NO146184B - PROCEDURE FOR THE REGENERATION OF AN ABSORBENT FOR THE REMOVAL OF CARBON Dioxide AND / OR CARBONYL SULPHIDE FROM GASES - Google Patents

PROCEDURE FOR THE REGENERATION OF AN ABSORBENT FOR THE REMOVAL OF CARBON Dioxide AND / OR CARBONYL SULPHIDE FROM GASES Download PDF

Info

Publication number
NO146184B
NO146184B NO780825A NO780825A NO146184B NO 146184 B NO146184 B NO 146184B NO 780825 A NO780825 A NO 780825A NO 780825 A NO780825 A NO 780825A NO 146184 B NO146184 B NO 146184B
Authority
NO
Norway
Prior art keywords
absorbent
oxazolidone
gases
regeneration
removal
Prior art date
Application number
NO780825A
Other languages
Norwegian (no)
Other versions
NO146184C (en
NO780825L (en
Inventor
Pieter August Mes
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO780825L publication Critical patent/NO780825L/en
Publication of NO146184B publication Critical patent/NO146184B/en
Publication of NO146184C publication Critical patent/NO146184C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Description

Oppfinnelsen angår en fremgangsmåte ved regenerering av The invention relates to a method for the regeneration of

en absorbent for fjernelse av CC^ og/eller COS fra gasser, idet absorbenten omfatter en vandig oppløsning av et N(2-hydroxyalkyl)-primært og/eller -sekundært amin og er forurenset med et oxazolidon. an absorbent for removing CC^ and/or COS from gases, the absorbent comprising an aqueous solution of an N(2-hydroxyalkyl) primary and/or secondary amine and is contaminated with an oxazolidone.

Primære og sekundære N-(2-hydroxyalkyl)-aminer som inneholder -N H -C-C OH -, har vist seg å danne oxazolidoner nå°<r >vandige oppløsninger derav anvendes som absorbent for CO2, kanskje i overensstemmelse med den følgende reaksjonsmekanisme: • Primary and secondary N-(2-hydroxyalkyl)-amines containing -N H -C-C OH - have been shown to form oxazolidones now°<r >aqueous solutions thereof are used as absorbents for CO2, perhaps in accordance with the following reaction mechanism: •

Alkanolaminene reagerer antagelig med COS som følger: The alkanolamines presumably react with COS as follows:

Som et eksempel på en absorbent som ofte anvendes for å absorbere CO2, COS og I^S fra gasser og hvori dannelse av oxazolidon kan forekomme, kan nevnes en vandig oppløsning av diisopropanolamin. I dette tilfelle dannes 3-(2-hydroxypropyl)-5-methyl-2-oxazolidon. Andre eksempler på alkanolaminer av den type som oppfinnelsen er begrenset til, er monoethanolamin og diethanolamin som også anvendes som absorbenter i vandige oppløsninger. As an example of an absorbent which is often used to absorb CO2, COS and I^S from gases and in which formation of oxazolidone can occur, an aqueous solution of diisopropanolamine can be mentioned. In this case, 3-(2-hydroxypropyl)-5-methyl-2-oxazolidone is formed. Other examples of alkanolamines of the type to which the invention is limited are monoethanolamine and diethanolamine, which are also used as absorbents in aqueous solutions.

Da dannelsen av oxazolidoner i slike absorbenter kan være uaksepterbar (i enkelte tilfeller er betingelsene slike at 1 vekt% alkanolamin omvandles pr. time), er en regenereringsmetode tid-ligere blitt foreslått i britisk patentskrift nr. 1118687, hvor kaliumhydroxyd tilsettes til absorbenten som skal regeneres, og som et resultat av dette omvandles oxazolidonet til alkanolaminet med dannelse av kaliumcarbonat. Ulemper ved denne metode er at kaliumcarbonatet må fjernes, at kostbare kjemikalier forbrukes, As the formation of oxazolidones in such absorbents can be unacceptable (in some cases the conditions are such that 1% by weight of alkanolamine is converted per hour), a regeneration method has previously been proposed in British patent document no. 1118687, where potassium hydroxide is added to the absorbent to is regenerated, and as a result the oxazolidone is converted to the alkanolamine with formation of potassium carbonate. Disadvantages of this method are that the potassium carbonate must be removed, that expensive chemicals are consumed,

at regenereringen neppe kan utføres kontinuerlig og at en forholdsvis komplisert enhet er nødvendig. that the regeneration can hardly be carried out continuously and that a relatively complicated unit is necessary.

