NO146836B - ELECTRICAL HEATING ELEMENT - Google Patents
ELECTRICAL HEATING ELEMENT Download PDFInfo
- Publication number
- NO146836B NO146836B NO803026A NO803026A NO146836B NO 146836 B NO146836 B NO 146836B NO 803026 A NO803026 A NO 803026A NO 803026 A NO803026 A NO 803026A NO 146836 B NO146836 B NO 146836B
- Authority
- NO
- Norway
- Prior art keywords
- fuse
- heating element
- strips
- electric heating
- embedded
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 238000005485 electric heating Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 239000011888 foil Substances 0.000 abstract description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052787 antimony Inorganic materials 0.000 abstract description 4
- 238000013021 overheating Methods 0.000 abstract description 3
- 229910001152 Bi alloy Inorganic materials 0.000 abstract description 2
- 229910001245 Sb alloy Inorganic materials 0.000 abstract description 2
- 239000002140 antimony alloy Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000005755 formation reaction Methods 0.000 abstract 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 abstract 1
- 230000008018 melting Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000011490 mineral wool Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/342—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/342—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
- B29C65/3428—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding said at least a single wire having a waveform, e.g. a sinusoidal form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3404—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
- B29C65/3464—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint characterised by the cross-section of said heated elements which remain in the joint or by the cross-section of their coating, e.g. being triangular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/34—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
- B29C65/3472—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
- B29C65/3476—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/041—Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
- H01H85/046—Fuses formed as printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/36—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91411—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91651—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/002—Heaters using a particular layout for the resistive material or resistive elements
- H05B2203/003—Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/014—Heaters using resistive wires or cables not provided for in H05B3/54
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/017—Manufacturing methods or apparatus for heaters
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Heating (AREA)
- Fuses (AREA)
- Cookers (AREA)
- Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Glass Compositions (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
'Foreliggende oppfinnelse angår elektriske varmeelementer The present invention relates to electric heating elements
og særlig elementer med en flat utforming og bestående av flere metallstrimler som er arrangert i et meanderlignende mønster innleiret i eller laminert sammen med minst ett isolasjonslegeme. Slike varmeelementer er velkjente fra US pat. nr. 3.263.307 og 3.336.557 (begge med oppfinner and in particular elements with a flat design and consisting of several metal strips which are arranged in a meander-like pattern embedded in or laminated together with at least one insulating body. Such heating elements are well known from US pat. no. 3,263,307 and 3,336,557 (both with inventor
O.G. Lund m.fl.) og også fra US pat. nr. 4.025.893 og 4.092.626 (begge med oppfinner H.A. Bergersen), og et hovedtrekk med disse oppfinnelsene er at metallstrimlene som utgjør motstandselementet, er fremstilt av et materiale med et smeltepunkt som ligger under 200°C. Når slike elementer benyttes som elektriske varmeelementer for bruk i boliger, og installasjonen påkrever nær kontakt med brennbare materialer som f.eks. tre og tapeter, er det viktig at temperaturen på varmeelementet og dets nærmeste omgivelser ikke på noe sted overskrider 150°C. Dette kravet kan nås ved å benytte seg av motstands-strimler bestående av metall-legering som har et innhold på AND. Lund et al.) and also from US pat. Nos. 4,025,893 and 4,092,626 (both with inventor H.A. Bergersen), and a main feature of these inventions is that the metal strips that make up the resistance element are made of a material with a melting point below 200°C. When such elements are used as electric heating elements for use in homes, and the installation requires close contact with combustible materials such as e.g. wood and wallpaper, it is important that the temperature of the heating element and its immediate surroundings does not exceed 150°C anywhere. This requirement can be met by using resistance strips consisting of a metal alloy that has a content of
61,5% tinn, 37,7% bly og 0,8% antimon, idet denne legeringen har et smeltepunkt på 183°C. 61.5% tin, 37.7% lead and 0.8% antimony, this alloy having a melting point of 183°C.
