NO147465B - PROCEDURE FOR DISSEMINATING DATA. - Google Patents

PROCEDURE FOR DISSEMINATING DATA. Download PDF

Info

Publication number
NO147465B
NO147465B NO800791A NO800791A NO147465B NO 147465 B NO147465 B NO 147465B NO 800791 A NO800791 A NO 800791A NO 800791 A NO800791 A NO 800791A NO 147465 B NO147465 B NO 147465B
Authority
NO
Norway
Prior art keywords
bearing
data
flying object
ground station
stated
Prior art date
Application number
NO800791A
Other languages
Norwegian (no)
Other versions
NO147465C (en
NO800791L (en
Inventor
Gerhard Ritter
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO800791L publication Critical patent/NO800791L/en
Publication of NO147465B publication Critical patent/NO147465B/en
Publication of NO147465C publication Critical patent/NO147465C/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/36Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
    • F42B12/365Projectiles transmitting information to a remote location using optical or electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/14Jamming or countermeasure used for a particular application for the transfer of light or images, e.g. for video-surveillance, for television or from a computer screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/22Jamming or countermeasure used for a particular application for communication related to vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Relay Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Fremgangsmåte til formidling av data som opptas i et dyptflyvende objekt (2), til en fjerntliggende markstasjon (4) utrustet med en mottagerantenne. Metoder som er kjent i denne forbindelse, overforer de opptatte data enten direkte eller bedre via en relé-stasjon i form av en satelitt eller et fly. Men fremdeles forelig-ger stor risiko for forstyrrelser. Med oppfinnelsen blir en betraktelig storre stoysikkerhet oppnådd ved at de data som tas opp med det dyptflyvende objekt (2), blir innfort i et lager anbragt i et flyvelegeme (5), f.eks. en rakett, som fores med av det flyvende objekt (2). Flyvelegemet (5) blir så med i det minste delvis fylt lager, skutt ut i retning mot markstasjonen (4), i hvis mottagningsområde der skjer en radiomessig utsendelse av de lagrede data. Oppfinnelsen egner seg særliq for overforing av data i forbindelse med oppklaring vedMethod for transmitting data recorded in a deep-flying object (2) to a remote ground station (4) equipped with a receiving antenna. Methods known in this connection transmit the recorded data either directly or better via a relay station in the form of a satellite or an aircraft. However, there is still a high risk of disturbance. With the invention, a considerably greater noise safety is obtained in that the data recorded with the deep-flying object (2) is entered in a bearing placed in a flying body (5), e.g. a rocket, which is carried by the flying object (2). The flight body (5) is then with at least partially filled storage, shot out in the direction of the ground station (4), in whose receiving area a radio broadcast of the stored data takes place. The invention is particularly suitable for the transmission of data in connection with clarification by

Description

Oppfinnelsen gjelder en fremgangsmåte til å formidle data som detekteres i et dyptflyvende objekt, særlig et oppklaringsfly, til en fjerntliggende markstasjon utrustet med en mottagerantenne. The invention relates to a method for transmitting data detected in a deep-flying object, in particular a reconnaissance aircraft, to a remote ground station equipped with a receiving antenna.

Ved direkte overforing av data fra det flyvende objekt til markstasjonen over radio støter man på vanskeligheter pga. ob-jektets lave flyvehøyde, da skyggevirkninger i terrenget kan av-bryte radioforbindelsen, og også de forutsetninger for utbredelse av bølger som bl.a. er gitt ved antennenes strålingskarakteri-stikker, er ugunstige nær jordoverflaten. Dessuten er denne form for dataoverføring meget lett å forstyrre. When transferring data directly from the flying object to the ground station via radio, difficulties are encountered due to the object's low flying height, as shadow effects in the terrain can interrupt the radio connection, and also the prerequisites for the propagation of waves such as are given by the antennas' radiation characteristics, are unfavorable near the earth's surface. Moreover, this form of data transmission is very easy to disrupt.

