NO147030B - PROCEDURE FOR POLYMERIZATION OF VINYL CHLORIDE IN Aqueous Suspension During Flushing of the Reactor Roof with Water - Google Patents

PROCEDURE FOR POLYMERIZATION OF VINYL CHLORIDE IN Aqueous Suspension During Flushing of the Reactor Roof with Water Download PDF

Info

Publication number
NO147030B
NO147030B NO762717A NO762717A NO147030B NO 147030 B NO147030 B NO 147030B NO 762717 A NO762717 A NO 762717A NO 762717 A NO762717 A NO 762717A NO 147030 B NO147030 B NO 147030B
Authority
NO
Norway
Prior art keywords
water
polymerization
vinyl chloride
flushing
reactor
Prior art date
Application number
NO762717A
Other languages
Norwegian (no)
Other versions
NO762717L (en
NO147030C (en
Inventor
Dionigi Baldini
Francesco Carlin
Giancarlo Montanari
Enzo Bandini
Original Assignee
Anic Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anic Spa filed Critical Anic Spa
Publication of NO762717L publication Critical patent/NO762717L/no
Publication of NO147030B publication Critical patent/NO147030B/en
Publication of NO147030C publication Critical patent/NO147030C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for polymerisering av vinylklorid i vandig suspensjon, enten alene eller i en blanding som inneholder opptil 20% andre monomerer, under spylind av reaktortaket med vann, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at man når omdannelsen har nådd 15 - 25%, begynner å The present invention relates to a method for the polymerization of vinyl chloride in aqueous suspension, either alone or in a mixture containing up to 20% of other monomers, under flushing of the reactor roof with water, and the peculiarity of the method according to the invention is that when the conversion has reached 15 - 25%, starting to

spyle reaktortaket kontinuerlig med vann under et trykk på minst 15 kg/cm og fortsetter denne spyling under anvendelse av-minst 1000 liter vann pr. time inntil det er nådd en omdannelse på minst 40%, og etter avsluttet polymerisering fjernes avleiringer på reaktortaket mekanisk med vann under et trykk på minst 100 kg/cm . flush the reactor roof continuously with water under a pressure of at least 15 kg/cm and continue this flushing using at least 1,000 liters of water per hour until a conversion of at least 40% has been reached, and after completion of polymerization, deposits on the reactor roof are removed mechanically with water under a pressure of at least 100 kg/cm .

Disse trekk ved oppfinnelsen fremgår av patentkravet. These features of the invention appear in the patent claim.

Foreliggende oppfinnelse vedrører således en fremgangsmåte for å fjerne skorpedannelser fra de deler som er i kontakt med den gassformede fase i reaktorer for polymerisering av vinylklorid i suspensjon, enten alene eller i blanding med andre monomerer. The present invention thus relates to a method for removing crust formations from the parts that are in contact with the gaseous phase in reactors for polymerization of vinyl chloride in suspension, either alone or in a mixture with other monomers.

Det er kjent at et av de største problemer ved polymerisering av vinylklorid i suspensjon, enten alene eller i blanding med andre monmerer, skyldes skorpedannelser av polymer som avsettes på reaktorveggene og som, hvis de ikke fjernes forurenser de etterfølgende produktporsjoner. Fjernelsen hva enten denne skjer manuelt eller mekanisk med vann under høyt trykk, krever i alle fall at reaktoren åpnes og rengjøringen krever tidsrom på en time eller mer. It is known that one of the biggest problems in the polymerization of vinyl chloride in suspension, either alone or in admixture with other monomers, is due to crust formations of polymer which are deposited on the reactor walls and which, if not removed, contaminate the subsequent product portions. The removal, whether this is done manually or mechanically with water under high pressure, in any case requires that the reactor be opened and the cleaning requires a period of an hour or more.

Det er fremsatt mange forslag til løsning av problemer med skorpedannelse på veggene av reaktorer som er i kontakt med væskefasen og det er også foreslått spesifikke bland-inger som forhindrer avsetningen og nødvendiggjør renseoperasjoner først etter et titall porsjoner. Many proposals have been put forward to solve problems with crust formation on the walls of reactors that are in contact with the liquid phase, and specific mixtures have also been proposed that prevent the deposit and necessitate cleaning operations only after a dozen portions.

