) 1985-03-31
GB8324157D0 (en) 1983-10-12
GB2127711A (en) 1984-04-18
EG17112A (en) 1989-06-30
DK412283D0 (en) 1983-09-12
PH18841A (en) 1985-10-10
NO831561L (en) 1984-04-06
CA1222200A (en) 1987-05-26
BR8304891A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
NO152209B (en) PROCESS OF PUMPING AND DEGRADING WATER
EP0234771B1 (en) Method and apparatus for treating liquid/gas mixtures
US4316725A (en) Method and apparatus for deaerating liquid
CN103209929B (en) Process and apparatus for removal of oxygen from seawater
US4347143A (en) Apparatus and process for purifying polluted water contained in natural or artificial pools by direct injection of oxygen
US4613347A (en) Water deaeration process
CN102245502A (en) A process for gas sweetening
EA036132B1 (en) High efficiency process for degassing of hydrogen sulfide from liquid sulfur
KR20110139708A (en) Method and system for gas capture
CN112225275A (en) Contain high-efficient evaporation plant of salt organic waste water and system
JP2010229248A (en) Method for deoxygenation of digestion gas and apparatus
US4530820A (en) Deaeration of water
AU2014279670B2 (en) Method and installation for removing sulphur from the digestate and the biogas of a digester
CN1023029C (en) Method for deoxidizing water to be filled in oil field
NO833302L (en) PROCEDURE FOR EXTRACING GAS FROM FLUID
IE45914B1 (en) A method and apparatus for dissolving a gas in and removing a gas from a liquid
CN208917132U (en) A kind of crude oil shipment gas recovery system for oil
CN104711058A (en) Method and device for deeply removing siloxane from garbage landfill gas/methane
FR2293236A1 (en) Dissolving gas in counter-current liq stream - in column with perforated trays down which liquid flows under gravity
CN220723773U (en) Novel ozone catalytic oxidation treatment device
US20240167173A1 (en) Power generation system and method for generating electricity from gaseous flowback
WO2020260438A1 (en) Membrane deaeration with circulating n2
US7993546B2 (en) Method and apparatus for precipitation of nano-structured carbon solids
CN2603088Y (en) High-efficient environment protective combustible gas generator by underwater electric arc
CN117205725A (en) Skid-mounted flue gas CO 2 Enrichment-adjustable injection equipment and method