Et varmeelement hvor metallstrimler som utgjør motstandselementene er sveiset inn mellom to lag isolasjonsmaterialer, virker som én stor termisk sikring hvis den utsettes for unormale tilstander, f.eks. hvis den på uheldig måte tildekkes av et varmeisolerer.de materiale. Når temperaturen i slike tilfeller nærmer seg smeltepunktet til legeringen (170°C), A heating element where the metal strips that make up the resistance elements are welded between two layers of insulating materials acts as one large thermal fuse if it is exposed to abnormal conditions, e.g. if it is inadvertently covered by an insulating material. When the temperature in such cases approaches the melting point of the alloy (170°C),
vil den mekaniske styrken til strimlene bli svært liten, og i denne tilstanden kan folien lett nedbrytes når som helst, the mechanical strength of the strips will be very small, and in this condition the foil can easily break down at any time,
endog før smeltepunktet nås. I det øyeblikk en brudd-dannelse starter i strimmelen, reduseres tverrsnittet til strimmelen, even before the melting point is reached. At the moment a fracture formation starts in the strip, the cross-section of the strip is reduced,
og den smelter derfor øyeblikkelig, noe som medfører at and it therefore melts instantly, which causes that
strømveien brytes. Varmeelementet må deretter erstattes med et nytt. the power path is broken. The heating element must then be replaced with a new one.
Det foreligger imidlertid også kjente motstandselementer However, there are also known resistance elements
som er utstyrt med én eller flere termiske sikringer og termo-stater. S-l-i-ke elementer er f.eks. beskrevet—i— US—patent-nr. 3.417.229, 3.423.574 og 3.108.175. Felles for disse kjente varmeelementer—er at sikringene og termostatene foreligger som egne komponenter som har vesentlig større tykkelse (og bredde) enn selve motstandsstrimlene og som er koblet til disse etter at selve motstandselementet er ferdig fremstilt. Fremstillings-prosessen blir dermed relativt tungvint og lite egnet til fremstilling av flate varme-elementer av den type som er nevnt i innledningsavsnittet. Sikkerheten vil også være av tvilsom verdi, da det ikke vil være praktisk mulig å plassere sikrings-og termostat-komponentene tett nok. which are equipped with one or more thermal fuses and thermo-stats. S-l-i-ke elements are e.g. described—in— US—patent no. 3,417,229, 3,423,574 and 3,108,175. What these known heating elements have in common is that the fuses and thermostats are available as separate components which have a significantly greater thickness (and width) than the resistance strips themselves and which are connected to these after the resistance element itself has been manufactured. The manufacturing process thus becomes relatively cumbersome and not suitable for manufacturing flat heating elements of the type mentioned in the introductory section. Safety will also be of questionable value, as it will not be practically possible to place the fuse and thermostat components close enough.
Den sikreste type av motstandselementer antas derfor å The safest type of resistance elements is therefore assumed to
være den som er beskrevet i den første delen av den ovenstående omtale av tidligere kjent teknikk. Det vil si elementer som i seg selv utgjør ett stort sikringselement. Eksperimenter har imidlertid vist at det ikke er nødvendig at hver eneste kvadratcentimeter av motstandselementstrimlene er i star.d til å smelte ved den ønskede lave temperatur. Hovedformålet med foreliggende oppfinnelse er derfor å tilveiebringe et nytt og forbedret varmeelement som opprettholder de utmerkede varmeegenskapene og installasjonsegenskapene til de eksi-sterende varmeelementer, men samtidig gir en adekvat sikring mot brann. be the one described in the first part of the above discussion of prior art. That is, elements that in themselves constitute a large security element. However, experiments have shown that it is not necessary that every square centimeter of the resistive element strips be in star.d to melt at the desired low temperature. The main purpose of the present invention is therefore to provide a new and improved heating element which maintains the excellent heating properties and installation properties of the existing heating elements, but at the same time provides adequate protection against fire.
Dette oppnås ved å utforme varmeelementet i overensstemmelse med de nedenfor fremsatte patentkrav. This is achieved by designing the heating element in accordance with the patent claims set out below.
