NO149632B - PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES FROM SIMILAR NITRODE DERIVATIVES - Google Patents

PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES FROM SIMILAR NITRODE DERIVATIVES Download PDF

Info

Publication number
NO149632B
NO149632B NO790801A NO790801A NO149632B NO 149632 B NO149632 B NO 149632B NO 790801 A NO790801 A NO 790801A NO 790801 A NO790801 A NO 790801A NO 149632 B NO149632 B NO 149632B
Authority
NO
Norway
Prior art keywords
autoclave
bar
reaction
nitrobenzene
palladium
Prior art date
Application number
NO790801A
Other languages
Norwegian (no)
Other versions
NO149632C (en
NO790801L (en
Inventor
Jean-Marie Cognion
Jacques Kervennal
Original Assignee
Ugine Kuhlmann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugine Kuhlmann filed Critical Ugine Kuhlmann
Publication of NO790801L publication Critical patent/NO790801L/en
Publication of NO149632B publication Critical patent/NO149632B/en
Publication of NO149632C publication Critical patent/NO149632C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Fremgangsmåte for fremstilling av aromatiske isocyanater fra tilsvarende nitroderivater.Process for the preparation of aromatic isocyanates from corresponding nitro derivatives.

Description

Foreliggende oppfinnelse angår en fremgangsmåte for syntese av organiske isycanater fra nitroforbindelser og mer spesielt en fremgangsmåte for i flytende fase å fremstille aromatiske isocyanater ved omsetning av aromatiske nitroderivater med karbonmonoksyd i nærvær av nye katalysatorer som består av metallkomplekser av porfyriner. The present invention relates to a method for the synthesis of organic isocyanates from nitro compounds and more particularly to a method for producing aromatic isocyanates in the liquid phase by reacting aromatic nitro derivatives with carbon monoxide in the presence of new catalysts consisting of metal complexes of porphyrins.

Aromatiske isocyanater er organiske produkter av Aromatic isocyanates are organic products of

stor interesse. To av disse er spesielt viktige i industri-ene. Det dreier seg om toluen-2,4-diisocyanat og difenyl-metan-4,4'-diisocyanat som brukes ved syntese av polyureta-ner. Industrialiserte prosesser for fremstilling av disse produkter medfører alle en fosgeneringsreaksjon av et amin som stammer fra katalytisk hydrogenering av et nitroderivat. Uleilighetene med disse prosesser er tallrike, de nødvendig-gjør syntese av og behandling av fosgen, et meget farlig produkt; de gir saltsyre i vesentlige mengder, noe som med-fører anvendelse og vedlikehold av et spesielt elektrolyse-anlegg for denne syre for å tilbakeføre klor. big interest. Two of these are particularly important in the industries. These are toluene-2,4-diisocyanate and diphenyl-methane-4,4'-diisocyanate, which are used in the synthesis of polyurethanes. Industrialized processes for the preparation of these products all involve a phosgenation reaction of an amine originating from the catalytic hydrogenation of a nitro derivative. The inconveniences of these processes are numerous, they necessitate the synthesis and treatment of phosgene, a very dangerous product; they produce hydrochloric acid in significant quantities, which entails the use and maintenance of a special electrolysis plant for this acid to recover chlorine.

Den interesse som oppvises for en prosess som unngår anvendelse av fosgen er åpenbar og tallrike patenter krever katalytiske preparater som tillater ved forhøyet temperatur og trykk, å gjennomføre en syntese av isocyanater med reaksjon av en" organisk--nitrof or binde Ise med karbonmonoksvd. Dette er f.eks. tilfelle med FR-PS 1.600.529 som beskriver anvendelse av en katalysator i form av et edelmetallhalogen i nærvær av en aminbase av aromatisk type; DE-PS 1.910.303 som krever katalysatorer bestående av klorider eller oksyder av Ru, Rh, Pd, Os, Ir, Pt, Ag, Au og en heteroaromatisk svovelforbind-else, eventuelt i nærvær av et oksyd av Cr, Mo, Nb, W, V; FR-PS 1.567.321 som beskriver anvendelse av et katalyttisk system bestående av et edelmetallhalogenid og en organisk fosforforbindelse, f.eks. et triarylfosfin eller et fosfit. FR-PS 2.155.242 krever et katalytisk system som består av ett eller flere halogenider av palladium og/eller rhodium, The interest shown in a process which avoids the use of phosgene is obvious and numerous patents claim catalytic preparations which allow, at elevated temperature and pressure, to carry out a synthesis of isocyanates with the reaction of an "organic--nitrofer or bind Ise with carbon monoxide. This is for example the case with FR-PS 1,600,529 which describes the use of a catalyst in the form of a noble metal halide in the presence of an amine base of aromatic type; DE-PS 1,910,303 which requires catalysts consisting of chlorides or oxides of Ru, Rh, Pd, Os, Ir, Pt, Ag, Au and a heteroaromatic sulfur compound, optionally in the presence of an oxide of Cr, Mo, Nb, W, V; FR-PS 1,567,321 which describes the use of a catalytic system consisting of a noble metal halide and an organic phosphorus compound, eg a triarylphosphine or a phosphite FR-PS 2,155,242 requires a catalytic system consisting of one or more halides of palladium and/or rhodium,