Ved oppfinnelsen tilveiebringes en fremgangsmåte som ikke The invention provides a method which does not

er beheftet med de - ovennevnte ulemper og ved hjelp av hvilken alkanolaminet kan utvinnes fra oxazolidonet på enkel måte. is subject to the above-mentioned disadvantages and by means of which the alkanolamine can be recovered from the oxazolidone in a simple way.

Oppfinnelsen angår således en fremgangsmåte ved regenerering av en absorbent for fjernelse av carbondioxyd og/eller carbonylsulfid fra gasser,hvor absorbenten omfatter en vandig oppløsning av et primært og/eller sekundært N-(2-hydroxyalkyl)-amin og er forurenset med et oxazolidon, ved oppvarming i nærvær av vann, The invention thus relates to a method by regenerating an absorbent for removing carbon dioxide and/or carbonyl sulphide from gases, where the absorbent comprises an aqueous solution of a primary and/or secondary N-(2-hydroxyalkyl)-amine and is contaminated with an oxazolidone, by heating in the presence of water,

og fremgangsmåten er særpreget ved at absorbenten eller en oxa-zolidonholdig fraksjon erholdt fra denne, oppvarmes til en temperatur av minst 20 0°C ved forhøyet trykk. and the method is characterized by the fact that the absorbent or an oxazolidone-containing fraction obtained from it is heated to a temperature of at least 200°C at elevated pressure.

Det har vist seg at denne oppvarming ved et forhøyet trykk omvandler oxazolidonet til det i absorbenten opprinnelig til-stedeværende alkanolamin, med frigjørelse av CO2 og forbruk av vann. Dersom selve absorbenten oppvarmes, anvendes en tilstrekkelig mengde vann for dette formål. Dersom en fraksjon som erholdes fra absorbenten og som ikke inneholder en tilstrekkelig mengde vann, skal oppvarmes, bør en del vann tilsettes. It has been shown that this heating at an elevated pressure converts the oxazolidone into the alkanolamine originally present in the absorbent, with release of CO2 and consumption of water. If the absorbent itself is heated, a sufficient amount of water is used for this purpose. If a fraction obtained from the absorbent and which does not contain a sufficient amount of water is to be heated, some water should be added.

Det dannede CO2 fjernes fortrinnsvis ved avdrivning med vanndamp under oppvarmingen ved en temperatur av minst 200°C. Dette er en rimelig og effektiv metode som ikke bevirker for-urensning av absorbenten og hvor den nødvendige temperatur lett kan nås. Dessuten sikrer avdrivning med vanndamp en kontinuerlig fjernelse av det dannede CO2• Når trykket reguleres tilstrekkelig, gjør bruk av vanndamp det mulig å opprettholde den ønskede mengde vann under omvandlingen av oxazolidonet. The CO2 formed is preferably removed by stripping with steam during the heating at a temperature of at least 200°C. This is a reasonable and effective method which does not cause contamination of the absorbent and where the required temperature can easily be reached. In addition, stripping with water vapor ensures a continuous removal of the formed CO2• When the pressure is regulated sufficiently, the use of water vapor makes it possible to maintain the desired amount of water during the conversion of the oxazolidone.

Gode resultater fås ved en oppvarmingstemperatur av 200-300°C, spesielt 200-250°C. Ved disse temperaturer er risikoen for termisk nedbrytning av de angjeldende alkanolaminer liten. Good results are obtained at a heating temperature of 200-300°C, especially 200-250°C. At these temperatures, the risk of thermal decomposition of the alkanolamines in question is small.

Ifølge en foretrukken utførelsesform av den foreliggende fremgangsmåte finner oppvarmingen sted ved et trykk av 10-60 atm. På den ene side er trykket da tilstrekkelig høyt til at det vil fås en god omvandling, og på den annen side er omkostningene for det nødvendige utstyr lavere enn dersom langt høyere trykk var blitt anvendt. According to a preferred embodiment of the present method, the heating takes place at a pressure of 10-60 atm. On the one hand, the pressure is then sufficiently high that a good conversion will be obtained, and on the other hand, the costs for the necessary equipment are lower than if a much higher pressure had been used.