Ved å benytte et varmeelement i overensstemmelse med foreliggende oppfinnelse fås den fordel at termisk' overoppheting vil forårsake nedbrytning av strømveien på definerte steder. Dette antas å forbedre sikkerheten og redusere risikoen for overoppheting. By using a heating element in accordance with the present invention, the advantage is obtained that thermal overheating will cause breakdown of the current path in defined places. This is believed to improve safety and reduce the risk of overheating.
De termiske sikringene må være fordelt på en slik måte at selv om motstandselementet i tillegg til den overdekning som den utsettes for ved normal installasjon, blir delvis dekket av ulike gjenstander som f.eks. bordkledning, møbler, tepper osv., så må likevel, overflatetemperaturen på det tildekkede område ikke på noe sted overskride en bestemt kritisk verdi. Graden av forekommende uautorisert tildekking vil avhenge av materialet og størrelsen på den dekkende gjenstanden, og i verste tilfelle vil varmetransporten bort fra et bestemt_.område..effekti_vt_bli_ blokkert_. Ved eksperimenter er det mulig å fastlegge det maksimale areal man kan tildekke eller isolere på et slikt varmeelement uteri at dette fører til en overflatetemperatur som overstiger den kritiske på noe sted innenfor det tildekkede areal. Dette må da gjelde for en tilfeldig plassering eller ugunstigste plassering av det tildekkede areal. Størrelsen på et slikt areal blir nedenfor kalt det kritiske areal. De termiske sikringer må derfor fordeles på en slik måte at minst én slik sikring vil tre i funksjon dersom et areal som er større enn det kritiske areal blir tildekket så godt at varemetransporten bort fra dette området så godt som blokkeres fullstendig. The thermal fuses must be distributed in such a way that even if the resistance element, in addition to the covering to which it is exposed during normal installation, is partially covered by various objects such as e.g. table coverings, furniture, carpets etc., the surface temperature of the covered area must not exceed a certain critical value at any point. The degree of unauthorized covering that occurs will depend on the material and size of the covering object, and in the worst case the heat transport away from a specific area will effectively be blocked. Through experiments, it is possible to determine the maximum area that can be covered or insulated on such a heating element uteri that this leads to a surface temperature that exceeds the critical one somewhere within the covered area. This must then apply to a random location or the most unfavorable location of the covered area. The size of such an area is called the critical area below. The thermal fuses must therefore be distributed in such a way that at least one such fuse will come into operation if an area larger than the critical area is covered so well that the transport of goods away from this area is almost completely blocked.
Nå er sannsynligheten for at et bestemt areal av varme-elementet virkelig i praksis kan bli effektivt termisk isolert, ganske liten. I eksperimenter som er utført for å definere det kritiske arealet benyttet vi en 100 mm tykk mineralullmatte som ekstra tildekking på utsiden av det normale overflatematerialet. Now the probability that a specific area of the heating element can really be effectively thermally insulated in practice is quite small. In experiments carried out to define the critical area, we used a 100 mm thick mineral wool mat as an additional covering on the outside of the normal surface material.
For å simulere et varmeelement i en takinstallasjon, To simulate a heating element in a ceiling installation,
ble følgende arrangement benyttet: Et varmeelement med størrelse 500 x 1200 mm utstyrt med meanderformede bly/antimon-strimler laminert mellom plastark, ble installert mellom en 200 mm tykk mineralullmatte i horisontal stilling og en 12 mm tykk bordkledning, idet bordkledningen var rettet nedover. Ved stabile tilstander ble dette varmeelementet betjent ved en strøm som utviklet 210 W/m 2 med-en maksimal-temperatur på bordkledningen på 78°C. the following arrangement was used: A heating element of size 500 x 1200 mm equipped with meander-shaped lead/antimony strips laminated between plastic sheets was installed between a 200 mm thick mineral wool mat in a horizontal position and a 12 mm thick table covering, the table covering being directed downwards. In stable conditions, this heating element was operated at a current which developed 210 W/m 2 with a maximum temperature on the table covering of 78°C.