en eller flere heteroaromatiske nitrobaser og en ko-kataly- one or more heteroaromatic nitro bases and a co-catalyst

sator bestående av et eller flere jernborater; i FR-PS 2.120.110 omfatter den katalytiske forbindelse ved siden av et palladiumhalogenid og heteroaromatiske nitrobaser, sator consisting of one or more iron borates; in FR-PS 2.120.110 the catalytic compound comprises, in addition to a palladium halide and heteroaromatic nitro bases,

en ko-katalysator bestående av ett eller flere molybdater. a co-catalyst consisting of one or more molybdates.

og jern og/eller mangan. Alle disse systemer gir isocyanater ut fra nitroforbindelser med variabel selektivitet og pro-duktivitet. and iron and/or manganese. All these systems give isocyanates from nitro compounds with variable selectivity and productivity.

Det er nå oppdaget at den direkte reduksjonsreaksjon av aromatiske nitroderivater til isocyanater ved hjelp av karbonmonoksyd skjer med gode utbytter ved hjelp av nye katalysatorer bestående av metalliske komplekser av porfyrine;r. Disse komplekser har en god kjemisk og termisk stabilitet It has now been discovered that the direct reduction reaction of aromatic nitroderivatives to isocyanates with the aid of carbon monoxide takes place with good yields with the aid of new catalysts consisting of metallic complexes of porphyrins. These complexes have good chemical and thermal stability

og fører ikke, slik som hovedsaken av de tidligere systemer, til dannelse av azoderivater. Reaksjonsligningen kan skri-ves ifølge følgende skjema: and does not, like the main case of the previous systems, lead to the formation of azo derivatives. The reaction equation can be written according to the following form:

I henhold til dette, angår foreliggende oppfinnelse en fremgangsmåte for syntese av aromatiske isocyanater av den gene- hvor x er 0 eller 1 og R^, og R^, som er like eller forskjellige, er hydrogen, halogen eller en alkyl- eller alkoksygruppe med fra 1 til 10 karbonatomer, ved omsetning av en forbindelse med den generelle formel Accordingly, the present invention relates to a process for the synthesis of aromatic isocyanates of the gene where x is 0 or 1 and R^, and R^, which are the same or different, are hydrogen, halogen or an alkyl or alkoxy group with from 1 to 10 carbon atoms, by reaction of a compound with the general formula

der x, R-^, R2 og R^ har den ovenfor angitte betydning, med karbonmonoksyd i nærvær av en katalysator, og denne fremgangsmåte karakteriseres ved at det som katalysator anvendes en eller flere på forhånd fremstilte where x, R-^, R 2 and R^ have the meaning given above, with carbon monoxide in the presence of a catalyst, and this method is characterized by the fact that one or more pre-prepared catalysts are used

metallkomplekser av porfyrin der metallet er fra gruppe VIII og/eller Ib i elementenes periodiske system, idet reaksjonen metal complexes of porphyrin where the metal is from group VIII and/or Ib in the periodic table of the elements, as the reaction

gjennomføres ved en temperatur mellom 100 og 500°C, fortrinnsvis mellom 150 og 300°C, og ved et trykk mellom 20 og 500 bar, fortrinnsvis mellom 150 og 350 bar, idet det anvendes forbindelser slik at forholdet mellom antall gram atom metall og an--4 tallet nitrogrupper som skal omdannes ligger mellom 10 og 1 og fortrinnsvis mellom 5 x 10 ^ og 10 is carried out at a temperature between 100 and 500°C, preferably between 150 and 300°C, and at a pressure between 20 and 500 bar, preferably between 150 and 350 bar, using compounds such that the ratio between the number of gram atoms of metal and an --4 the number of nitro groups to be converted is between 10 and 1 and preferably between 5 x 10 ^ and 10

Det er mulig å arbeide i nærvær av et organisk oppløsnings-middel, ved en diskontinuerlig teknikk i en apparatur av autoklavtypen eller på kontinuerlig måte ved en arbeidsmet-ode som tillater å fjerne isocyanatproduktet etter dannelsen. It is possible to work in the presence of an organic solvent, by a discontinuous technique in an apparatus of the autoclave type or in a continuous way by a working method that allows the isocyanate product to be removed after its formation.