Ved den fremgangsmåte som er omhandlet i DE-OS 2 239 942 blir det under hele polymerisasjonen kontinuerlig inn-sprøytet vann, noe som til tross for høye energitap bare fører til en mindre forbedring av avsetningene. Ved pulserende innsprøyting av vann kunne man tidligere redusere de nødvendige vannmengder, men reaktortemperaturen ble stadig påvirket og dette førte til styringsvanskelig-heter for polymerisasjonsanlegget. Den erkjennelse som ligger til grunn for den foreliggende oppfinnelse er det overraskende forhold at det ved en kontinuerlig spyling med vann under lavt trykk under et forholdsvis kort poly-merisas jonstidsrom bare ble dannet små avsetninger, som deretter lett kunne fjernes ved hjelp av det allerede foreliggende vanntilførselsanlegg. En slik fremgangsmåte gir såleldes både fordelene med den kontinuerlige spyling med dermed følgende bedre styrbarhet av anlegget og fordelene ved den pulserende arbeidsmåte, samt mindre vann-forbruk . In the method described in DE-OS 2 239 942, water is continuously injected during the entire polymerization, which, despite high energy losses, only leads to a minor improvement of the deposits. By pulsating injection of water, the necessary water quantities could previously be reduced, but the reactor temperature was constantly affected and this led to control difficulties for the polymerization plant. The realization that forms the basis of the present invention is the surprising fact that during a continuous flushing with water under low pressure during a relatively short polymerization period only small deposits were formed, which could then be easily removed with the help of the already available water supply system. Such a method thus provides both the advantages of the continuous flushing with the resulting better controllability of the system and the advantages of the pulsating working method, as well as less water consumption.

Tendensen til å utnytte reaktorene til det ytterste (høye fyllefaktorer, kraftig omrøring, høye destillasjonshastig-heter for fjernelse av restmonomer, etc.) har forsterket problemet ved at tendensen til en mer intens økning av skum og spruting, som avsetter polymeren på reaktortaket, er øket. Etter et fåtall porsjoner begynner dysene å bli tilstoppet,, med den fare at store klumper av polymer løsner og hindrer tømmingen, slik at tettheten av bunnventilene ikke lenger sikres.. Den korrekte gjennomføring av fylling og tømming settes i fare og sikkerheten for reaktoren under polymeriseringen kan nedsettes. The tendency to use the reactors to the limit (high filling factors, vigorous stirring, high distillation rates for the removal of residual monomers, etc.) has intensified the problem in that the tendency for a more intense increase in foaming and splashing, which deposits the polymer on the reactor roof, is increased. After a few portions, the nozzles begin to become clogged, with the risk that large lumps of polymer loosen and prevent emptying, so that the tightness of the bottom valves is no longer ensured. The correct implementation of filling and emptying is put at risk and the safety of the reactor during polymerization can be decreased.

Samlet vil skorpedannelse på reaktortaket ofte opptre uavhengig av om det anvendes en anti-skorpedannende blanding for å gjøre åpning av reaktoren nødvendig så sjelden som mulig. Overall, crust formation on the reactor roof will often occur regardless of whether an anti-scaling mixture is used to make opening the reactor necessary as rarely as possible.

Ved oppfinnelsen er det ikke lenger nødvendig å åpne reaktoren for visuell inspeksjon av reaktortaket for mulig fjernelse av skorpedannelse ved polymerisering av hver por-sjon hvis det under reaksjonen gjennomføres en kontinuerlig spyling av reaktortaket med vann under et trykk på minst 15 kg/cm 2 og hvis en slik operasjon etterfølges av en spyling (f.eks. under tømmingen av porsjonen og ellers når autoklaven er lukket) med vann under et trykk på minst 100 kg/cm . With the invention, it is no longer necessary to open the reactor for visual inspection of the reactor roof for possible removal of crust formation during polymerization of each portion if, during the reaction, a continuous flushing of the reactor roof with water is carried out under a pressure of at least 15 kg/cm 2 and if such an operation is followed by a flush (e.g. during the emptying of the portion and otherwise when the autoclave is closed) with water under a pressure of at least 100 kg/cm .