For å simulere en skadelig tildek-k-ing av-takområdet,-----plasserte vi stykker med mineralull, 100 mm tykke, presset inn mot undersiden av bordkledningen. Den kritiske temperaturen ble valgt til å være 175°C, og det kritiske arealet viste seg da å ligge i størrelsesordenen 400 cm 2. Størrelsen til det kritiske arealet vil imidlertid avta med avtagende tykkelse på bordkledningen og vil også avta hvis bordkledningen skiftes ut med materialer med en mindre sideveis varmeledning. Den mest uheldige form på det kritiske arealet antas å være To simulate a harmful covering of the ceiling area,-----we placed pieces of mineral wool, 100 mm thick, pressed against the underside of the table covering. The critical temperature was chosen to be 175°C, and the critical area then turned out to be in the order of 400 cm 2. However, the size of the critical area will decrease with decreasing thickness of the table covering and will also decrease if the table covering is replaced with materials with a smaller lateral heat pipe. The most unfavorable form of the critical area is assumed to be
en sirkel, mens et kvadrat vil gi nokså god tilnærmelse. Hvis ikke mer enn 400 cm 2av elementet blir tildekket, vil m.a.o. varmetransporten bort fra dette arealet være så stor, (ho ved sake l.ig_ s idevel s.) a.t._kr.i t i ske.„tempera tur;er _ ikke vil oppstå. a circle, while a square will give a reasonably good approximation. If no more than 400 cm 2 of the element is covered, m.a.o. the heat transport away from this area be so great, (ho by case l.ig_ s idevel s.) a.t._kr.i t i ske.„tempera tur;er _ will not occur.
Den mest kjente prosess for å fremstille varmeelementer The best-known process for manufacturing heating elements
av ovennevnte type er å starte fra en blokk med den ønskede legering og valse/rulle denne blokken ut til en metallfolie med en tykkelse på 5-25^u. Dette foliet eller arket blir deretter skåret opp for å gi de ønskede motstandsstrimlene, f.eks. i form av et meandermønster, samtidig som motstandsstrimlene lamineres sammen med isolasjonsmateriale på én eller begge sider. Når man skal fremstille et egnet motstands-element i henhold til foreliggende oppfinnelse, er det viktig at hovedmetallkomponenten er billig, og bly betraktes fortsatt som det mest egnede materialet. Imidlertid må of the above type is to start from a block of the desired alloy and roll/roll this block out into a metal foil with a thickness of 5-25^u. This foil or sheet is then cut open to provide the desired resist strips, e.g. in the form of a meander pattern, while the resistance strips are laminated together with insulating material on one or both sides. When manufacturing a suitable resistance element according to the present invention, it is important that the main metal component is cheap, and lead is still considered the most suitable material. However, must
blyet, for å gjøre det mindre sprøtt, legeres, fortrinnsvis med omkring 1% antimon. the lead, to make it less brittle, is alloyed, preferably with about 1% antimony.
De fordelte, diskrete termiske sikringer fås ved lokalt The distributed, discrete thermal fuses are available locally
å introdusere et metall-lag som legerer seg med bly og gir en metallsammensetning som har et smeltepunkt under 200°C. to introduce a metal layer which alloys with lead and gives a metal composition which has a melting point below 200°C.
Et egnet legeringsmateriale antar å være tinn eller en bly/tinn/antimon legering, da den eutektiske legering mellom tinn og bly smelter ved omtrent 183°C. En mulighet er det også å benytte en bly/vismuth legering som har omtrent det samme smeltepunkt. A suitable alloy material is assumed to be tin or a lead/tin/antimony alloy, as the eutectic alloy between tin and lead melts at approximately 183°C. Another possibility is to use a lead/bismuth alloy which has approximately the same melting point.