Eksempler på aromatiske forbindelser med en eller to ni-trofunksjoner som kan benyttes ifølge oppfinnelsen er nitrobenzen, ortonitrotoluen, paranitrotoluen, 1,2-dinitrobenzen, 1,3-dinitrobenzen, 1,4-dinitrobenzen, 2,4-dinitrotoluen, 2,6-dinitrotoluen, 1-metoksy-2,4-dinitrobenzen, 1-klor-2-nitrobenzen og 1-klor-2,4-dinitrobenzen. Examples of aromatic compounds with one or two nitro functions that can be used according to the invention are nitrobenzene, orthonitrotoluene, paranitrotoluene, 1,2-dinitrobenzene, 1,3-dinitrobenzene, 1,4-dinitrobenzene, 2,4-dinitrotoluene, 2,6 -dinitrotoluene, 1-methoxy-2,4-dinitrobenzene, 1-chloro-2-nitrobenzene and 1-chloro-2,4-dinitrobenzene.

De metalliske porfyriner som benyttes som katalysatorer opp-nås ved å omsette et salt eller et metallkompleks på en por-fyrinligand som på forhånd er fremstilt ifølge de syntese-metoder som er angitt og beskrevet av K.M. Smith, i "Porphy-rins and Metalloporphyrins," Elsevier (1975). Porfyrinene som kan benyttes for å katalysere reaksjonen kan eventuelt bære forskjellige substituenter på karbonringen, f. eks. halogenatomer, alkylgrupper, arylgrupper, alkoksygrupper, sure klorider, amider, acetyler og nitriler; fortrinnsvis benytter man et tetrafenylporfyrin eller oktaetylporfyrin.. The metallic porphyrins used as catalysts are obtained by reacting a salt or a metal complex on a porphyrin ligand which has been previously prepared according to the synthesis methods indicated and described by K.M. Smith, in "Porphyrins and Metalloporphyrins," Elsevier (1975). The porphyrins that can be used to catalyze the reaction can optionally carry different substituents on the carbon ring, e.g. halogen atoms, alkyl groups, aryl groups, alkoxy groups, acid chlorides, amides, acetyls and nitriles; preferably a tetraphenylporphyrin or octaethylporphyrin is used..

Metallene som er spesielt egnet ifølge oppfinnelsen er met-aller fra gruppene VIII og Ib i-dst periodiske system og spesielt jern, kobolt, nikkel, ruthenium, rhodium, palladium, iridi- The metals which are particularly suitable according to the invention are metals from groups VIII and Ib in the periodic table and in particular iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium

um, kobber og sølv. um, copper and silver.

Konsentrasjonen av katalysatorer uttrykt i forholdet til antall g atomer metall og antall nitrogrupper som skal om--4 The concentration of catalysts expressed in the ratio of the number of g atoms of metal and the number of nitro groups to be re--4

dannes, kan variere mellom 10 og 1 og fortrinnsvis mellom 5 . 10-3 og 10<_1>. is formed, can vary between 10 and 1 and preferably between 5. 10-3 and 10<_1>.

Reaksjonen kan gjennomføres i fravær av oppløsningsmiddel, men nærværet av et kjemisk inert oppløsningsmiddel favori-serer vanligvis isocyanatselektiviteten. Oppløsningsmidler som fortrinnsvis benyttes er mettede eller aromatiske hydro-karboner, slik som heksan, heptan, benzen, toluen eller xylen, og halogenerte aromater, slik som klorbenzen og di-klorbenzen. Andelen av oppløsningsmiddel er ikke vesentlig, men arbeider vanligvis med oppløsningér inneholdende 5 til 50 vekt-% nitroderivat ± oppløsningsmidlet. The reaction can be carried out in the absence of solvent, but the presence of a chemically inert solvent usually favors isocyanate selectivity. Solvents that are preferably used are saturated or aromatic hydrocarbons, such as hexane, heptane, benzene, toluene or xylene, and halogenated aromatics, such as chlorobenzene and dichlorobenzene. The proportion of solvent is not significant, but usually work with solutions containing 5 to 50% by weight nitro derivative ± the solvent.

Metallportyrinene kan benyttes som sådanne som katalysatorer, men de kan likeledes være avsatt på en bærer for å dispergere katalysatoren og å lette innvinningen. Blant de mulige bærere kan man nevne silisiumoksyd, aluminiumoksyd, silisiumoksyd-aluminiumoksyd, aktivkull, magnesiumoksyd, zir-konoksyd og silisiumkarbid. The metal portyrins can be used as such as catalysts, but they can also be deposited on a support to disperse the catalyst and facilitate recovery. Among the possible carriers, mention can be made of silicon oxide, aluminum oxide, silicon oxide-aluminum oxide, activated carbon, magnesium oxide, zirconium oxide and silicon carbide.

Reaksjonstemperaturen ligger mellom 100 og 500°C og mer spesielt mellom 150 og 300°C, alt etter arten og stabilitet-en for reaktantene som underkastes disse driftsbetingelser. The reaction temperature is between 100 and 500°C and more particularly between 150 and 300°C, depending on the nature and stability of the reactants subjected to these operating conditions.