Hvis spylingen begynner når omdannelsesgraden er mellom If the flushing starts when the degree of conversion is between

15 og 25% og med en strømningshastighet på minst 1000 15 and 25% and with a flow rate of at least 1000

liter pr. time, og fortsettes inntil omdannelsesgraden har nådd minst 40%, tillates dannelse av bare lette skorper som uten vanskelighet kan fjernes med vann under et høyt trykk både med hensyn til tømmingen og tettheten av bunnventilen. liters per hour, and continued until the degree of conversion has reached at least 40%, the formation of only light crusts is allowed which can be removed without difficulty with water under a high pressure both with regard to the emptying and the tightness of the bottom valve.

Renseoperasjoner som begynnes når omdannelsesgraden er over 25% forhindrer ikke dannelse av lokale skorpedannelser i form av store klumper, og for tidlige operasjoner byr ikke på noen fordel i og med at det reduserte tilgjengelige fri volum med de vanlige industrielle porsjoner ikke tillater opprettholdelse av den krevede strømningshastighet for vannet. Cleaning operations that begin when the degree of conversion is above 25% do not prevent the formation of local crust formations in the form of large lumps, and premature operations do not offer any advantage in that the reduced available free volume with the usual industrial portions does not allow the maintenance of the required flow rate of the water.

De etterføglende operasjoner med vann under et høyt trykk er absolutt nødvendige for å forhindre de lette resterende skorpedannelser fra å bli tykkere ettersom de etter-følgende porsjoner innfylles. På den annen hånd vil spyling med vann alene, gjennomført under hele reaksjonstiden, bare være i stand til permanent å forhindre avsetningen av polymeren når man arbeider med porsjoner med en lav fyllingsfaktor, sakte omrøring o.l., dvs. ved polymerisasjonsprosesser som er av liten industriell viktighet. The subsequent operations with water under a high pressure are absolutely necessary to prevent the light remaining crusts from thickening as the subsequent portions are filled. On the other hand, flushing with water alone, carried out during the entire reaction time, will only be able to permanently prevent the deposition of the polymer when working with portions with a low filling factor, slow stirring, etc., i.e. in polymerization processes of little industrial importance .

De etterfølgende eksempler illustrerer oppfinnelsen og nødvendigheten av den samtidige tilpassing av de angjeld-ende forholdsregler. The following examples illustrate the invention and the necessity of the simultaneous adaptation of the relevant precautions.

EKSEMPEL 1 EXAMPLE 1

En autoklav på 25 m <3> utstyrt med en røreverk og en Pfaudler antiplaskeinnretning, ble fyllt til 70% av volumet med et forhold mellom vann og vinylklorid på 1:1 og omrørt med en hastighet på 120 omdreininger pr. minutt. A 25 m autoclave <3> equipped with an agitator and a Pfaudler anti-splash device was filled to 70% of its volume with a ratio of water to vinyl chloride of 1:1 and stirred at a speed of 120 rpm. minute.

Taket ble spylt under hele reaksjonstiden med en hastighet på 1000 liter pr. time vann under et trykk på 20 kg/cm 2. The roof was flushed during the entire reaction time at a rate of 1,000 liters per hour of water under a pressure of 20 kg/cm 2.

Den endelige fylling har vært så høy som 90%. Ved full-ført reaksjon var taket fullstendig rent og var også fullstendig rent under de etterfølgende porsjoner. The final filling has been as high as 90%. When the reaction was complete, the roof was completely clean and was also completely clean during the subsequent portions.