For å gi en klarere fremstilling av foreliggende oppfinnelse, vises til nedenstående detaljerte beskrivelse og flere utførelseseksempler av foreliggende oppfinnelse, samt til de ledsagende tegninger, hvor: fig. 1 viser tre ulike prinsipper for å arrangere det termiske sikringslaget, fig. 2 viser skjematisk" hvordan sikringsmaterialet kan plasseres på den underliggende metallfolie, fig. 3 viser alternative sikringsmaterialer anbragt på et varmeelement, og fig. 4 viser eksempler på anbringelsen av diskrete termiske sikringer på motstandselementene. Som vist i fig. 1, foreligger det flere ulike måter hvorpå man kan inkorporere de termiske sikringer i motstandselementene. Hovedmaterialet 1 eller basismaterialet er i fig. la forsynt med en innsats 2 av sikringsmaterialet, mens sikringsmaterialet 2 i fig. lb er innleiret mellom to tynne ..folier_åv:.-basisma_tÆriale_t 1,_. og i__f ig__......lc: er folien av basismaterialet brutt i hele sitt tverrsnitt av et sikringsmateriale 2. Mens et tverrsnitt som vist i fig-, ia og-l-b----kan oppnås ved" en rulle- eller valseprosess, vil utførelsen vist i fig. lc også omfatte en loddeprosess før valsingen. In order to provide a clearer presentation of the present invention, reference is made to the following detailed description and several examples of embodiments of the present invention, as well as to the accompanying drawings, where: fig. 1 shows three different principles for arranging the thermal protection layer, fig. 2 shows schematically how the fuse material can be placed on the underlying metal foil, fig. 3 shows alternative fuse materials placed on a heating element, and fig. 4 shows examples of the placement of discrete thermal fuses on the resistance elements. As shown in fig. 1, there are several different ways in which the thermal fuses can be incorporated into the resistance elements. The main material 1 or the base material is in Fig. la provided with an insert 2 of the fuse material, while the fuse material 2 in Fig. lb is sandwiched between two thin ..folier_åv:.-basisma_tÆriale_t 1,_ . and i__f ig__......lc: the foil of the base material is broken in its entire cross-section by a securing material 2. While a cross-section as shown in fig-, ia and-l-b----can be obtained by" a roll- or rolling process, the design shown in fig. lc also include a soldering process before the rolling.
I fig. 2 er det skjematisk vist ulike måter å arrangere striper av sikringsmaterialet på den ennå ikke oppslissete folie av basismaterialet 1. Hvis materialene 1 og 2 vist i figurene 1 og 2 er henholdsvis bly og tinn, (fortrinnsvis bør sikringsmaterialet 2 være en ferdig legert bly/tinn legering) antas det at varmen som oppstår under normal drift av varmeelementet vil forårsake at materialene i kontaktsonen mellom de to -ulike metaller legerer seg (migrerer) slik at en liten sone i det ferdig legerte materialet vil få et smeltepunkt på ønsket verdi, dvs. omkring 180°C. Det kan imidlertid være mer ønskelig at man allerede under produksjons-prosessen, dvs. før man anbringer varmeelementet i den normale drift, sørger for at kontaktflaten mellom basismaterialet og sikringsmaterialet er ferdig legert, slik at man sikrer seg det ønskede smeltepunkt fra første driftstime av. In fig. 2 schematically shows different ways of arranging strips of the fuse material on the not-yet-slit foil of the base material 1. If the materials 1 and 2 shown in figures 1 and 2 are respectively lead and tin, (preferably the fuse material 2 should be a ready-made alloy lead/ tin alloy) it is assumed that the heat generated during normal operation of the heating element will cause the materials in the contact zone between the two different metals to alloy (migrate) so that a small zone in the finished alloy material will have a melting point of the desired value, i.e. .around 180°C. However, it may be more desirable that already during the production process, i.e. before placing the heating element in normal operation, you ensure that the contact surface between the base material and the fuse material is fully alloyed, so that you ensure the desired melting point from the first hour of operation.