Vanskelighetene når det gjelder overføringsbetingelser blir mildnet hvis en satelitt eller et fly over eget terreng tjener som radio-reléstasjon mellom objektet som flyr i motstanderens område, og markstasjonen. The difficulties in terms of transmission conditions are mitigated if a satellite or an aircraft over its own terrain serves as a radio relay station between the object flying in the opponent's area and the ground station.

Men også denne radiooverføring lar seg forholdsvis lett forstyrre av støyapparatur hos motstanderen, og støysikkerhet lar seg ikke realisere. But even this radio transmission can be relatively easily disrupted by the opponent's noise equipment, and noise safety cannot be realized.

Tilsvarende gjelder for et data-overføringssystem som er kjent fra US-PS 3.092.770, og hvor to deltagere kommuniserer via en transponder som utskytes med rakett og holdes luftbåren ved hjelp av en fallskjerm for langdistanse-dataoverføring. The same applies to a data transmission system which is known from US-PS 3,092,770, and where two participants communicate via a transponder that is launched with a rocket and kept airborne by means of a parachute for long-distance data transmission.

Oppfinnelsens oppgave er å gi anvisning på en fremgangsmåte som praktisk talt ikke lar seg forstyrre, til overføring av data fra et dyptflyvende objekt til en fjerntliggende markstasjon. Ifølge oppfinnelsen blir denne oppgave løst ved at vedkommende data innføres i et lager anbragt i et flyvelegeme, f.eks. en rakett, som føres med av det flyvende objekt, at flyvelegemet med det i det minste delvis fylte lager skytes ut fra det flyvende objekt i retning mot markstasjonen og så gjennomløper en høy, i det vesentlige ballistisk flyvebane, og at de lagrede data etter at markstasjonens mottagningsområde er nådd, blir sendt ut ved hjelp av en radiosender i flyvelegemet for mottagning ved hjelp av markstasjonen. The task of the invention is to provide instructions for a method that practically cannot be disturbed, for the transmission of data from a deep-flying object to a remote ground station. According to the invention, this task is solved by the relevant data being entered into a storage placed in an aircraft body, e.g. a rocket, which is carried along by the flying object, that the flight body with the at least partially filled storage is launched from the flying object in the direction of the ground station and then traverses a high, essentially ballistic flight path, and that the stored data after the ground station's reception area is reached, is sent out using a radio transmitter in the fuselage for reception by the ground station.

Oppfinnelsen vil i det følgende bli belyst under henvisning til tegningen. The invention will be explained below with reference to the drawing.