E KSEMPEL 2 EXAMPLE 2

Samme autoklav som i eks. 1 ble fylt til 90% med samme forhold mellom vann og en 85/15 blanding av vinylklorid og vinylacetat. Etter spyling av taket med vann under et trykk på 25 kg/cm 2, når omdannelsesgraden var fra 20 til 40%, ble det fjernet 3 kg skorper som var jevnt fordelt over hele overflaten. Same autoclave as in ex. 1 was filled to 90% with the same ratio of water to an 85/15 mixture of vinyl chloride and vinyl acetate. After flushing the roof with water under a pressure of 25 kg/cm 2 , when the degree of conversion was from 20 to 40%, 3 kg of crusts were removed which were evenly distributed over the entire surface.

I de etterfølgende porsjoner ble det gjennomført spyling med vann under et trykk på 300 kg/cm 2 under anvendelse av styrbare dyser. In the subsequent portions, flushing was carried out with water under a pressure of 300 kg/cm 2 using controllable nozzles.

Autoklavtaket var fullstendig rent og det forekom ingen vanskeligheter med hensyn til tømmingen og tettheten av bunnventilen. The autoclave roof was completely clean and there were no difficulties with regard to the emptying and tightness of the bottom valve.

EKSEMPEL 3 EXAMPLE 3

I samme autoklav som i de foregående eksempler, ble fyll-ingsfaktoren og forholdet mellom vann og vinylklorid holdt uforandret i forhold til eks. 2. In the same autoclave as in the previous examples, the filling factor and the ratio between water and vinyl chloride were kept unchanged compared to ex. 2.

Etter spyling av reaktortaket med vann under et trykk på After flushing the reactor roof with water under a pressure of

30 kg/cm 2 når omdannelsesgraden var fra 40 til 65% ble det samlet opp 10 kg skorper i form av grove klumper. 30 kg/cm 2 when the degree of conversion was from 40 to 65%, 10 kg of crusts were collected in the form of coarse lumps.

Spyling under etterfølgende porsjoner med vann under et trykk på 350 kg/cm 2 førte til samlet fjernelse av skorpene men førte til betraktelig forlengelse av tømmetidene slik at en manuell operasjon var nødvendig for å fjerne polymeren som tilstoppet bunnventilen. Flushing with subsequent portions of water under a pressure of 350 kg/cm 2 resulted in total removal of the crusts but led to considerable prolongation of the emptying times so that a manual operation was necessary to remove the polymer which clogged the bottom valve.

Den ovenfor beskrevne metode kan anvendes uten begrensning for autoklaver av en hvilken som helst størrelse i indu-strien og alle sammensetninger kjent for industriell praksis, omfattende den som er gjennomført i forbindelse med tidligere foreslåtte metoder for å bekjempe tilsmussing. The method described above can be used without limitation for autoclaves of any size in the industry and all compositions known to industrial practice, including that carried out in connection with previously proposed methods to combat fouling.

Oppfinnelsen kan anvendes i forbindelse med polymerisering av vinylklorid, enten alene eller i blanding med andre monomerer som inneholder 20% eller mindre komonomer idet komonomerene er dem som er vel kjent for fagmannen ved at de kan kopolymeriseres med vinylklorid. F.eks. kan det nevnes vinylidenklorid, vinylacetat, vinylbutyrat, metyl-akrylater og -metakrylater, butylaktrylater og -metakrylater, isooktylaktrylater og -metakrylater, dietyl- og dipropyl-maleater og -fumarater, styren, etylen, propylen, butylen, vinyletyleter, allylacetat, diallylftalat, diallylmaleat, akrylnitril, metakrylnitril og andre. The invention can be used in connection with the polymerization of vinyl chloride, either alone or in a mixture with other monomers containing 20% or less comonomer, the comonomers being those that are well known to the person skilled in the art in that they can be copolymerized with vinyl chloride. E.g. mention may be made of vinylidene chloride, vinyl acetate, vinyl butyrate, methyl acrylates and methacrylates, butyl acrylates and methacrylates, isooctyl acrylates and methacrylates, diethyl and dipropyl maleates and fumarates, styrene, ethylene, propylene, butylene, vinyl ethyl ether, allyl acetate, diallyl phthalate, diallyl maleate, acrylonitrile, methacrylonitrile and others.