Når et varmeelement fremstilles ved ovennevnte eller andre metoder, fås et element med den egenskap at alle de diskrete, fordelte termiske sikringer vil legeres til man får sikringssoner med et materialforhold på omkring 60% tinn og 4 0% bly. Minst én av disse soner vil smelte og avbryte strømveien dersom et areal som er større enn det såkalte kritiske areal, blir tildekket på en ikke autorisert måte av en termisk isolator. Dette gjelder uansett hvor det tildekkede området befinner seg på elementet. When a heating element is manufactured by the above or other methods, an element is obtained with the property that all the discrete, distributed thermal fuses will be alloyed until fuse zones with a material ratio of around 60% tin and 40% lead are obtained. At least one of these zones will melt and interrupt the current path if an area larger than the so-called critical area is covered in an unauthorized way by a thermal insulator. This applies regardless of where the covered area is located on the element.
Selv om foreliggende oppfinnelse stort sett angår materialene bly og tinn samt bly og vismuth, er det innenfor rammen av foreliggende oppfinnelse å bruke andre materialer. F.eks. kan stål brukes som basismateriale og sølv/kobber Although the present invention largely concerns the materials lead and tin as well as lead and bismuth, it is within the scope of the present invention to use other materials. E.g. steel can be used as the base material and silver/copper
som sikringsmateriale eller krom/nikkel som basismateriale og messing som sikringsmateriale osv. as fuse material or chrome/nickel as base material and brass as fuse material etc.
I fig. 3 er det vist tre alternative måter for anbringelse av sikringsmaterialstrimmel på et varmeelement 5. De elektriske motstandsstrimlene 6 er for enkelhets skyld vist i form av et slynget mønster, men det er åpenbart at motstandsstrimlene kan arrangeres på en hvilken som helst egnet måte. Selv om sik-ringsmaterialstrimlene på figuren er vist som heltrukne linjer, In fig. 3 there are shown three alternative ways of placing a strip of fuse material on a heating element 5. The electrical resistance strips 6 are shown for simplicity in the form of a meandering pattern, but it is obvious that the resistance strips can be arranged in any suitable manner. Although the fuse material strips in the figure are shown as solid lines,
er det underforstått at sikringsstrimlene ikke må danne en strøm-vei langs disse viste linjer. Dette gjelder i det minste illu-strasjonene 3a og 3c, hvor det endelige produktet vil se omtrent slik ut som utsnittet av varmeelementet vist i fig. 4a. I fig. 3b hvor sikringselementstrimlene er anbragt slik at de er parallelle med de langsgående deler av slynge-mønsteret til varmeelementet, vil imidlertid sikringsstrimmelen være strømførende langs en betydelig del av sin lengde. it is understood that the fuse strips must not form a current path along these shown lines. This applies at least to illustrations 3a and 3c, where the final product will look approximately like the section of the heating element shown in fig. 4a. In fig. 3b where the fuse element strips are arranged so that they are parallel to the longitudinal parts of the loop pattern of the heating element, the fuse strip will, however, be current-carrying along a significant part of its length.
For alle illustrasjoner i fig. 3 gjelder at en diskret termisk sikring fås ved alle krysspunkter eller overlappinger mellom en sikringsstrimmel 7 og en motstandsstrimmel 6. I overensstemmelse med foreliggende oppfinnelse bør de diskrete termiske sikringer være fordelt slik at minst en sikring alltid vil tildekkes helt eller delvis av et kritisk areal 8 som blir tilfeldig anbragt på varmeelementet 5. Som forklart, vil da den aktuelle sikring tre i drift, dvs. den vil smelte, fordi den er tildekket, og herunder vil dens temperatur stige over den kritiske verdi og bryte strømveien.. Er derimot det tildekkede området mindre enn det kritiske areal, vil varme ledes bort fra stedet slik at kritisk temperatur ikke vil oppstå, ikke engang under konstant belastning. For all illustrations in fig. 3 applies that a discrete thermal fuse is obtained at all crossing points or overlaps between a fuse strip 7 and a resistance strip 6. In accordance with the present invention, the discrete thermal fuses should be distributed so that at least one fuse will always be completely or partially covered by a critical area 8 which is randomly placed on the heating element 5. As explained, the fuse in question will then come into operation, i.e. it will melt, because it is covered, and below that its temperature will rise above the critical value and break the current path.. On the other hand, if the covered area smaller than the critical area, heat will be conducted away from the site so that critical temperature will not occur, not even under constant load.