Reaksjonstrykkene ligger mellom 20 og 500 bar, og fortrinnsvis mellom 150 og 350 bar og må være tilstrekkelig til å holde en vesentlig del av reaktantene i flytende fase og å innføre en total mengde av karbonoksyd tilsvarende et mol-CO The reaction pressures are between 20 and 500 bar, and preferably between 150 and 350 bar and must be sufficient to keep a significant part of the reactants in liquid phase and to introduce a total amount of carbon monoxide corresponding to one mole of CO

forhold som vanligvis ligger mellom 3 og 100, ratio which is usually between 3 and 100,

N02~grupper N02~groups

og fortrinnsvis mellom 10 og 65. and preferably between 10 and 65.

De prøver som er gjennomført i de følgende eksempler ble gjennomført på diskontinuerlig måte i en autoklav av rust-fritt stål og med et volum på 500 ml, utstyrt med et magnet-rørverk i stand til å arbeide under trykk opptil 500 bar og temperaturer til 300°C. Reaktoren som var chargert med de forskjellige reaktanter i oppløsning, ble deretter spylt med nitrogen før den ble satt under trykk med karbonmonoksyd ved vanlig temperatur. Den isolerte autoklav ble deretter oppvarmet til den valgte temperatur og reaksjonens fremskriden ble regulert ved registrering av trykk. De første prøver ble gjennomført på mononitrerte aromatiske derivater. Etter reaksjonen ble mengden isocyanat bestemt ved kjemisk doser-ing av dibutylamin og mengden av gjenværende nitroderivater og eventuelt av azoderivater ved kromatografi i dampfase. The tests carried out in the following examples were carried out in a discontinuous manner in a stainless steel autoclave and with a volume of 500 ml, equipped with a magnetic piping capable of working under pressures up to 500 bar and temperatures up to 300 °C. The reactor, which was charged with the various reactants in solution, was then flushed with nitrogen before being pressurized with carbon monoxide at room temperature. The insulated autoclave was then heated to the selected temperature and the progress of the reaction was regulated by recording the pressure. The first tests were carried out on mononitrated aromatic derivatives. After the reaction, the amount of isocyanate was determined by chemical dosing of dibutylamine and the amount of remaining nitro derivatives and possibly of azo derivatives by chromatography in the vapor phase.

I de følgende eksempler er resultatene antydet ved de følg-ende definisjoner: In the following examples, the results are indicated by the following definitions:

Eksempel 1. Example 1.

Man fremstilte et palladiumtetrafenylporfyrin på følgende måte, beskrevet av D.W. Thomas og A.E. Martell i "J. Amer. A palladium tetraphenylporphyrin was prepared in the following manner, described by D.W. Thomas and A.E. Martell in "J. Amer.

Chem. Soc", vol. 81, side 51 1 1 (1 959). Man anbragte 10 g renset tetrafenylporfyrin og 7,7 g palladiumklorid i 385 ml eddiksyre. Man bragte det hele til tilbakeløpstemperatur i 10 minutter og tilsatte deretter 23 g natriumacetat, hvoretter det hele ble tillatt under tilbakeløp i 1 time og man tilsatte nye 23 g natriumacetat. Etter ytterligere 2 timer under tilbakeløp lot man blandingen avkjøles og helte i 800 ml vann. Man gjenvant bunnfallet ved filtrering, vasket dette med vann og etter tørking, oppnådde man 12,3 g av pal-ladiumkomplekset med lysebrun farge. Chem. Soc", vol. 81, page 51 1 1 (1959). 10 g of purified tetraphenylporphyrin and 7.7 g of palladium chloride were placed in 385 ml of acetic acid. The whole was brought to reflux temperature for 10 minutes and then 23 g of sodium acetate was added, after which the whole was allowed to reflux for 1 hour and another 23 g of sodium acetate was added. After a further 2 hours under reflux, the mixture was allowed to cool and poured into 800 ml of water. The precipitate was recovered by filtration, washed with water and after drying, obtained 12.3 g of the palladium complex with a light brown color.

Den kjemiske analyse antydet en palladiummengde på 14,8% og en klormengde på under 0,5%. Til den tidligere beskrevne autoklav chargerte man 2,0 g av palladinporfyrinet, 3 0 g nitrobenzen og kompleterte volumet til 100 ml med ortodiklorbenzen. Man førte en nitrogenstrøm under atmosfæriske trykk gjennom autoklaven før man presset inn karbonmonoksyd inntil et trykk på 200 bar ved 20°C. Man isolerte autoklaven og oppvarmet den til 230°C, noe som bragte trykket til 340 bar. Man lot reaksjonen skride frem i 7 timer under om-røring, lot deretter det hele avkjøles og analyserte blandingen. TTG for nitrobenzen var 25,4% og fenylisocyanatselektiviteten var 94,8%. Det ble ikke dannet azobenzen. The chemical analysis indicated a palladium amount of 14.8% and a chlorine amount of less than 0.5%. 2.0 g of the palladin porphyrin, 30 g of nitrobenzene were charged to the previously described autoclave and the volume was made up to 100 ml with orthodichlorobenzene. A stream of nitrogen under atmospheric pressure was passed through the autoclave before carbon monoxide was forced in up to a pressure of 200 bar at 20°C. The autoclave was insulated and heated to 230°C, which brought the pressure to 340 bar. The reaction was allowed to proceed for 7 hours with stirring, then the whole was allowed to cool and the mixture was analysed. The TTG for nitrobenzene was 25.4% and the phenylisocyanate selectivity was 94.8%. No azobenzene was formed.