Når det som er beskrevet ovenfor gjennomføres i praksis er det nødvendig å huske på noe forholdsregler som tar sikte på å utnytte til det ytterste de virkninger som skriver seg fra spylingen og vaskingen med vann uten å forstyrre den korrekte gjennomføring av reaksjonen. When what has been described above is carried out in practice, it is necessary to bear in mind some precautions which aim to make the most of the effects resulting from the flushing and washing with water without disturbing the correct execution of the reaction.

Faste innstallasjoner som spyler mot det indre av autoklaven kan f.eks. være rettet mot det foretrukne sted for oppbygging av polymerskorper, men dette kan betraktelig redusere effektiviteten av spyle- og vaske-behandlingen. Bevegelige installasjoner bør således anvendes, av den type som er avbildet i den vedføyde figur, hvor vann (under enten lavt eller høyt trykk) strømmer gjennom den hule akse 1 og rettes mot autoklavtaket 2 ved hjelp av dyser 3 som er passende dimensjonert og orientert, når systemet er senket ned i det indre av autoklaven. Fixed installations that flush towards the interior of the autoclave can e.g. be aimed at the preferred site for build-up of polymer crusts, but this can considerably reduce the effectiveness of the flushing and washing treatment. Movable installations should thus be used, of the type depicted in the attached figure, where water (under either low or high pressure) flows through the hollow shaft 1 and is directed towards the autoclave roof 2 by means of nozzles 3 which are suitably sized and oriented, when the system is lowered into the interior of the autoclave.

Under inoperative betingelser sikrer en tettende pakning 4 mellom akselen og rørstussen 5 og konturen av den nedre ende av rørstussen en god tetning uten plasking fra auto-klaventaket. Under non-operational conditions, a sealing gasket 4 between the shaft and the pipe socket 5 and the contour of the lower end of the pipe socket ensures a good seal without splashing from the autoclave roof.

I tillegg vil den roterende bevegelse av akselen mulig-gjøre at den hele omkrets av autoklaven kan rammes av spylevannet. In addition, the rotating movement of the shaft will enable the entire circumference of the autoclave to be hit by the flushing water.

Størrelsen og orienteringen av dysene er en funksjon av operasjonen og egenskapene av vannet (for spyling under The size and orientation of the nozzles is a function of the operation and the characteristics of the water (for flushing under

2 2

et trykk på minst 15 kg/cm og spyling under et trykk på a pressure of at least 15 kg/cm and flushing under a pressure of

2 2

minst 100 kg/cm ). at least 100 kg/cm ).

Antallet og posisjonen for slike installasjoner er en funksjon av den indre anordning av autoklaven, anti-plaskeplater, kjølerør, akselen for røreinnretningen, temperaturmålere og alle de komponenter som kunne innvirke på vannstrålene. The number and position of such installations is a function of the internal arrangement of the autoclave, anti-splash plates, cooling pipes, the shaft of the agitator, temperature gauges and all the components that could affect the water jets.

I alle fall er installasjonene, uansett typen av tettende innretninger og den måte hvorpå de nødvendige bevegelser oppnås, gjenstand for vanlig konstruktørarbeid og er i alle fall karakterisert ved det forhold at vannet bringes til å strømme gjennom en hul aksel 1, som er aksialt roterbar, og vann strømmer ut gjennom dyser 3 som er passende orientert og konstruert. In any case, the installations, regardless of the type of sealing devices and the way in which the necessary movements are achieved, are the subject of ordinary constructor work and are in any case characterized by the fact that the water is made to flow through a hollow shaft 1, which is axially rotatable, and water flows out through nozzles 3 which are suitably oriented and constructed.