I figurene 4a og 4b er det skjematisk vist et forstørret utsnitt av en del av et varmeelement 5 i figurene 3a og 3b omfattende en motstandsstrimmel 6 som er forsynt med et antall diskrete termiske sikringer, henholdsvis 7' og 7". Figures 4a and 4b schematically show an enlarged section of part of a heating element 5 in Figures 3a and 3b comprising a resistance strip 6 which is provided with a number of discrete thermal fuses, respectively 7' and 7".
Strimlene av sikringsmaterialet bør fortrinnsvis være anbragt på motstandsmaterialets basisfolie på et tidspunkt før man skjærer ut mønsteret i basisfolien for å få de ønskede mot-standsstrimler (fig. 2). På denne måten sikres at sikrings-materialstrimlene også skjæres over og virkelig tilveiebringer det ønskede antall diskrete termiske sikringer på motstandsstrimlene . The strips of the fuse material should preferably be placed on the base foil of the resistance material at a time before cutting out the pattern in the base foil to obtain the desired resistance strips (fig. 2). In this way, it is ensured that the fuse material strips are also cut across and really provide the desired number of discrete thermal fuses on the resistance strips.
Claims (6)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO803026A NO146836C (en) | 1980-10-10 | 1980-10-10 | ELECTRICAL HEATING ELEMENT. |
FI812617A FI68746C (en) | 1980-10-10 | 1981-08-25 | ELECTRIC EQUIPMENT |
AT81107319T ATE13376T1 (en) | 1980-10-10 | 1981-09-16 | METHOD OF MAKING AN ELECTRIC HEATING ELEMENT. |
EP81107319A EP0049773B1 (en) | 1980-10-10 | 1981-09-16 | Process for the manufacture of an electrical heating element |
DE8181107319T DE3170513D1 (en) | 1980-10-10 | 1981-09-16 | Process for the manufacture of an electrical heating element |
DK448781A DK156363B (en) | 1980-10-10 | 1981-10-09 | PROCEDURE FOR THE MANUFACTURING OF ELECTRICAL HEATING ELEMENTS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO803026A NO146836C (en) | 1980-10-10 | 1980-10-10 | ELECTRICAL HEATING ELEMENT. |
Publications (3)
Publication Number | Publication Date |
---|---|
NO803026L NO803026L (en) | 1982-04-13 |
NO146836B true NO146836B (en) | 1982-09-06 |
NO146836C NO146836C (en) | 1982-12-22 |
Family
ID=19885696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO803026A NO146836C (en) | 1980-10-10 | 1980-10-10 | ELECTRICAL HEATING ELEMENT. |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0049773B1 (en) |
AT (1) | ATE13376T1 (en) |
DE (1) | DE3170513D1 (en) |
DK (1) | DK156363B (en) |
FI (1) | FI68746C (en) |
NO (1) | NO146836C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3038420A1 (en) * | 1980-10-10 | 1982-05-27 | Bleiindustrie GmbH vormals Jung & Lindig, 2000 Hamburg | METHOD FOR PRODUCING HEATING FILMS AS A HEATING SYSTEM FOR BUILDING HEATERS |
US4647756A (en) * | 1983-07-05 | 1987-03-03 | E. I. Du Pont De Nemours And Company | Electrical resistance heating element with signal means to indicate first use |
FR2574341B1 (en) * | 1984-12-07 | 1987-01-16 | Normandie Const Meca | IMPROVEMENTS IN METHODS AND DEVICES FOR MANUFACTURING HULLS AND SIMILAR PARTS AND IN PARTS MANUFACTURED |
JP3377879B2 (en) * | 1995-03-02 | 2003-02-17 | 松下電器産業株式会社 | Heated cutting blade |