Eksempel 2. Example 2.

I den ovenfor beskrevne autoklav ble det tilført 2 g palladiumtetrafenylporfyrin, 30 g nitrobenzen og volumet ble just-ert til 100 ml ved hjelp av ortodiklorbenzen. Man lukket reaktoren og etter spyling med nitrogen, tilførte man karbonmonoksyd inntil et trykk på 200 bar ved 20°C. Autoklaven ble isolert og omrøring ble opprettholdt under oppvarming til 235°C i 3 timer og deretter 240°C i 4 timer og 30 minutter. Etter avkjøling ble blandingen analysert og man oppnådde en TTG-verdi for nitrobenzen på 94,7% og en fenylisocyanatselektivitet på 60,2%. Dannelsen av azobenzen var 0. In the autoclave described above, 2 g of palladium tetraphenylporphyrin, 30 g of nitrobenzene were added and the volume was adjusted to 100 ml using orthodichlorobenzene. The reactor was closed and after flushing with nitrogen, carbon monoxide was added up to a pressure of 200 bar at 20°C. The autoclave was isolated and stirring was maintained while heating to 235°C for 3 hours and then 240°C for 4 hours and 30 minutes. After cooling, the mixture was analyzed and a TTG value for nitrobenzene of 94.7% and a phenylisocyanate selectivity of 60.2% was obtained. The formation of azobenzene was 0.

Eksempel 3. Example 3.

Til autoklaven tilførte man 1,4 g palladiumtetrafenylporfyrin. Man tilsatte 20 g nitrobenzen og brakte volumet til 200 ml ved hjelp av ortodiklorbenzen. Man spylte med nitrogen og tilførte karbonmonoksyd til et trykk på 200 bar ved ^° C. Autoklaven ble isolert og holdt under omrøring og man oppvarmet det hele til 240°C i 4 timer og, deretter 250°C i 4 timer. Etter avkjøling viste analysen en nitrobenzen TTG på 1.00% og en fenylisocyanatselektivitet på 69,3%. Man fant ikke spor etter azobenzen. 1.4 g of palladium tetraphenylporphyrin was added to the autoclave. 20 g of nitrobenzene were added and the volume was brought to 200 ml by means of orthodichlorobenzene. Nitrogen was flushed and carbon monoxide was added to a pressure of 200 bar at ^° C. The autoclave was isolated and kept under stirring and the whole was heated to 240° C. for 4 hours and then 250° C. for 4 hours. After cooling, the analysis showed a nitrobenzene TTG of 1.00% and a phenylisocyanate selectivity of 69.3%. No trace of azobenzene was found.

Eksempel 4. Example 4.

Til autoklaven ble tilsatt 0,7 g palladiumtetrafenylporfyrin, 10 g nitrobenzen og volumet ble komplettert til 100 ml med 0.7 g of palladium tetraphenylporphyrin, 10 g of nitrobenzene were added to the autoclave and the volume was made up to 100 ml with

ortodiklorbenzen. Autoklaven ble lukket og etter spyling med nitrogen, ble det tilført karbonmonoksyd inntil trykket var 200 bar ved 20°C. Etter isolasjon av reaktoren og Igangsetting av røringen, ble det hele oppvarmet til 250°C i 1 time og deretter 243°C i ytterligere 1 time. Etter avkjøl-ingen viste analysen en TTG-verdi for nitrobenzen på 100% og en fenylisocyanatselektivitet på 69,3%. Dannelsen av azobenzen var 0. orthodichlorobenzene. The autoclave was closed and after flushing with nitrogen, carbon monoxide was added until the pressure was 200 bar at 20°C. After isolating the reactor and starting the stirring, the whole thing was heated to 250°C for 1 hour and then 243°C for another 1 hour. After cooling, the analysis showed a TTG value for nitrobenzene of 100% and a phenylisocyanate selectivity of 69.3%. The formation of azobenzene was 0.

Eksempel 5. Example 5.

Til autoklaven ble det tilført 0,7 g palladiumtetrafenylporfyrin, 10 g nitrobenzen og volumet ble komplettert til 100 ml med ortodiklorbenzen. Etter spyling med nitrogen, ble det 0.7 g of palladium tetraphenylporphyrin, 10 g of nitrobenzene were added to the autoclave and the volume was made up to 100 ml with orthodichlorobenzene. After flushing with nitrogen, it was

innført karbonmonoksyd inntil trykket var 200 bar ved vanlig ) temperatur. Autoklaven ble isolert, røringen igangsatt og det hele ble oppvarmet til 24 0°C i 2 timer og deretter holdt ved 235°C i ytterligere 1 time. Etter avkjøling ble blandingen analysert og man oppnådde en TTG-verdi på 100% for nitrobenzen, mens fenylisocyanatselektiviteten var 81,2%. Det var ikke spor etter azobenzen. introduced carbon monoxide until the pressure was 200 bar at ordinary ) temperature. The autoclave was isolated, the stirring started and the whole was heated to 240°C for 2 hours and then held at 235°C for another 1 hour. After cooling, the mixture was analyzed and a TTG value of 100% was obtained for nitrobenzene, while the phenylisocyanate selectivity was 81.2%. There were no traces of azobenzene.