Absorbenter av den type som anvendes ved utførelsen av den foreliggende fremgangsmåte, anvendes ofte ved en fremgangsmåte for kontinuerlig å fjerne H2S, GOS og C02 fra gasser. For dette formål ledes gassen ofte oppad gjennom en kolonne hvori en rekke kontaktbrett er anordnet og hvori absorbenten strømmer fra toppen av kolonnen og nedad over brettene. Ved bunnen av kolonnen fjernes absorbent som er blitt belastet med C02 og H2S, og ved toppen av kolonnen fjernes den rensede gass. Den forurensede absorbent overføres kontinuerlig fra bunnen av kolonnen til toppen av en avdrivningskolonne hvori den strømmer nedad og hvori den befris for C02 og H2 S enten ved å redusere trykket eller ved avdrivning med en avdrivningsgass, san vanndamp. Betingelsene i absorpsjonskolonnen og i avdrivningskolonnen er slike at C02 og H2S hhv. tas opp og frigjøres. Det avdrevne oppløsningsmiddel resirkuleres kontinuerlig fra bunnen av avdrivningskolonnen til toppen av absorpsjonskolonnen. I avdrivningskolonnen holdes temperaturen vanligvis under 175°C. Absorbents of the type used in carrying out the present method are often used in a method for continuously removing H2S, GOS and C02 from gases. For this purpose, the gas is often led upwards through a column in which a number of contact trays are arranged and in which the absorbent flows from the top of the column downwards over the trays. At the bottom of the column, absorbent which has been loaded with C02 and H2S is removed, and at the top of the column the purified gas is removed. The contaminated absorbent is continuously transferred from the bottom of the column to the top of a stripping column where it flows downwards and where it is freed of C02 and H2 S either by reducing the pressure or by stripping with a stripping gas, such as water vapour. The conditions in the absorption column and in the stripping column are such that C02 and H2S respectively. taken up and released. The stripped solvent is continuously recycled from the bottom of the stripping column to the top of the absorption column. In the stripping column, the temperature is usually kept below 175°C.

Dersom oxazolidonet som er blitt dannet i gassvaskekolonnen ikke fjernes eller omvandles, vil en økning av oxazolidoninnholdet finne sted, og absorpsjonsevnen for den samlede mengde absorbent vil gradvis avta. If the oxazolidone which has been formed in the gas washing column is not removed or converted, an increase in the oxazolidone content will take place, and the absorption capacity for the total amount of absorbent will gradually decrease.

Det er meget gunstig å fjerne en avgrenet strøm, fortrinnsvis kontinuerlig, fra strømmen av absorbent san.resirkuleres fra bunnen av avdrivningskolonnen til toppen av absorpsjonskolonnen, It is very advantageous to remove a branch stream, preferably continuously, from the stream of absorbent san.recirculated from the bottom of the stripping column to the top of the absorption column,

og denne avgrenede strøm regenereres ved fremgangsmåten ifølge oppfinnelsen. and this branched current is regenerated by the method according to the invention.

På grunn av at regenereringen ved fremgangsmåten ifølge oppfinnelsen utføres ved oppvarming (vanligvis i forholdsvis lang tid), er det fordelaktig å redusere den nødvendige varmemengde ved å redusere den væskemengde som skal oppvarmes. Av denne grunn er det fordelaktig ikke å fjerne oxazolidon fra strømmen av absorbent som skal resirkuleres fra avdrivningskolonnen til absorpsjonskolonnen som sådan, men fra en fraksjon av denne strøm som inneholder oxazolidon. En slik fraksjon kan meget enkelt fås ved separering (fortrinnsvis kontinuerlig) ved hjelp av destil-lasjon i en fraksjon som inneholder oxazolidon og i en fraksjon som inneholder oxazolidon i en lavere konsentrasjon eller som er fri for oxazolidon. Den oxazolidonholdige fraksjon behandles ved den foreliggende fremgangsmåte og blir derefter resirkulert , f.eks. til toppen av absorpsjonskolonnen. På denne måte hindres oxazolidoninnholdet fra stadig å økes i den samlede mengde absorbent, og absorbentens oxazolidoninnhold kan reguleres til en hvilken som helst ønsket verdi uten at det er nødvendig å be-handle store mengder absorbent ved høyt trykk og temperatur. Due to the fact that the regeneration in the method according to the invention is carried out by heating (usually for a relatively long time), it is advantageous to reduce the required amount of heat by reducing the amount of liquid to be heated. For this reason, it is advantageous not to remove oxazolidone from the stream of absorbent to be recycled from the stripping column to the absorption column as such, but from a fraction of this stream containing oxazolidone. Such a fraction can be obtained very easily by separation (preferably continuously) by means of distillation into a fraction containing oxazolidone and into a fraction containing oxazolidone in a lower concentration or which is free from oxazolidone. The oxazolidone-containing fraction is treated by the present method and is then recycled, e.g. to the top of the absorption column. In this way, the oxazolidone content is prevented from constantly increasing in the total amount of absorbent, and the absorbent's oxazolidone content can be regulated to any desired value without it being necessary to treat large amounts of absorbent at high pressure and temperature.