Over et fiendtlig oppklaringsområde 1 flyr i liten høyde, f.eks. 300 meter, et eget oppklaringsf ly 2. I det egne område 3 befinner der seg en mark- og tydningsstasjon 4 med en mottagerantenne. Fra forst av er der på flyet 2 under oppklaringen anbragt et flyvelegeme 5, f.eks. en rakett, som fores med av flyet 2. Med flyet 2 blir f.eks. overlappende bilder eller også ønskede enkeltinformasjoner om det overfløyede fiendtlige område 1 tatt opp og i form av data innfort i et lager anbragt i flyvelegemet 5. Når lageret i det minste delvis er fylt med data, blir flyvelegemet 5 skutt ut av flyet 2 i retning mot markstasjonen 4 og gjennomløper en høy, i det vesentlige ballistisk fluktbane 6. Etter at mottagningsområdet for den egne markstasjon 4 er nådd, skjer etter det såkalte akvisisjonsområde 7 utsendelse av de lagrede data fra flyvelegemet 5, så disse mottas ved hjelp av antennen i markstasjonen 4 og deretter tydes. For å oppnå en større reserve av støysikkerhet kan man gjøre bruk av den vanlige Spread-spectrum-metode. Under utførelsen av flyets oppklarings-oppdrag er flyet 2 og flyvelegemet 5 uvirksomme med hensyn til sending. Flyvelegemet 5 påbegynner først datasendeprosessen i akvisisjonsområdet 7. Det er nok å anvende en enkel sender med liten sendereffekt i flyvelegemet 5, så tapet av en slik sender ikke blir særlig kostbart. I markstasjonen 4 behøves heller ikke særlig kostbart utstyr til mottagningen av data. Utføres antenne-utstyret i markstasjonen 4 imidlertid mer avansert, f.eks. med en spesiell antennestrålingskarakteristikk eller en antenne-kølle-etterføring, kan også støysikkerheten økes. Støysikkerheten ved dataoverføringsmetoden ifølge oppfinnelsen er i det vesentlige avhengig av skyggevirkninger fra terrenget og av passitiviteten av markstasjonen 4. Selve markstasjonen 4 kan være utført mobil. Det er også mulig å gjennomføre en Diversity-drift med flere markstasjoner. Også en drift i motstanderens radarbånd er mulig. Over an enemy reconnaissance area 1 flies at low altitude, e.g. 300 metres, a separate reconnaissance aircraft 2. In the separate area 3 there is a ground and interpretation station 4 with a receiver antenna. From the outset, an aircraft body 5, e.g. a rocket, which is carried by plane 2. With plane 2, e.g. overlapping images or also desired individual information about the enemy area 1 flown over are recorded and in the form of data entered into a warehouse located in the aircraft body 5. When the warehouse is at least partially filled with data, the aircraft body 5 is launched from the aircraft 2 in the direction of the ground station 4 and traverses a high, essentially ballistic flight path 6. After the reception area for the own ground station 4 has been reached, the so-called acquisition area 7 sends out the stored data from the flight body 5, so that these are received with the help of the antenna in the ground station 4 and then decipher. In order to achieve a greater margin of noise safety, the usual spread-spectrum method can be used. During the execution of the aircraft's reconnaissance mission, the aircraft 2 and the fuselage 5 are inactive with respect to transmission. The airframe 5 first begins the data transmission process in the acquisition area 7. It is sufficient to use a simple transmitter with a small transmitter power in the airframe 5, so that the loss of such a transmitter is not particularly costly. In field station 4, particularly expensive equipment is not required for the reception of data either. However, if the antenna equipment in ground station 4 is more advanced, e.g. with a special antenna radiation characteristic or an antenna-club follow-up, the noise safety can also be increased. The noise safety of the data transmission method according to the invention is essentially dependent on shadowing effects from the terrain and on the passivity of the field station 4. The field station 4 itself can be made mobile. It is also possible to carry out a Diversity operation with several field stations. A drift in the opponent's radar band is also possible.

Som lagre i flyvelegemene 5 kan man f.eks. anvende magnet-båndlagre, magnetplatelagre, optiske lagre, f.eks. i form av et filmlager, eller for mindre datamengder, halvlederlagre. As bearings in the airframes 5, one can e.g. use magnetic tape storage, magnetic disk storage, optical storage, e.g. in the form of a film storage, or for smaller amounts of data, semiconductor storage.

Ved billedopptaket i det flyvende objekt 2 kan der f.eks. anvendes et billedlagerrør. Avsøkningen av.bildet blir da uavhen-gig av billedopptaket. Korte belysningstider lar seg oppnå, og slettelsen av bildet kan velges fritt. During the image recording in the flying object 2, there can e.g. an image storage tube is used. The scanning of the image is then independent of the image recording. Short exposure times can be achieved, and the deletion of the image can be freely selected.