Eksempel 6. Example 6.

Til autoklaven ble det tilsatt 0,7 g palladiumtetrafenylporfyrin, 10 g ortonitrotoluen og volumet ble brakt til 0.7 g of palladium tetraphenylporphyrin, 10 g of orthonitrotoluene were added to the autoclave and the volume was brought to

100 ml ved hjelp av ortodiklorbenzen. Etter spyling med nitrogen tilførte man karbonmonoksyd inntil trykket var 200 bar ved 2 0°C. Autoklaven ble isolert, røringen igangsatt og det hele ble oppvarmet til 240°C i 3 timer og deretter til 245°C i 2 timer og 30 minutter og tilslutt ved 250°C 100 ml using orthodichlorobenzene. After flushing with nitrogen, carbon monoxide was added until the pressure was 200 bar at 20°C. The autoclave was isolated, the stirring started and the whole thing was heated to 240°C for 3 hours and then to 245°C for 2 hours and 30 minutes and finally at 250°C

i 2 timer. Etter avkjøling viste analysen en TTG-verdi for ortonitrotoluen på 17,5% og en ortotoluenisocyanatselektivi-tet på 55%. for 2 hours. After cooling, the analysis showed a TTG value for orthonitrotoluene of 17.5% and an orthotoluene isocyanate selectivity of 55%.

Eksempel 7. Example 7.

Man fremstilte palladiumtetrafenylporfyrin ifølge den fremgangsmåte som er beskrevet av A.D. Adler, F.R. Longo, Palladium tetraphenylporphyrin was prepared according to the method described by A.D. Adler, F.R. Longo,

F. Kampas og J. Kim i "J. Inorg. Nucl. Chem.", vol. 32, side 2443, (1970). Til 300 ml dimetylformamid under tilbakeløps-koking tilsatte men 3 g tetrafenylporfyrin. Etter oppløsning av dette tilsatte man 0,9 g palladiumklorid. Det hele ble kokt under tilbakeløp i ytterligere 10 minutter, hvoretter blandingen ble avkjølt i et isbad og helt i 300 ml destill-ert vann. Det dannede presipitat ble filtrat av, vasket med vann og tørket. F. Kampas and J. Kim in "J. Inorg. Nucl. Chem.", vol. 32, page 2443, (1970). To 300 ml of dimethylformamide under reflux was added but 3 g of tetraphenylporphyrin. After dissolving this, 0.9 g of palladium chloride was added. The whole was refluxed for a further 10 minutes, after which the mixture was cooled in an ice bath and poured into 300 ml of distilled water. The precipitate formed was filtered off, washed with water and dried.

Den kjemiske analyse antydet en palladiummengde på 14,3% og en kloridmengde på 2,4%. Til autoklaven ble det tilført en oppløsning av 100 ml inneholdende 10 g nitrobenzen, 0,7 g palladiumporfyrin, mens resten var ortodiklorbenzen. Det ble ført en strøm av nitrogen gjennom atmosfæren før man tilførte karbonmonoksyd under trykk inntil trykket var 200 bar ved 20°C. Autoklaven ble isolert og den ble oppvarmet til 240°C i 3 timer mens den ble holdt under omrøring, hvoretter det hele ble avkjølt og analysert. TTG-verdien for nitrobenzen var 100% og selektiviteten for fenylisocyanatet var 60,2%. Det var ikke dannet noe azobenzen. The chemical analysis indicated a palladium amount of 14.3% and a chloride amount of 2.4%. A solution of 100 ml containing 10 g of nitrobenzene, 0.7 g of palladium porphyrin, while the remainder was orthodichlorobenzene, was added to the autoclave. A stream of nitrogen was passed through the atmosphere before carbon monoxide was added under pressure until the pressure was 200 bar at 20°C. The autoclave was isolated and heated to 240°C for 3 hours while stirring, after which it was cooled and analyzed. The TTG value for nitrobenzene was 100% and the selectivity for the phenyl isocyanate was 60.2%. No azobenzene was formed.

Eksempel 8. Example 8.