Destillasjonen hvor en fraksjon som inneholder oxazolidon fås, utføres fortrinnsvis ved avdrivning med vanndamp ved 100-200°C. N-(2-hydroxyalkyl)-aminet destilleres av, og den således erholdte oxazolidonholdige bunnfraksjon inneholder en nedsatt mengde vann og alkanolamin sammenlignet med absorbenten. The distillation, where a fraction containing oxazolidone is obtained, is preferably carried out by stripping with steam at 100-200°C. The N-(2-hydroxyalkyl)-amine is distilled off, and the oxazolidone-containing bottom fraction thus obtained contains a reduced amount of water and alkanolamine compared to the absorbent.

Eksempel Example

I en rekke grupper av forsøk ble en blanding av vann og 3-(2-hydroxypropyl)-5-methy1-2-oxazolidon avdrevet med vanndamp ved forskjellige temperaturer og ved forhøyet trykk i en viss tid, idet prøver av reaktorinnholdet ble tatt under omsetningen for å kunne bestemme omvandlingsforløpet for oxazolidon til diisopropanolamin. In a series of experiments, a mixture of water and 3-(2-hydroxypropyl)-5-methyl-2-oxazolidone was stripped with water vapor at different temperatures and at elevated pressure for a certain time, samples of the reactor contents being taken during the reaction in order to be able to determine the conversion process for oxazolidone to diisopropanolamine.

Den følgende metode ble anvendt: The following method was used:

For hvert forsøk ble en veid mengde vann og oxazolidonet innført i reaktoren som derefter ble spylt med C02 for å for-drive luften. Temperaturen, og dermed også trykket, i reaktoren ble derefter gradvis øket i løpet av 15 minutter. Vanndampen som ble ledet gjennom reaktoren under forsøket, ble alltid over-ført fra reaktoren via en kondensasjonsbeholder hvori en kon-densert fraksjon av vanndampen ble oppsamlet. Efter at den ønskede temperatur var blitt nådd, ble prøver tatt med regelmessige mellom-rom via en røråpning i reaktoren, mens den kondenserte fraksjon samtidig ble vraket. Tiden da den første prøve ble tatt, ble alltid betraktet som startpunktet for et forsøk. For each experiment, a weighed amount of water and the oxazolidone were introduced into the reactor which was then flushed with CO 2 to expel the air. The temperature, and thus also the pressure, in the reactor was then gradually increased over the course of 15 minutes. The water vapor that was passed through the reactor during the experiment was always transferred from the reactor via a condensation container in which a condensed fraction of the water vapor was collected. After the desired temperature had been reached, samples were taken at regular intervals via a pipe opening in the reactor, while the condensed fraction was simultaneously discarded. The time when the first sample was taken was always considered the starting point for a trial.

Ved behandlingen av de fra prøvene erholdte data ble de følgende virkninger tatt i betraktning: Oxazolidonkonsentrasjonen i reaktoren påvirkes på de følgende tre måter: When processing the data obtained from the samples, the following effects were taken into account: The oxazolidone concentration in the reactor is affected in the following three ways:

1. En del av oxazolidonet omvandles til diisopropanolamin. 1. Part of the oxazolidone is converted to diisopropanolamine.