Claims (7)

1. Fremgangsmåte til formidling av data som opptas i et dyptflyvende objekt, særlig et oppklaringsfly, til en fjerntliggende markstasjon utrustet med en mottagerantenne, karakterisert ved at de opptatte data innfores i et lager anbragt i et flyvelegeme (5), f.eks. en rakett, som fores med av det flyvende objekt (2), at flyvelegemet (5) med det i det minste delvis fylte lager skytes ut av det flyvende objekt (2) i retning mot markstasjonen (4) og så passerer en høy, i det vesentlige ballistisk flyvebane (6), og at de lagrede data, etter at markstasjonens (4) mottagningsområde er nådd, ved hjelp av en radiosender i flyvelegemet (5) sendes ut for å mottas av markstasjonen.1. Procedure for transmitting data recorded in a deep-flying object, in particular a reconnaissance aircraft, to a remote ground station equipped with a receiving antenna, characterized in that the captured data is entered into a warehouse located in an aircraft body (5), e.g. a rocket, which is guided by the flying object (2), that the flying body (5) with the at least partially filled warehouse is launched from the flying object (2) in the direction of the ground station (4) and then passes a high, in the essential ballistic flight path (6), and that the stored data, after the ground station's (4) reception area has been reached, is sent out by means of a radio transmitter in the flight body (5) to be received by the ground station. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at der som lager i flyvelegemet (5) benyttes et magnetbåndlager eller et magnetplatelager.2. Method as specified in claim 1, characterized in that a magnetic tape bearing or a magnetic plate bearing is used as a bearing in the fuselage (5). 3. Fremgangsmåte som angitt i krav 1, karakterisert ved at der som lager i flyvelegemet (5) anvendes et optisk lager, f.eks. et filmlager.3. Method as stated in claim 1, characterized in that an optical bearing is used as a bearing in the fuselage (5), e.g. a film stock. 4. Fremgangsmåte som angitt i krav 1, karakterisert ved at der som lager i flyvelegemet (5) anvendes et halvlederlager.4. Method as specified in claim 1, characterized in that a semiconductor bearing is used as a bearing in the fuselage (5). 5. Fremgangsmåte som angitt i et av kravene 1-4, karakterisert ved at der til dataopptak i det flyvende objekt (2) anvendes et billedlagerrør, hvorfra de opptatte data så avsøkes og innfores i lageret i flyvelegemet (5).5. Method as stated in one of the claims 1-4, characterized in that for data recording in the flying object (2) an image storage tube is used, from which the recorded data is then scanned and entered into the storage in the flight body (5). 6. Fremgangsmåte som angitt i et av kravene 1-5, karakterisert ved en Diversity-drift med flere markstasjoner.6. Method as stated in one of claims 1-5, characterized by a Diversity operation with several field stations. 7. Fremgangsmåte som angitt i et av kravene 1-6, karakterisert ved en båndspredning (Spread-spectrum-metode) for økning av støysikkerheten.7. Method as stated in one of claims 1-6, characterized by a band spread (Spread-spectrum method) for increasing the noise safety.
NO800791A 1979-03-21 1980-03-19 PROCEDURE FOR DISSEMINATING DATA. NO147465C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2910956A DE2910956C2 (en) 1979-03-21 1979-03-21 Procedure for the transmission of data

Publications (3)

Publication Number Publication Date
NO800791L NO800791L (en) 1980-09-22
NO147465B true NO147465B (en) 1983-01-03
NO147465C NO147465C (en) 1983-04-13

Family

ID=6065929

Family Applications (1)

Application Number Title Priority Date Filing Date
NO800791A NO147465C (en) 1979-03-21 1980-03-19 PROCEDURE FOR DISSEMINATING DATA.

Country Status (7)