Man fremstilte jerntetrafenylporfyrin ifølge den fremgangsmåte som ble beskrevet i eksempel 7. Til 200 ml dimetylformamid under tilbakeløp oppløste man 2 g av tetrafenylporfyrin, hvoretter man tilsatte 1,6 g FeC~[ 2 • 4H20. Det hele ble kokt under tilbakeløp i 20 minutter, hvoretter man avkjølte blandingen i et isbad og felte ut komplekset ved tilsetning av 200 ml av oksygenert vann. Man filtrerte under nitro- Iron tetraphenylporphyrin was prepared according to the method described in example 7. 2 g of tetraphenylporphyrin were dissolved in 200 ml of dimethylformamide under reflux, after which 1.6 g of FeC~[ 2 • 4H 2 O was added. The whole was refluxed for 20 minutes, after which the mixture was cooled in an ice bath and the complex was precipitated by the addition of 200 ml of oxygenated water. It was filtered under nitro-

gen, vasket med vann og tørket under vakuum. gene, washed with water and dried under vacuum.

Man oppnådde 2,3 g kompleks av hvilket man oppbevarte én del under vakuum og den andre del i en dessikator. Til den tidligere beskrevne autoklav tilførte man 0,7 g jerntetrafenylporfyrin som var oppbevart under vakuum, 10 g nitrobenzen og kompletterte volumet til 100 ml ved hjelp av ortodiklorbenzen. Autoklaven ble lukket og etter spyling med nitrogen, tilførte man karbonmonoksyd inntil trykket var 200 bar ved 20°C. Etter isolasjon av reaktoren og igangsetting av røringen, oppvarmet man til 240°C i 6 timer og 30 minutter. Etter avkjøling ble blandingen analysert og TTG-verdien for nitrobenzen var 88,1% og fenylisocyanatselektiviteten var 80,6%. Det ble ikke dannet azobenzen. 2.3 g of complex were obtained, one part of which was kept under vacuum and the other part in a desiccator. To the previously described autoclave, 0.7 g of iron tetraphenylporphyrin which had been stored under vacuum, 10 g of nitrobenzene were added and the volume was completed to 100 ml by means of orthodichlorobenzene. The autoclave was closed and after flushing with nitrogen, carbon monoxide was added until the pressure was 200 bar at 20°C. After isolating the reactor and starting the stirring, it was heated to 240°C for 6 hours and 30 minutes. After cooling, the mixture was analyzed and the TTG value for nitrobenzene was 88.1% and the phenyl isocyanate selectivity was 80.6%. No azobenzene was formed.

Eksempel 9. Example 9.

Til autoklaven ble det tilført 10 g nitrobenzen, 0,7 g jerntetrafenylporfyrin oppbevart i luft, fremstilt som beskrevet ovenfor, og volumet ble komplettert til 100 ml ved hjelp av ortodiklorbenzen. Etter å ha arbeidet på samme måte som i eksempel 8, viste analysen en TTG-verdi for nitrobenzen på 92,2%, en selektivitet for fenylisocyanat på 59,7%. Det fantes ikke noe azobenzen. To the autoclave was added 10 g of nitrobenzene, 0.7 g of iron tetraphenylporphyrin stored in air, prepared as described above, and the volume was made up to 100 ml using orthodichlorobenzene. After working in the same way as in Example 8, the analysis showed a TTG value for nitrobenzene of 92.2%, a selectivity for phenyl isocyanate of 59.7%. There was no azobenzene.

Claims (2)

1. Fremgangsmåte for fremstilling av aromatiske isocyanater av den generelle formel: hvor x er 0 eller 1 og R-^, R2 og R^, som er like eller forskjellige, er hydrogen, halogen eller en alkyl- eller alkoksygruppe med fra 1 til 10 karbonatomer, ved omsetning av en forbindelse med den generelle formel der x, R^, R2 og R^ har den ovenfor angitte betydning, med karbonmonoksyd i nærvær av en katalysator, karakterisert ved at det som katalysator anvendes en eller flere på forhånd fremstilte metallkomplekser av porfyrin der metallet er fra gruppe VIII og/eller Ib i elementenes periodiske system, idet reaksjonen gjennomføres ved en temperatur mellom 100 og 500°C, fortrinnsvis mellom 150 og 350°C, og ved et trykk mellom 20 og 500 bar, fortrinnsvis mellom 150 Og 350 bar, idet det anvendes forbindelser slik at forholdet mellom antall gram atom metall og antallet -4 nitrogrupper som skal omdannes ligger mellom 10 og 1 og -3 fortrinnsvis mellom 5 x 10 og 101. Process for the production of aromatic isocyanates of the general formula: where x is 0 or 1 and R-^, R 2 and R^, which are the same or different, are hydrogen, halogen or an alkyl or alkoxy group having from 1 to 10 carbon atoms, by reaction of a compound of the general formula where x, R^, R2 and R^ have the above meaning, with carbon monoxide in the presence of a catalyst, characterized in that one or more pre-prepared metal complexes of porphyrin are used as catalyst, where the metal is from group VIII and/or Ib in the periodic table of the elements, the reaction being carried out at a temperature between 100 and 500°C, preferably between 150 and 350°C, and at a pressure between 20 and 500 bar, preferably between 150 and 350 bar, using compounds such that the ratio between the number of gram atoms of metal and the number of -4 nitro groups to be converted is between 10 and 1 and -3 preferably between 5 x 10 and 10 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man som katalysator anvender palladium-tetraf enylporf yr in .2. Process according to claim 1, characterized in that palladium-tetraphenylporphyrin is used as catalyst.
NO790801A 1978-03-10 1979-03-09 PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES FROM SIMILAR NITRODE DERIVATIVES NO149632C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7806927A FR2419280A1 (en) 1978-03-10 1978-03-10 PROCESS FOR PREPARING ORGANIC ISOCYANATES FROM NITRAL DERIVATIVES