2. Vanndampen som blåses gjennom reaktoren, kan fortynne eller konsentrere innholdet i reaktoren. 3. Vanndampen gjør også at en del av oxazolidonet overføres til den kondenserte fraksjon. 2. The water vapor blown through the reactor can dilute or concentrate the contents of the reactor. 3. The water vapor also means that part of the oxazolidone is transferred to the condensed fraction.

På grunn av virkningene 2 og 3 måtte den oxazolidonfraksjon som ble omvandlet til diisopropanolamin, bestemmes på en spesiell måte: Fraksjonen ble beregnet ut fra en massebalanse som ble erholdt ved analyse av de til reaktoren tilførte materialer, prøvene fra reaktoren og de kondenserte fraksjoner. Ved denne bestemmelse ble oxazolidonet fra de kondenserte fraksjoner alltid antatt å til-høre den uomvandlede del av oxazolidonet. Because of effects 2 and 3, the oxazolidone fraction that was converted to diisopropanolamine had to be determined in a special way: The fraction was calculated from a mass balance obtained by analysis of the materials added to the reactor, the samples from the reactor and the condensed fractions. In this determination, the oxazolidone from the condensed fractions was always assumed to belong to the unconverted part of the oxazolidone.

Resultatene er oppsummert i den nedenstående tabell. The results are summarized in the table below.

Det fremgår av tabellen at ved forhøyet trykk og temperatur som anvendt ved utførelsen av den foreliggende fremgangsmåte, kan en betydelig del av oxazolidonet omvandles til amin i løpet av en rimelig tid. It appears from the table that at elevated pressure and temperature as used in carrying out the present method, a significant part of the oxazolidone can be converted to amine within a reasonable time.

Claims (4)

1. Fremgangsmåte ved regenerering av en absorbent for fjernelse av carbondioxyd og/eller carbonylsulfid fra gasser, hvor absorbenten omfatter en vandig oppløsning av et primært og/ eller sekundært N-(2-hydroxyalkyl)-amin og er forurenset med et oxazolidon, ved oppvarming i nærvær av vann, karakterisert ved at absorbenten eller en oxa-zolidonholdig fraksjon erholdt fra denne, oppvarmes til en temperatur av minst 20 0°C ved forhøyet trykk.1. Method for regenerating an absorbent for the removal of carbon dioxide and/or carbonyl sulphide from gases, where the absorbent comprises an aqueous solution of a primary and/or secondary N-(2-hydroxyalkyl)-amine and is contaminated with an oxazolidone, by heating in the presence of water, characterized in that the absorbent or an oxazolidone-containing fraction obtained from it is heated to a temperature of at least 20 0°C at elevated pressure. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at oppvarmingen utføres ved en temperatur av 200-300°C.2. Method according to claim 1, characterized in that the heating is carried out at a temperature of 200-300°C. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at oppvarmingen utføres ved en temperatur av 200-250°C.3. Method according to claim 1 or 2, characterized in that the heating is carried out at a temperature of 200-250°C. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at oppvarmingen utføres ved et trykk av 10-60 atm.4. Method according to claims 1-3, characterized in that the heating is carried out at a pressure of 10-60 atm.
NO780825A 1977-03-11 1978-03-09 PROCEDURE FOR THE REGENERATION OF AN ABSORBENT FOR THE REMOVAL OF CARBON Dioxide AND / OR CARBONYL SULPHIDE FROM GASES NO146184C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7702650A NL7702650A (en) 1977-03-11 1977-03-11 PROCESS FOR THE REGENERATION OF AN ALKANOLAMINE-BASED SOLVENT FOR GASES CONTAINING CO2 AND / OR COS.