Claims (1)

Fremgangsmåte for polymerisering av vinylklorid i vandig suspensjon, enten alene eller i en blanding som inneholder opptil 20% andre monomerer, under spyling av reaktortaket med vann,karakterisert ved at man når omdannelsen har nådd 15 - 25%,begynner å spyle reaktortaket kontinuerlig med vann under et trykk på minst 15 kg/cm og fortsetter denne spyling under anvendelse av minst 1000 liter vann pr. time inntil det er nådd en omdannelse på minst 40%, og etter avsluttet polymerisering fjernes avleiringer på reaktortaket mekanisk med vann under et trykk på minst 100 kg/cm<2>.Process for the polymerization of vinyl chloride in aqueous suspension, either alone or in a mixture containing up to 20% other monomers, while flushing the reactor roof with water, characterized in that when the conversion has reached 15 - 25%, the reactor roof begins to be continuously flushed with water under a pressure of at least 15 kg/cm and this flushing continues using at least 1000 liters of water per hour until a conversion of at least 40% has been reached, and after completion of polymerization, deposits on the reactor roof are removed mechanically with water under a pressure of at least 100 kg/cm<2>.
NO762717A 1975-08-08 1976-08-05 PROCEDURE FOR POLYMERIZATION OF VINYL CHLORIDE IN Aqueous Suspension During Flushing of the Reactor Roof with Water NO147030C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT26219/75A IT1044367B (en) 1975-08-08 1975-08-08 PROCEDURE FOR THE REMOVAL OF STAINS FROM PARTS IN CONTACT WITH THE GASEOUS PHASE IN SUSPENSION VINYL CHLORIDE POLYMERIZERS

Publications (3)

Publication Number Publication Date
NO762717L NO762717L (en) 1977-02-09
NO147030B true NO147030B (en) 1982-10-11
NO147030C NO147030C (en) 1984-09-07

Family

ID=11218967

Family Applications (1)

Application Number Title Priority Date Filing Date
NO762717A NO147030C (en) 1975-08-08 1976-08-05 PROCEDURE FOR POLYMERIZATION OF VINYL CHLORIDE IN Aqueous Suspension During Flushing of the Reactor Roof with Water

Country Status (31)

Country Link
JP (1) JPS5237990A (en)
AR (1) AR211275A1 (en)
AT (1) AT351256B (en)
AU (1) AU506993B2 (en)
BE (1) BE844978A (en)
BG (1) BG33298A3 (en)
CA (1) CA1083750A (en)
CH (1) CH608507A5 (en)
CS (1) CS209874B2 (en)
DD (1) DD126262A5 (en)
DE (1) DE2635487C3 (en)
DK (1) DK147423C (en)
EG (1) EG12260A (en)
ES (1) ES450917A1 (en)
FR (1) FR2320314A1 (en)
GB (1) GB1519359A (en)
IE (1) IE44309B1 (en)
IL (1) IL50152A (en)
IN (2) IN144224B (en)
IT (1) IT1044367B (en)
LU (1) LU75552A1 (en)
MX (1) MX3261E (en)
NL (1) NL164869C (en)
NO (1) NO147030C (en)
PH (1) PH13287A (en)
PT (1) PT65447B (en)
RO (1) RO72240A (en)
SE (1) SE429554B (en)
TR (1) TR19096A (en)
YU (1) YU39217B (en)
ZA (1) ZA764470B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058652A (en) * 1976-02-10 1977-11-15 Exxon Research & Engineering Co. Autorefrigeration process and apparatus
DE3637060C2 (en) * 1986-10-31 1999-02-04 Wacker Chemie Gmbh Device for spraying or injecting liquid into a container and its use
DE60016112T2 (en) * 1999-08-27 2005-11-03 Rohm And Haas Co. Process for the purification of reactors
EP1471077A3 (en) * 1999-08-27 2005-02-02 Rohm And Haas Company Process for cleaning reactors
KR102075855B1 (en) * 2010-12-14 2020-02-10 사솔 테크날러지 (프로프라이어터리) 리미티드 Cleaning of process equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2239942C3 (en) * 1972-08-14 1988-02-11 Wacker-Chemie GmbH, 8000 München Process for the polymerization of vinyl chloride