Publications (3)

Publication Number Publication Date
NO790801L NO790801L (en) 1979-09-11
NO149632B true NO149632B (en) 1984-02-13
NO149632C NO149632C (en) 1984-05-23

Family

ID=9205612

Family Applications (1)

Application Number Title Priority Date Filing Date
NO790801A NO149632C (en) 1978-03-10 1979-03-09 PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES FROM SIMILAR NITRODE DERIVATIVES

Country Status (6)

Country Link
EP (1) EP0004224B1 (en)
JP (1) JPS54128545A (en)
DE (1) DE2960716D1 (en)
DK (1) DK98779A (en)
FR (1) FR2419280A1 (en)
NO (1) NO149632C (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966453A (en) * 1959-03-13 1960-12-27 Universal Oil Prod Co Oxidation of mercapto compounds
US3585231A (en) * 1968-06-21 1971-06-15 Olin Mathieson Preparation of aromatic isocyanates
US3632827A (en) * 1968-11-21 1972-01-04 Olin Mathieson Preparation of aromatic isocyanates
BE787638A (en) * 1971-08-26 1973-02-19 Shell Int Research PROCESS FOR THE PREPARATION OF ISOCYANATES
US4072630A (en) * 1976-02-17 1978-02-07 Uop Inc. Metal phthalocyanine catalyst preparation
US4070307A (en) * 1976-08-12 1978-01-24 Uop Inc. Method of catalyst manufacture

Also Published As

Publication number Publication date
NO149632C (en) 1984-05-23
JPS54128545A (en) 1979-10-05
EP0004224A1 (en) 1979-09-19
EP0004224B1 (en) 1981-09-02
FR2419280B1 (en) 1983-03-18
DK98779A (en) 1979-09-11
DE2960716D1 (en) 1981-11-26
FR2419280A1 (en) 1979-10-05
NO790801L (en) 1979-09-11

Similar Documents

Publication Publication Date Title
Bontempi et al. Reductive carbonylation of nitroaromatic compounds to urethanes catalyzed by [Pd (1, 10-phenanthroline) 2][PF6] 2 and related complexes
Cenini et al. Carbonylation of nitrobenzene to phenyl isocyanate and methyl carbamate catalyzed by palladium and rhodium activated by chelating nitrogen donor ligands
US3523964A (en) Preparation of aromatic isocyanates
Villa-Marcos et al. A highly active cyclometallated iridium catalyst for the hydrogenation of imines
CA1056847A (en) Process for producing an aromatic urethane
Ragaini et al. [Rh (CO) 4]−,[Rh5 (CO) 15]−, and bimetallic clusters as catalysts for the carbonylation of nitrobenzene to methyl phenylcarbamate
EP0091383B1 (en) Process for the catalytic reduction of nitro-aromatic compounds
NO149632B (en) PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES FROM SIMILAR NITRODE DERIVATIVES
US4323515A (en) Process for the preparation of organic isocyanates from nitro derivatives
EP0097592B1 (en) Process for catalytically reducing nitroaromatic compounds
Vasapollo et al. Catalytic reduction of nitrosobenzene by carbon monoxide using nitrosobenzene complexes of transition metals
US4478757A (en) Process for the manufacture of aromatic isocyanates
KR940009279B1 (en) Process for the preparation of urethanes
Ragaini et al. Mechanistic studies of the carbonylation of nitrobenzene catalysed by the [Rh (CO) 4]–/bipy system. X-Ray structure of [PPN][Rh (CO) 2ON [C6H3Cl2) C (O) O];[PPN+=(PPh3) 2N+; bipy= 2, 2′-bipyridyl]
Bose et al. Orthometallated palladium (II) complexes as versatile catalysts for homogeneous catalytic hydrogenation
JPH0528698B2 (en)
CN115819275B (en) Preparation method of 2, 6-dichlorobenzonitrile
US3657308A (en) Catalytic carbonylation of aromatic nitro compounds in the presence of organic carbonates
US3600419A (en) Preparation of aromatic isocyanates
JPH058697B2 (en)
JPH0529349B2 (en)
JPH04134058A (en) Production of aromatic urea compound
JPS6318939B2 (en)
NO151238B (en) PROCEDURE FOR THE PREPARATION OF AROMATIC MONO AND DIISOCYANATES
JPS6318576B2 (en)