Publications (3)

Publication Number Publication Date
NO780825L NO780825L (en) 1978-09-12
NO146184B true NO146184B (en) 1982-05-10
NO146184C NO146184C (en) 1982-08-18

Family

ID=19828153

Family Applications (1)

Application Number Title Priority Date Filing Date
NO780825A NO146184C (en) 1977-03-11 1978-03-09 PROCEDURE FOR THE REGENERATION OF AN ABSORBENT FOR THE REMOVAL OF CARBON Dioxide AND / OR CARBONYL SULPHIDE FROM GASES

Country Status (8)

Country Link
JP (1) JPS53113290A (en)
BR (1) BR7801458A (en)
CA (1) CA1104996A (en)
DE (1) DE2810249C2 (en)
FR (1) FR2382922A1 (en)
GB (1) GB1572682A (en)
NL (1) NL7702650A (en)
NO (1) NO146184C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328581B2 (en) 2002-06-21 2008-02-12 Sargas As Low emission thermal plant

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282194A (en) 1980-02-19 1981-08-04 Exxon Research & Engineering Co. Process for converting cyclic urea to corresponding diamine in a gas treating system
US4282193A (en) 1980-02-19 1981-08-04 Exxon Research & Engineering Co. Process for converting cyclic urea to corresponding diamine in a gas treating system
US4514379A (en) * 1983-06-28 1985-04-30 Union Oil Company Of California Catalytic process for converting 2-oxazolidinones to their corresponding alkanolamines
US5137702A (en) * 1988-12-22 1992-08-11 Mobil Oil Corporation Regeneration of used alkanolamine solutions
US5108551A (en) * 1990-12-17 1992-04-28 Mobil Oil Corporation Reclamation of alkanolamine solutions
CN1035103C (en) * 1992-12-24 1997-06-11 四川化工总厂 Method of removing carbon dioxide from mix gas
EP0918049A1 (en) * 1997-10-27 1999-05-26 Shell Internationale Researchmaatschappij B.V. Process for the purification of an alkanolamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328581B2 (en) 2002-06-21 2008-02-12 Sargas As Low emission thermal plant

Also Published As

Publication number Publication date
BR7801458A (en) 1978-10-10
JPS53113290A (en) 1978-10-03
FR2382922B1 (en) 1983-02-04
FR2382922A1 (en) 1978-10-06
CA1104996A (en) 1981-07-14
DE2810249C2 (en) 1985-09-19
GB1572682A (en) 1980-07-30
DE2810249A1 (en) 1978-09-14
JPS6139092B2 (en) 1986-09-02
NO146184C (en) 1982-08-18
NL7702650A (en) 1978-09-13
NO780825L (en) 1978-09-12

Similar Documents

Publication Publication Date Title
JPH0464359B2 (en)
KR20090018110A (en) Process for treating a gas stream
NO146184B (en) PROCEDURE FOR THE REGENERATION OF AN ABSORBENT FOR THE REMOVAL OF CARBON Dioxide AND / OR CARBONYL SULPHIDE FROM GASES
WO1986005474A1 (en) Selective absorption of hydrogene sulfide from gases which also contain carbon dioxide
US3961015A (en) Combined hydrolysis and absorption process and apparatus therefor
US3266866A (en) Selective hydrogen sulfide absorption
CA1142735A (en) Regenerating alkanolamine desulfurizer solution
DK142227B (en) Process for removing acid gases from gaseous mixtures.
NO300052B1 (en) Absorbent liquid with improved absorption capacity for CO2, and its use
RU2080908C1 (en) Method of isolating hydrogen sulfide from gas
US3387917A (en) Method of removing acidic contaminants from gases
US3656275A (en) Process for the removal and concentration of a component gas from a multi-gaseous stream
NO142625B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY ACTIVE NEW PIPERAZINE DERIVATIVES
JPH0651091B2 (en) Improved method for acid gas recovery
US2701750A (en) Recovery of diethanolamine and salts
NO134407B (en)
US11781082B2 (en) Process and plant for removing thiols from synthesis gas
EP0013177B1 (en) Use of hot n-methyl-2-pyrrolidone (nmp) from solvent extraction operation to supply heat to strip h2s from nmp-scrubbing solution
GB725000A (en) Improvements in or relating to method for separating carbon dioxide and hydrogen sulphide from gas mixtures
SU1586506A3 (en) Method of removing hydrogen sulfide from waste gases
EP0021479B1 (en) Process and plant for the removal of acidic components
FR2459825A1 (en) METHOD FOR EXTINGUISHING HEATED BULK MATERIAL, IN PARTICULAR COKE
EP0207199A1 (en) Selective absorbtion of sulfur dioxide from gases containing sulfur dioxide and carbon dioxide
CA1099900A (en) Process of regenerating laden absorbents
SU979492A1 (en) Process for purifying coking gas from acid components