US6048599A (en) * | 1997-01-17 | 2000-04-11 | 3M Innovative Properties Company | Susceptor composite material patterned in neat polymer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3547725A (en) * | 1965-10-14 | 1970-12-15 | Sanders Associates Inc | Method of fabricating an electrical resistance heating pad |
US3417229A (en) * | 1965-10-14 | 1968-12-17 | Sanders Associates Inc | Electrical resistance heating articles |
FR2266119A1 (en) * | 1974-03-25 | 1975-10-24 | Saunier Duval | Safety cut-out for electric radiator - has commercial solder fuse plugs incorporated in meandering element |
DE2808319A1 (en) * | 1978-02-27 | 1979-09-06 | Uchihashi Metal Ind Co | Thermal fuse with meltable substance between two wires - has shell of heat resistant resin surrounded by outer casing of inorganic material |
-
1980
- 1980-10-10 NO NO803026A patent/NO146836C/en unknown
-
1981
- 1981-08-25 FI FI812617A patent/FI68746C/en not_active IP Right Cessation
- 1981-09-16 EP EP81107319A patent/EP0049773B1/en not_active Expired - Lifetime
- 1981-09-16 AT AT81107319T patent/ATE13376T1/en active
- 1981-09-16 DE DE8181107319T patent/DE3170513D1/en not_active Expired - Lifetime
- 1981-10-09 DK DK448781A patent/DK156363B/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
NO803026L (en) | 1982-04-13 |
FI812617L (en) | 1982-04-11 |
EP0049773A2 (en) | 1982-04-21 |
DK156363B (en) | 1989-08-07 |
EP0049773A3 (en) | 1982-05-19 |
ATE13376T1 (en) | 1985-06-15 |
DE3170513D1 (en) | 1985-06-20 |
DK448781A (en) | 1982-04-11 |
NO146836C (en) | 1982-12-22 |
FI68746B (en) | 1985-06-28 |
EP0049773B1 (en) | 1985-05-15 |
FI68746C (en) | 1985-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3892947A (en) | Electrically heated panel with anti-shock conductive strips | |
US3417229A (en) | Electrical resistance heating articles | |
CN1058129C (en) | Immersion heaters | |
US3448246A (en) | Electrical heating mat with automatic temperature control | |
US4501956A (en) | Electrical resistance heating element | |
NO146836B (en) | ELECTRICAL HEATING ELEMENT | |
CN1166253C (en) | Electric heaters | |
JPS6149327A (en) | Temperature overrise preventing device | |
US20150267359A1 (en) | Radiant Heating System for a Surface Structure, and Surface Structure Assembly with Radiant Heater | |
CA1178319A (en) | Electrical heating element | |
US2543177A (en) | Electric temperature device | |
CN1811650B (en) | Temperature control in liquid heating vessels | |
CN106653477B (en) | A kind of duplicate protection butterfly shaped dual metal sheet temperature controller | |
JP2006190595A (en) | Heat sensitive wire and apparatus protection method | |
DE3204119A1 (en) | Electric oven with a temperature warning device | |
JP3317895B2 (en) | Temperature self-control function heater | |
JP5681389B2 (en) | Fusible link | |
CN204144190U (en) | A kind of circuit protection device | |
US5175792A (en) | Low liquid level advance warning alarm system with safety shut-off | |
JPS58106726A (en) | Temperature current protecting and temperature controlling switch | |
WO2001065891A3 (en) | Electrical heating | |
GB2091980A (en) | Safety device for electric immersion heater | |
US2749425A (en) | Immersion heater | |
JPH0896934A (en) | Dew condensation preventive sheet | |
TR202014811Y (en) | ELECTRIC WATER HEATER BASE WITH INCREASED SURFACE TEMPERATURE, EXTERNAL HEATING WITH CONDUCTOR MORTAR |