Country Link
BE (1) BE882362A (en)
DE (1) DE2910956C2 (en)
FR (1) FR2452211A1 (en)
GB (1) GB2045032B (en)
IT (1) IT1130054B (en)
NL (1) NL8001671A (en)
NO (1) NO147465C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421607A1 (en) * 1984-06-09 1985-12-12 Dynamit Nobel Ag, 5210 Troisdorf CLEARANCE SYSTEM
DE19543321B4 (en) * 1995-11-21 2006-11-16 Diehl Stiftung & Co.Kg Method and device for the wireless exchange of information between stations
USD638531S1 (en) 2010-11-05 2011-05-24 S.C. Johnson & Son, Inc. Faceplate for a dispenser
USD642667S1 (en) 2010-11-09 2011-08-02 S.C. Johnson & Son, Inc. Faceplate for a dispenser
USD674886S1 (en) 2011-10-19 2013-01-22 S.C. Johnson & Son, Inc. Faceplate for a dispenser
US9003052B2 (en) * 2012-07-09 2015-04-07 The Boeing Company System and method for air-to-ground data streaming
USD746427S1 (en) 2013-10-07 2015-12-29 S.C. Johnson & Son, Inc. Faceplate for a dispenser
USD748238S1 (en) 2014-01-24 2016-01-26 S.C. Johnson & Son, Inc. Faceplate for a dispenser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092770A (en) * 1956-06-26 1963-06-04 Leslie E Shoemaker Emergency long range communication system
GB1189725A (en) * 1966-08-05 1970-04-29 Hitachi Ltd Method for Communicating Information Between Artificial Satellite and Ground.
US3979086A (en) * 1974-11-08 1976-09-07 The United States Of America As Represented By The Secretary Of The Army Rocketed data communication system
DE2637422C2 (en) * 1976-08-20 1978-08-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen System for interference-resistant information transmission

Also Published As

Publication number Publication date
FR2452211A1 (en) 1980-10-17
NO147465C (en) 1983-04-13
DE2910956B1 (en) 1980-09-11
FR2452211B1 (en) 1984-04-06
DE2910956C2 (en) 1981-06-11
IT8020637A0 (en) 1980-03-14
GB2045032A (en) 1980-10-22
GB2045032B (en) 1983-06-15
NO800791L (en) 1980-09-22
BE882362A (en) 1980-09-22
IT1130054B (en) 1986-06-11
NL8001671A (en) 1980-09-23

Similar Documents

Publication Publication Date Title
US20220194582A1 (en) High Altitude, Long Endurance, Unmanned Aircraft and Methods of Operation Thereof
US10343775B2 (en) Method of using unmanned aircraft vehicle (UAV) as electromagnetic wave transmission relay station to realize self-recovery communication transmission functions of aerospace vehicle
Werner et al. ADS-B over satellite: Global air traffic surveillance from space
US5944281A (en) Dual band millimeter-infrared fiber optics guidance data link
US20180227041A1 (en) Low earth orbit satellite for air traffic control
NO147465B (en) PROCEDURE FOR DISSEMINATING DATA.
Garcia et al. Aireon's initial on-orbit performance analysis of space-based ADS-B
US5927652A (en) System for observation of geostationary satellites, use of a system of this kind and corresponding observation methods
CN109405650B (en) Unmanned aerial vehicle comprehensive combat system based on human-in-loop control
García-Crespillo et al. Use of High Altitude Platform Systems to augment ground based APNT systems
US6643509B1 (en) Civil aviation communication system
Matin et al. Satellite communication systems
RU2560934C1 (en) Method of real time reception of radar information and system for its implementation
Tkachenko System of electronic warfare with uavs
JP7418365B2 (en) Satellite constellation, earth-side control equipment and artificial satellite
Hartl et al. A bistatic parasitical radar (BIPAR)
Takahashi et al. Development of Ka-band Aeronautical Earth Station for WINDS
Lachenmeier et al. Suitability of ads-b as a beacon for stratospheric balloon platforms and payloads
Temes et al. Remotely Piloted Vehicle (RPV) Kamikaze Study.
US10116411B1 (en) Frequency agile anti-jam data link
Dawson et al. Satellite Technology
Carter Current and Future Military Uses of Spacea
Oodo et al. Experiment of IMT-2000 using stratospheric-flying solar-powered airplane
Agan et al. NASA's K/Ka-band broadband aeronautical terminal for duplex satellite video communications
Markwardt et al. Telemetry Challenges for Ballistic Missile Testing in the Central Pacific