Also Published As

Publication number Publication date
IN144965B (en) 1978-10-05
IE44309L (en) 1977-02-08
PH13287A (en) 1980-03-04
FR2320314A1 (en) 1977-03-04
PT65447B (en) 1978-02-10
IL50152A0 (en) 1976-09-30
IE44309B1 (en) 1981-10-21
ATA585376A (en) 1978-12-15
EG12260A (en) 1978-12-31
DE2635487B2 (en) 1980-02-14
DK355276A (en) 1977-02-09
DE2635487C3 (en) 1985-07-18
NL164869C (en) 1981-02-16
AU506993B2 (en) 1980-01-31
IL50152A (en) 1979-11-30
NL7608848A (en) 1977-02-10
AR211275A1 (en) 1977-11-15
DK147423B (en) 1984-07-30
JPS5237990A (en) 1977-03-24
ES450917A1 (en) 1977-08-16
YU39217B (en) 1984-08-31
IN144224B (en) 1978-04-08
LU75552A1 (en) 1977-03-25
IT1044367B (en) 1980-03-20
NO762717L (en) 1977-02-09
MX3261E (en) 1980-08-12
AT351256B (en) 1979-07-10
DK147423C (en) 1985-02-18
TR19096A (en) 1978-05-16
PT65447A (en) 1976-09-01
YU192376A (en) 1982-05-31
DE2635487A1 (en) 1977-06-30
NL164869B (en) 1980-09-15
CS209874B2 (en) 1981-12-31
FR2320314B1 (en) 1979-08-17
GB1519359A (en) 1978-07-26
CH608507A5 (en) 1979-01-15
NO147030C (en) 1984-09-07
BG33298A3 (en) 1983-01-14
DD126262A5 (en) 1977-07-06
SE7608867L (en) 1977-02-09
SE429554B (en) 1983-09-12
CA1083750A (en) 1980-08-12
ZA764470B (en) 1977-07-27
RO72240A (en) 1981-11-04
AU1641176A (en) 1978-02-02
BE844978A (en) 1977-02-07

Similar Documents

Publication Publication Date Title
DK155833B (en) LINING MATERIAL FOR THE WALL IN REACTORS AND ASSOCIATED APPLIANCES FOR POLYMERIZATION OF VINYL COMPOUNDS
CN102774877A (en) Novel process for preparing germanium dioxide (GeO2)
NO147030B (en) PROCEDURE FOR POLYMERIZATION OF VINYL CHLORIDE IN Aqueous Suspension During Flushing of the Reactor Roof with Water
KR910009373B1 (en) Process for treating a polymerisation reactor
CN214599063U (en) Self-cleaning formula reation kettle
AU2005200781A1 (en) Process for cleaning reactors
FR2679933A1 (en) METHOD OF EXTINCTION AND CAUSTIFICATION IN ONE STEP FOR THE PRODUCTION OF CELLULOSE PULP.
CN107055573A (en) A kind of mould loses the recovery system of dilution sodium hydroxide
CN110817920B (en) Method for producing barium hydroxide and co-producing barium sulfate and sodium thiosulfate from barium sulfide
CN217699170U (en) Reation kettle who possesses ultrasonic cleaning function
CN208436828U (en) Salt refining reaction vessel
CN107556215A (en) The method and system of impurity is separated and handled from hydrogen chloride liquid mixture
CN203845897U (en) Integral type reaction device for dilute hydrochloric acid neutralization in production process of chlorinated polyethylene
CN215261393U (en) Heat exchanger belt cleaning device
CN218853492U (en) Energy-saving and environment-friendly flash tank
CN201930772U (en) Pressure keeping and water discharging device of steaming kettle
CN214183073U (en) Large capacity reation kettle is used to environmental protection preparation
CN221094122U (en) Polymorphic pickle fermentation cylinder
CN210710989U (en) Water storage tank convenient to clean for water making machine
CN214829819U (en) Temperature control type sludge conditioning reaction kettle
CN107670629B (en) Device for separating salt from acid gas by utilizing tail gas
CN216879325U (en) Self-cleaning reaction kettle
CN219209288U (en) Brine pressurization acquisition equipment
CN219783871U (en) Continuous double-phase liquid-phase extraction separation device for solid phase removal
CA1194680A (en) Method of treating a polymerising reactor